10 research outputs found

    Risk of cancer in family members of patients with lynch-like syndrome

    Get PDF
    Lynch syndrome (LS) is a common cause of hereditary colorectal cancer (CRC). Some CRC patients develop mismatch repair deficiency without germline pathogenic mutation, known as Lynch-like syndrome (LLS). We compared the risk of CRC in first-degree relatives (FDRs) in LLS and LS patients. LLS was diagnosed when tumors showed immunohistochemical loss of MSH2, MSH6, and PMS2; or loss of MLH1 with BRAF wild type; and/or no MLH1 methylation and absence of pathogenic mutation in these genes. CRC and other LS-related neoplasms were followed in patients diagnosed with LS and LLS and among their FDRs. Standardized incidence ratios (SIRs) were calculated for CRC and other neoplasms associated with LS among FDRs of LS and LLS patients. In total, 205 LS (1205 FDRs) and 131 LLS families (698 FDRs) had complete pedigrees. FDRs of patients with LLS had a high incidence of CRC (SIR, 2.08; 95% confidence interval (CI), 1.56-2.71), which was significantly lower than that in FDRs of patients with LS (SIR, 4.25; 95% CI, 3.67-4.90; p < 0.001). The risk of developing other neoplasms associated with LS also increased among FDR of LLS patients (SIR, 2.04; 95% CI, 1.44-2.80) but was lower than that among FDR of patients with LS (SIR, 5.01, 95% CI, 4.26-5.84; p < 0.001). FDRs with LLS have an increased risk of developing CRC as well as LS-related neoplasms, although this risk is lower than that of families with LS. Thus, their management should take into account this increased risk

    Transplantation of Human-Fetal-Spinal-Cord-Derived NPCs Primed with a Polyglutamate-Conjugated Rho/Rock Inhibitor in Acute Spinal Cord Injury

    No full text
    Neural precursor cell (NPC) transplantation represents a promising therapy for treating spinal cord injuries (SCIs); however, despite successful results obtained in preclinical models, the clinical translation of this approach remains challenging due, in part, to the lack of consensus on an optimal cell source for human neuronal cells. Depending on the cell source, additional limitations to NPC-based therapies include high tumorigenic potential, alongside poor graft survival and engraftment into host spinal tissue. We previously demonstrated that NPCs derived from rat fetal spinal cords primed with a polyglutamate (PGA)-conjugated form of the Rho/Rock inhibitor fasudil (PGA-SS-FAS) displayed enhanced neuronal differentiation and graft survival when compared to non-primed NPCs. We now conducted a similar study of human-fetal-spinal-cord-derived NPCs (hfNPCs) from legal gestational interruptions at the late gestational stage, at 19&ndash;21.6 weeks. In vitro, expanded hfNPCs retained neural features, multipotency, and self-renewal, which supported the development of a cell banking strategy. Before transplantation, we established a simple procedure to prime hfNPCs by overnight incubation with PGA-SS-FAS (at 50 &mu;M FAS equiv.), which improved neuronal differentiation and overcame neurite-like retraction after lysophosphatidic-acid-induced Rho/Rock activation. The transplantation of primed hfNPCs into immune-deficient mice (NU(NCr)-Foxn1nu) immediately after the eighth thoracic segment compression prompted enhanced migration of grafted cells from the dorsal to the ventral spinal cord, increased preservation of GABAergic inhibitory Lbx1-expressing and glutamatergic excitatory Tlx3-expressing somatosensory interneurons, and elevated the numbers of preserved, c-Fos-expressing, activated neurons surrounding the injury epicenter, all in a low percentage. Overall, the priming procedure using PGA-SS-FAS could represent an alternative methodology to improve the capabilities of the hfNPC lines for a translational approach for acute SCI treatment

    Risk of cancer in family members of patients with Lynch-Like Syndrome

    Get PDF
    Lynch syndrome (LS) is a common cause of hereditary colorectal cancer (CRC). Some CRC patients develop mismatch repair deficiency without germline pathogenic mutation, known as Lynch-like syndrome (LLS). We compared the risk of CRC in first-degree relatives (FDRs) in LLS and LS patients. LLS was diagnosed when tumors showed immunohistochemical loss of MSH2, MSH6, and PMS2; or loss of MLH1 with BRAF wild type; and/or no MLH1 methylation and absence of pathogenic mutation in these genes. CRC and other LS-related neoplasms were followed in patients diagnosed with LS and LLS and among their FDRs. Standardized incidence ratios (SIRs) were calculated for CRC and other neoplasms associated with LS among FDRs of LS and LLS patients. In total, 205 LS (1205 FDRs) and 131 LLS families (698 FDRs) had complete pedigrees. FDRs of patients with LLS had a high incidence of CRC (SIR, 2.08; 95% confidence interval (CI), 1.56-2.71), which was significantly lower than that in FDRs of patients with LS (SIR, 4.25; 95% CI, 3.67-4.90; p < 0.001). The risk of developing other neoplasms associated with LS also increased among FDR of LLS patients (SIR, 2.04; 95% CI, 1.44-2.80) but was lower than that among FDR of patients with LS (SIR, 5.01, 95% CI, 4.26-5.84; p < 0.001). FDRs with LLS have an increased risk of developing CRC as well as LS-related neoplasms, although this risk is lower than that of families with LS. Thus, their management should take into account this increased risk

    Clinical and Pathological Characterization of Lynch-Like Syndrome.

