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Abstract This paper is concerned with the analysis of vaccination strategies in a
stochastic susceptible → infected → removed model for the spread of an epidemic
amongst a population of individuals with a random network of social contacts that is
also partitioned into households. Under various vaccine action models, we consider
both household-based vaccination schemes, in which the way in which individuals are
chosen for vaccination depends on the size of the households in which they reside,
and acquaintance vaccination, which targets individuals of high degree in the social
network. For both types of vaccination scheme, assuming a large population with few
initial infectives, we derive a threshold parameter which determines whether or not a
large outbreak can occur and also the probability of a large outbreak and the fraction
of the population infected by a large outbreak. The performance of these schemes is
studied numerically, focusing on the influence of the household size distribution and
the degree distribution of the social network.Wefind that acquaintance vaccination can
significantly outperform the best household-based scheme if the degree distribution
of the social network is heavy-tailed. For household-based schemes, when the vaccine
coverage is insufficient to prevent a major outbreak and the vaccine is imperfect, we
find situations in which both the probability and size of a major outbreak under the
scheme which minimises the threshold parameter are larger than in the scheme which
maximises the threshold parameter.

Keywords Branching process · Configuration model · Epidemic process ·
Final size · Random graph · Threshold behaviour · Vaccination

B David Sirl
david.sirl@nottingham.ac.uk

Frank Ball
frank.ball@nottingham.ac.uk

1 School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham NG7 2RD, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-017-1139-0&domain=pdf
http://orcid.org/0000-0002-5599-2903
http://orcid.org/0000-0002-2639-1666


F. Ball, D. Sirl

Mathematics Subject Classification Primary 92D30 (Epidemiology); Secondary
60J85 (Applications of BPs) · 05C80 (Random graphs)

1 Introduction and description of results

Mathematical models for the spread of infectious disease have much to offer in terms
of understanding past outbreaks, predicting likely behaviours of future outbreaks and
predicting the effect of interventions or mitigating strategies. In the last decade or two
there has been considerable interest and work on network epidemic models. These
involve supplanting the traditional assumption of homogeneous mixing of homoge-
neous individualswith some randomgraph structure,with specific interest in being able
to control the degree distribution, reflecting the varying numbers of people with which
different individuals tend to interact. Other structures, for example including house-
holds and stratification of populations, have been studied for longer (Bartoszyński
1972; Ball et al. 1997;Watson 1972; Scalia-Tomba 1986); but structures with a ‘social
network’ type of interpretation start around the turn of the millenium with the works
of Andersson (1997, 1998), Diekmann et al. (1998) and Newman (2002). In this and
most other papers in the field we typically have in mind an infection spreading through
a human population. However, much the same ideas apply tomathematical models of a
variety of other motivating applications, such as the spread of rumours or information
through human populations, infection or information spread through a population of
other animals and virus spread through a network of computers.

In this paper we build on the model of Ball et al. (2009, 2010) which includes
household and network structure to include vaccination, with some emphasis on so-
called acquaintance vaccination (Cohen et al. 2003; Britton et al. 2007) as elucidated
inBall andSirl (2013) in amodelwithout household structure. In themodel ofBall et al.
(2010), a population of fixed size is given social network structure via the configuration
model random graph (see e.g. Bollobás 1980; Newman et al. 2001; Newman 2002)
and the population is also partitioned into households (see e.g. Ball et al. 1997). A
stochastic Susceptible→ Infective→Removed (SIR) epidemic model is then defined
on this population structure. A first quantity of interest in this model is the final size,
which is the (random) number of initial susceptibles that are infected at some point
during the epidemic. In line with much of modern stochastic epidemic theory, one
can use branching process approximations to prove a threshold theorem (valid in the
large population limit) which determines whether the infection will necessarily die
out relatively quickly, resulting in a small final size, or whether it is possible for the
epidemic to take off and infect a substantial fraction of the population. These methods
also yield approximations for the probability that a supercritical epidemic will take
off and using closely related methods one can also study final size properties of such
a large outbreak.

This paper provides tools for studying the effect of introducing vaccination into
this model. Households-based vaccination schemes are those that can be described
in terms of the distribution of the number of vaccinated individuals in households of
size n, for every household size n in the population. This includes as special cases the
situation when we vaccinate individuals who are chosen uniformly at random from
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the population (the distributions are binomial) and vaccinating households at random
(the distributions are concentrated at 0 and n). Optimal schemes in this context often
resemble the equalising strategy (Ball et al. 1997, Sect. 5.2) where one vaccinates
preferentially in larger households, there being more of a herd immunity effect avail-
able to exploit in those larger households on top of the direct protection of vaccinated
individuals. Acquaintance vaccination schemes exploit the heterogeneity of individ-
uals’ connectivities in a network to preferentially target better-connected individuals
for vaccination. Instead of vaccinating individuals chosen from the population in some
way, one samples individuals and then vaccinates their friends—their acquaintances
in the network. This exploits the so-called friendship paradox: the observation that,
for most people, their friends on average have more friends than they do (Feld 1991).

