360 research outputs found

    Validating a method for the estimate of gait spatio-temporal parameters with IMUs data on healthy and impaired people from two clinical centers

    Get PDF
    Instrumented gait analysis offers objective clinical outcome assessment. To this purpose, inertial measurement units (IMUs) represent nowadays a very effective solution due to their limited cost, ease of use and improved wearability. The aim of this study was to apply a well-documented IMU-based method to measure gait spatio-temporal parameters in a large number of healthy and gait-impaired subjects, and evaluate its robustness and validity across two clinical centers. Overall, the results of this work represent a robust and reliable foundation for the clinical use of the proposed IMU based method for gait parameters estimation

    Internal friction and its thermal evolution on 304 L stainless steel films

    Get PDF
    Internal friction has been measured between 300 and 760K on 304 L stainless steel (SS) using a vibrating reed device. The 0.6 µm thick samples were deposited with ion beam sputtering technique on (100) silicon substrate. It has been shown that the damping level is considerably reduced by annealing between 500 and 760K. The calculated activation energy and the reaction order, using the Johnson-Mehl-Avrami (J-M-H) kinetic enable us to assume that the observed mechanism is closely related to microstructural rearrangements located at grain boundaries.Internal friction has been measured between 300 and 760K on 304 L stainless steel (SS) using a vibrating reed device. The 0.6 µm thick samples were deposited with ion beam sputtering technique on (100) silicon substrate. It has been shown that the damping level is considerably reduced by annealing between 500 and 760K. The calculated activation energy and the reaction order, using the Johnson-Mehl-Avrami (J-M-H) kinetic enable us to assume that the observed mechanism is closely related to microstructural rearrangements located at grain boundaries

    Unsupervised Semantic Discovery Through Visual Patterns Detection

    Get PDF
    We propose a new fast fully unsupervised method to discover semantic patterns. Our algorithm is able to hierarchically find visual categories and produce a segmentation mask where previous methods fail. Through the modeling of what is a visual pattern in an image, we introduce the notion of “semantic levels" and devise a conceptual framework along with measures and a dedicated benchmark dataset for future comparisons. Our algorithm is composed by two phases. A filtering phase, which selects semantical hotsposts by means of an accumulator space, then a clustering phase which propagates the semantic properties of the hotspots on a superpixels basis. We provide both qualitative and quantitative experimental validation, achieving optimal results in terms of robustness to noise and semantic consistency. We also made code and dataset publicly available

    Characterization of defects in a martensitic CuAlNi shape-memory alloy

    Get PDF
    A water-quenched martensitic CuAlNi shape-memory alloy was investigated by a combination of coincidence Doppler broadening and positron-lifetime spectroscopy, supported by positron-lifetime calculations. We find a high defect concentration in the as-quenched samples. The positron-lifetime calculations suggest that the defects are not only single vacancies but also vacancies associated with dislocations and stacking faults. Annealing in the martensitic phase has no significant influence on the vacancy concentration but results in a different chemical environment around the vacancies. After aging in the austenitic phase the vacancy concentration decreases significantl

    Action observation combined with conventional training improves the rugby lineout throwing performance: A pilot study

    Get PDF
    Combining action observation (AO) and physical practice contributes to motor skill learning, and a number of studies pointed out the beneficial role of AO training in improving the motor performance and the athletes' movement kinematics. The aim of this study was to investigate if AO combined with immediate conventional training was able to improve motor performance and kinematic parameters of a complex motor skill such as the lineout throw, a gesture that represents a key aspect of rugby, that is unique to this sport. Twenty elite rugby players were divided into 2 groups. The AO group watched a 5-min video-clip of an expert model performing the lineout throw towards a target at 7 m distance and, immediately after the AO, this group executed the conventional training, consisting of 6 repetitions x 5 blocks of throws. The CONTROL group performed only the conventional lineout training. Intervention period lasted 4 weeks, 3 sessions/week. The AO group showed significant improvements in throwing accuracy (i.e. number of throws hitting the target), whilst no significant changes were observed in the CONTROL group. As concerns kinematic parameters, hooker's arm mean velocity significantly increased in both groups, but the increase was higher in AO group compared to CONTROL group. Ball velocity significantly increased only in the AO group, whereas ball angle release and ball spinning significantly decreased in both groups, with no differences between groups. Finally, no significant changes in knee and elbow angles were observed. Our results showed that the combination of AO and conventional training was more effective than a conventional training alone in improving the performance of elite rugby players, in executing a complex motor skill, such as the lineout. This combined training led to significant improvements in throwing accuracy and in hooker's and ball's kinematic parameters. Since AO can be easily implemented in combination with conventional training, the results of this study can encourage coaches in designing specific lineout training programs, which include AO cognitive training

    Combustion Modeling Approach for the Optimization of a Temperature Controlled Reactivity Compression Ignition Engine Fueled with Iso-Octane

    Get PDF
    In this study, an innovative Low Temperature Combustion (LTC) system named Temperature Controlled Reactivity Compression Ignition (TCRCI) is presented, and a numerical optimization of the hardware and the operating parameters is proposed. The studied combustion system aims to reduce the complexity of the Reaction Controlled Compression Ignition engine (RCCI), replacing the direct injection of high reactivity fuel with a heated injection of low reactivity fuel. The combustion system at the actual state of development is presented, and its characteristics are discussed. Hence, it is clear that the performances are highly limited by the actual diesel-derived hardware, and a dedicated model must be designed to progress in the development of this technology. A Computational Fluid Dynamics (CFD) model suitable for the simulation of this type of combustion is proposed, and it is validated with the available experimental operating conditions. The Particle Swarm Optimization (PSO) algorithm was integrated with the Computational Fluid Dynamic (CFD) software to optimize the engine combustion system by means of computational simulation. The operating condition considered has a relatively high load with a fixed fuel mass and compression ratio. The parameters to optimize are the piston bowl geometry, injection parameters and the boosting pressure. The achieved system configuration is characterized by a wider piston bowl and injection angle, and it is able to increase the net efficiency of 3% and to significantly reduce CO emissions from 0.407 to 0.136 mg

    Sensorimotor inhibition during emotional processing

    Get PDF
    Visual processing of emotional stimuli has been shown to engage complex cortical and subcortical networks, but it is still unclear how it affects sensorimotor integration processes. To fill this gap, here, we used a TMS protocol named short-latency afferent inhibition (SAI), capturing sensorimotor interactions, while healthy participants were observing emotional body language (EBL) and International Affective Picture System (IAPS) stimuli. Participants were presented with emotional (fear- and happiness-related) or non-emotional (neutral) EBL and IAPS stimuli while SAI was tested at 120 ms and 300 ms after pictures presentation. At the earlier time point (120 ms), we found that fear-related EBL and IAPS stimuli selectively enhanced SAI as indexed by the greater inhibitory effect of somatosensory afferents on motor excitability. Larger early SAI enhancement was associated with lower scores at the Behavioural Inhibition Scale (BIS). At the later time point (300 ms), we found a generalized SAI decrease for all kind of stimuli (fear, happiness or neutral). Because the SAI index reflects integrative activity of cholinergic sensorimotor circuits, our findings suggest greater sensitivity of such circuits during early (120 ms) processing of threat-related information. Moreover, the correlation with BIS score may suggest increased attention and sensory vigilance in participants with greater anxiety-related dispositions. In conclusion, the results of this study show that sensorimotor inhibition is rapidly enhanced while processing threatening stimuli and that SAI protocol might be a valuable option in evaluating emotional-motor interactions in physiological and pathological conditions
    corecore