    No full text
    Lynch syndrome is characterized by DNA mismatch repair (MMR) deficiency. Some patients with suspected Lynch syndrome have DNA MMR deficiencies but no detectable mutations in genes that encode MMR proteins-this is called Lynch-like syndrome (LLS). There is no consensus on management of patients with LLS. We collected data from a large series of patients with LLS to identify clinical and pathology features. We collected data from a nationwide-registry of patients with colorectal cancer (CRC) in Spain. We identified patients whose colorectal tumors had loss of MSH2, MSH6, PMS2, or MLH1 (based on immunohistochemistry), without the mutation encoding V600E in BRAF (detected by real-time PCR), and/or no methylation at MLH1 (determined by methylation-specific multiplex ligation-dependent probe amplification), and no pathogenic mutations in MMR genes, BRAF, or EPCAM (determined by DNA sequencing). These patients were considered to have LLS. We collected data on demographic, clinical, and pathology features and family history of neoplasms. The χ2 test was used to analyze the association between qualitative variables, followed by the Fisher exact test and the Student t test or the Mann-Whitney test for quantitative variables. We identified 160 patients with LLS; their mean age at diagnosis of CRC was 55 years and 66 patients were female (41%). The Amsterdam I and II criteria for Lynch syndrome were fulfilled by 11% of cases and the revised Bethesda guideline criteria by 65% of cases. Of the patients with LLS, 24% were identified in universal screening. There were no proportional differences in sex, indication for colonoscopy, immunohistochemistry, pathology findings, or personal history of CRC or other Lynch syndrome-related tumors between patients who met the Amsterdam and/or Bethesda criteria for Lynch syndrome and patients identified in universal screening for Lynch syndrome, without a family history of CRC. Patients with LLS have homogeneous clinical, demographic, and pathology characteristics, regardless of family history of CRC

    Risk of cancer in family members of patients with lynch-like syndrome

    No full text
    Lynch syndrome (LS) is a common cause of hereditary colorectal cancer (CRC). Some CRC patients develop mismatch repair deficiency without germline pathogenic mutation, known as Lynch-like syndrome (LLS). We compared the risk of CRC in first-degree relatives (FDRs) in LLS and LS patients. LLS was diagnosed when tumors showed immunohistochemical loss of MSH2, MSH6, and PMS2; or loss of MLH1 with BRAF wild type; and/or no MLH1 methylation and absence of pathogenic mutation in these genes. CRC and other LS-related neoplasms were followed in patients diagnosed with LS and LLS and among their FDRs. Standardized incidence ratios (SIRs) were calculated for CRC and other neoplasms associated with LS among FDRs of LS and LLS patients. In total, 205 LS (1205 FDRs) and 131 LLS families (698 FDRs) had complete pedigrees. FDRs of patients with LLS had a high incidence of CRC (SIR, 2.08; 95% confidence interval (CI), 1.56–2.71), which was significantly lower than that in FDRs of patients with LS (SIR, 4.25; 95% CI, 3.67–4.90; p < 0.001). The risk of developing other neoplasms associated with LS also increased among FDR of LLS patients (SIR, 2.04; 95% CI, 1.44–2.80) but was lower than that among FDR of patients with LS (SIR, 5.01, 95% CI, 4.26–5.84; p < 0.001). FDRs with LLS have an increased risk of developing CRC as well as LS-related neoplasms, although this risk is lower than that of families with LS. Thus, their management should take into account this increased risk

    Risk of cancer in family members of patients with lynch-like syndrome

    No full text
    Lynch syndrome (LS) is a common cause of hereditary colorectal cancer (CRC). Some CRC patients develop mismatch repair deficiency without germline pathogenic mutation, known as Lynch-like syndrome (LLS). We compared the risk of CRC in first-degree relatives (FDRs) in LLS and LS patients. LLS was diagnosed when tumors showed immunohistochemical loss of MSH2, MSH6, and PMS2; or loss of MLH1 with BRAF wild type; and/or no MLH1 methylation and absence of pathogenic mutation in these genes. CRC and other LS-related neoplasms were followed in patients diagnosed with LS and LLS and among their FDRs. Standardized incidence ratios (SIRs) were calculated for CRC and other neoplasms associated with LS among FDRs of LS and LLS patients. In total, 205 LS (1205 FDRs) and 131 LLS families (698 FDRs) had complete pedigrees. FDRs of patients with LLS had a high incidence of CRC (SIR, 2.08; 95% confidence interval (CI), 1.56–2.71), which was significantly lower than that in FDRs of patients with LS (SIR, 4.25; 95% CI, 3.67–4.90; p < 0.001). The risk of developing other neoplasms associated with LS also increased among FDR of LLS patients (SIR, 2.04; 95% CI, 1.44–2.80) but was lower than that among FDR of patients with LS (SIR, 5.01, 95% CI, 4.26–5.84; p < 0.001). FDRs with LLS have an increased risk of developing CRC as well as LS-related neoplasms, although this risk is lower than that of families with LS. Thus, their management should take into account this increased risk
    corecore