Our main theoretical results are the calculation of asymptotic final size quantities,
via appropriate branching process approximations, when we include vaccination in
Ball et al.’s (2010) household-network model. This extends Becker and Starczak’s
(1997) and Ball and Lyne’s (2002, 2006) results on the standard households model
to have network-based (rather than homogeneous mixing) casual contacts. It also
extends Ball and Sirl’s (2013) results on acquaintance vaccination in a population
with network (but not household) structure. We also explore the model numerically
and find that there can be substantial differences in the performance of the different
vaccine allocation strategies.

Results like those in this paper can inform about which mechanism of spreading
(household or network) can be most beneficially targeted for reducing the impact of
outbreaks of disease. This seems likely to be relevant when considering, for example,
how best to reduce the impact of any future Ebola outbreak in West Africa (Adams
2016) using vaccines that are currently under development. Other possible applica-
tions include pandemic influenza (Halloran et al. 2008) and smallpox (Halloran et al.
2002). For all of these diseases a salient feature is that they have markedly enhanced
transmission within small social groups such as households. In each of these possible
applications some further refinements of the underlying model may be valuable.

The remainder of the paper is structured as follows. In Sect. 2 we specify ourmodels
for the population structure and evolution of the epidemic, then outline the analysis of
the final outcomeof the epidemic and lastly introduce themodelwe use for the action of
a vaccine on individuals who receive it. In Sect. 3 we consider the effect of households-
based vaccination, including optimal households-based strategies, and in Sect. 4 we
consider the effect of acquaintance vaccination. The analysis in these sections is of the
same final outcome measures as in the basic model in Sect. 2. Some exploration of the
behaviour of themodel (mainly numerical) is presented in Sect. 5. Lastlywe offer some
concluding remarks in Sect. 6. Details of many of the calculations relating to Sect. 4
are given in Appendix A, while in Appendix B some known exact results for the final
outcome and susceptibility sets of multitype stochastic SIR epidemics (households in
our setting) are stated and applied to the asymptotic analyses of Sects. 2, 3 and 4.
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2 Model, threshold behaviour and vaccination

2.1 Model

The model we consider is one for the spread of an SIR epidemic on a finite random
network incorporating household structure (Ball et al. 2010). We assume that the
population consists of N individuals and is partitioned into m households, of which
mn are of size n (n = 1, 2, . . .). Thus m = ∑∞

n=1mn and N = ∑∞
n=1 nmn . The

network of possible global (i.e. between-household) contacts is constructed using the
configuration model (with random, rather than specified, degree sequence). Thus each
individual is assigned a number of ‘half-edges’ independently, according to an arbitrary
but specified discrete random variable D having mass function P(D = k) = pk
(k = 0, 1, . . .). Then all such half-edges are paired up uniformly at random to form
the edges in the graph describing the global network. If the total number of half-edges
is odd, we ignore the single leftover half-edge.

Our analysis is asymptotic as the number of households m → ∞. We require that,
as m → ∞, mn/m → ρn (n = 1, 2, . . .), where (ρ1, ρ2, . . .) is a proper probability
distribution (i.e.

∑∞
n=1 ρn = 1) having finite mean μH = ∑∞

n=1 nρn . Thus μH is
the mean household size in the limiting population. We also require that μD = E[D]
is finite. These assumptions are sufficient for our analysis. If we make the stronger
assumptions that σ 2

D = var(D) and
∑∞

n=1 n
2ρn are both finite, then parallel edges

and self-loops, between either individuals or households, become sparse in the global
network as n → ∞ (Ball et al. 2010, Sect. 1.2).

The epidemic is initiated by a single individual, chosen uniformly at random from
the population, becoming infected, with the other individuals in the population all
assumed to be susceptible. The infectious periods of different infectives are each
distributed according to a random variable I , having an arbitrary but specified dis-
tribution, which is most conveniently specified in terms of its moment generating
function φI (θ) = E[e−θ I ] (θ ≥ 0). Throughout its infectious period, a given infec-
tive makes infectious contact with any given member of its household at the points of
a Poisson process having rate λL and with any given global neighbour at the points of
a Poisson process with rate λG . (Note that λL and λG are both individual to individual
contact rates.) If an individual so contacted is susceptible then it becomes infected,
otherwise the contact has no effect. Contacted susceptibles are immediately able to
infect other individuals. An infective individual becomes removed at the end of its
infectious period and plays no further role in the epidemic. All infectious periods,
global degrees and Poisson processes are assumed to be mutually independent. The
epidemic ceases as soon as there is no infective in the population.

