399 research outputs found

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics

    Get PDF
    Following concerns over increasing global plastic pollution, interest in the production and characterization of bio-based and biodegradable alternatives is rising. In the present work, the synthesis of a series of fully bio-based alternatives based on 2,4-, 2,5-, and 2,6-pyridinedicarboxylic acid-derived polymers produced via enzymatic catalysis are reported. A similar series of aromatic-aliphatic polyesters based on diethyl-2,5-furandicarboxylate and of the petroleum-based diethyl terephthalate and diethyl isophthalate were also synthesized. Here we show that the enzymatic synthesis starting from 2,4-diethyl pyridinedicarboxylate leads to the best polymers in terms of molecular weights (M n = 14.3 and M w of 32.1 kDa when combined with 1,8-octanediol) when polymerized in diphenyl ether. Polymerization in solventless conditions were also successful leading to the synthesis of bio-based oligoesters that can be further functionalized. DSC analysis show a clear similarity in the thermal behavior between 2,4-diethyl pyridinedicarboxylate and diethyl isophthalate (amorphous polymers) and between 2,5-diethyl pyridinedicarboxylate and diethyl terephthalate (crystalline polymers)

    Basal Ganglia Involvement in the Playfulness of Juvenile Rats

    Full text link
    Play is an important part of normal childhood development and can be readily studied in the laboratory rat in the form of rough‐and‐tumble play. Given the robust nature of rough‐and‐tumble play, it has often been assumed that the basal ganglia would have a prominent role in modulating this behavior. Recent work using c‐fos expression as a metabolic marker for neural activity combined with temporary inactivation of relevant corticostriatal regions and pharmacological manipulations of opioid, cannabinoid, and dopamine systems has led to a better understanding of how basal ganglia circuitry may be involved in modulating social play in the juvenile rat. Studies using selective play deprivation have also provided insight into the consequences of playful experiences on basal ganglia function. Data reviewed in this paper support a role for the basal ganglia in social play and also suggest that corticostriatal functioning also benefits from playful activities

    Making sense of social pretense: The effect of the dyad, sex and language ability in a large observational study of children’s behaviors in a social pretend play context

    Get PDF
    Pretend play with peers is purportedly an important driver of social development in the preschool period, however, fundamental questions regarding the features of children’s pretend play with a peer, and the effect of the dyad for pretend play, have been overlooked. The current study undertook detailed behavioral coding of social pretend play in 134 pairs of 5-year-old children (54% boys) in order to address three main aims: (i) describe the duration and proportion of children engaging in key social pretend play behaviors, namely, calls for attention, negotiation (comprising role assignment and joint proposals) and enactment of pretend play, (ii) examine the effect of the dyad in influencing the occurrence of different social pretend play behaviors, and (iii) assess the independent and combined effect of individual child characteristics (i.e., language ability and sex) that may influence social pretend play behaviors beyond the influence of the dyad. Results demonstrated the overwhelming effect of the dyad in shaping children’s social pretend play behaviors, with language ability and sex explaining relatively little of the total variability in play behaviors. Results are discussed considering the contribution that this type of study can make to theories of associations between children’s social development and social pretend play.LEGO Foundatio

    Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids.

    Get PDF
    The gut microbiota is essential for numerous aspects of human health. However, the underlying mechanisms of many host-microbiota interactions remain unclear. The aim of this study was to characterize effects of the microbiota on host epithelium using a novel ex vivo model based on mouse ileal organoids. We have explored the transcriptional response of organoids upon exposure to short-chain fatty acids (SCFAs) and products generated by two abundant microbiota constituents, Akkermansia muciniphila and Faecalibacterium prausnitzii. We observed that A. muciniphila metabolites affect various transcription factors and genes involved in cellular lipid metabolism and growth, supporting previous in vivo findings. Contrastingly, F. prausnitzii products exerted only weak effects on host transcription. Additionally, A. muciniphila and its metabolite propionate modulated expression of Fiaf, Gpr43, histone deacetylases (HDACs), and peroxisome proliferator-activated receptor gamma (PparÂż), important regulators of transcription factor regulation, cell cycle control, lipolysis, and satiety. This work illustrates that specific bacteria and their metabolites differentially modulate epithelial transcription in mouse organoids. We demonstrate that intestinal organoids provide a novel and powerful ex vivo model for host-microbiome interaction studies

    Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure

    Get PDF
    This paper is concerned with the analysis of vaccination strategies in a stochastic SIR (susceptible → infected → removed) model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability and fraction of the population infected by such an outbreak. The performance of these schemes is studied numerically, focusing on the influence of the household size distribution and the degree distribution of the social network. We find that acquaintance vaccination can significantly outperform the best household-based scheme if the degree distribution of the social network is heavy-tailed. For household-based schemes, when the vaccine coverage is insufficient to prevent a major outbreak and the vaccine is imperfect, we find situations in which both the probability and size of a major outbreak under the scheme which minimises the threshold parameter are \emph{larger} than in the scheme which maximises the threshold parameter

    Impact of Temporal Features of Cattle Exchanges on the Size and Speed of Epidemic Outbreaks

    Get PDF
    International audienceDatabases recording cattle exchanges offer unique opportunities for a better understanding and fighting of disease spreading. Most studies model contacts with (sequences of) networks, but this approach neglects important dynamical features of exchanges, that are known to play a key role in spreading. We use here a fully dynamic modeling of contacts and empirically compare the spreading outbreaks obtained with it to the ones obtained with network approaches. We show that neglecting time information leads to significant overestimates of actual sizes of spreading cascades, and that these sizes are much more heterogeneous than generally assumed. Our approach also makes it possible to study the speed of spreading, and we show that the observed speeds vary greatly, even for a same cascade size
    • 

    corecore