For ease of exposition we assume throughout that there is no latent period and
that the epidemic is started by a single infective chosen uniformly at random from
the population. As explained by Ball et al. (2010), these assumptions may be relaxed
without compromising mathematical tractability. In particular, our results are related
to the final outcome of the epidemic, the distribution of which is invariant to very
general assumptions concerning a latent period (see e.g. Pellis et al. 2008).
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2.2 Threshold behaviour

2.2.1 Early stages of epidemic

Recall that the global network is formed by pairing up the half-edges uniformly at
random. It follows that in the early stages of an epidemic the probability that a global
contact iswith an individual residing in apreviously infectedhousehold is small, indeed
it is zero in the limit as m → ∞. Thus, in the early stages of an epidemic, the process
of infected households can be approximated by a branching process. The individuals
in this branching process correspond to infected households in the epidemic process,
and the offspring of a given individual in the branching process are all households that
are contacted globally by members of the local (within-household) epidemic in the
parent household.

The offspring distribution for this branching process is usually different in the initial
generation than in all subsequent generations. The number of global neighbours that
the initial infective in the population may infect is distributed according to D, as
that individual is chosen uniformly at random from the population. The number of
global neighbours that the initial infective in any subsequent infected household (in
the branching process approximation) may infect is distributed according to D̃ − 1,
where D̃ is the degree of a typical neighbour of a typical individual in the network.
The−1 arises because such an infective has been infected through the global network,
so one of its neighbours (i.e. its infector) is not available for further infection. Note
that a given half-edge is k times as likely to be paired with a half-edge emanating from
an individual with degree k than with one emanating from an individual with degree
1, so P(D̃ = k) = μ−1

D kpk (k = 1, 2, . . .). The distributions of D and D̃ − 1 are
equal if and only if D has a Poisson distribution. For any non-negative integer valued
random variable X , we denote its probability generating function (PGF) by fX , so
fX (s) = E[sX ] (0 ≤ s ≤ 1). We note for future reference that f D̃−1(s) = f ′

D(s)/μD .
The approximation of the early stages of the epidemic process by the above branch-

ing process is made mathematically fully rigorous by Ball et al. (2009) and Ball and
Sirl (2012). The latter shows that a sequence of epidemic processes, indexed by m,
and the approximating branching process can be constructed on the same probability
space so that, as m → ∞, the number of households ultimately infected in the epi-
demic process converges almost surely to the total progeny of the branching process.
Thus, provided m is large, whether or not the epidemic can become established and
lead to a major outbreak is determined by whether or not the branching process is
supercritical.

Let C and C̃ be random variables describing the number of offspring of the initial
and a typical subsequent individual, respectively, in the branching process. Then stan-
dard branching process theory (e.g. Haccou et al. 2005, Theorem 5.2), gives that the
extinction probability of the branching process is strictly less than one if and only if
R∗ = E[C̃] > 1. Thus R∗ serves as a threshold parameter for the epidemic model.
We now outline the calculation of R∗. Further details are given by Ball et al. (2010).

First note that, since the degree and household size of an individual are independent,
the probability that a typical globally infected individual resides in a household of size
n is given by ρ̃n = μ−1

H nρn (n = 1, 2, . . .). (An individual chosen uniformly at random
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from the population is n times as likely to reside in a given household of size n than
in a given household of size 1.) Thus,

E[C̃] =
∞∑

n=1

ρ̃n E
[
C̃ (n)

]
, (2.1)

where C̃ (n) is the number of global infections emanating from a typical size-n single-
household epidemic initiated by a single infective who is infected through the global
network. Consider such a size-n single-household epidemic. Label the household
members 0, 1, . . . , n − 1, where 0 is the initial infective, and write

C̃ (n) = C0 +
n−1∑

i=1

χiCi , (2.2)

where χi = 1 if individual i is infected by the single-household epidemic, otherwise
χi = 0, and Ci is the number of global infections made by individual i (assum-
ing it is infected). (Throughout the paper we adopt the usual convention that empty
sums are equal to 0, so, for example, C̃ (1) = C0.) Let T (n) = ∑n−1

i=1 χi be the
final size of the single-household epidemic, not including the initial infective, and
μ(n)(λL) = E[T (n)]. (A formula forμ(n)(λL) is given in Eq. (B.25) in Appendix B.6.)
Whether or not a given individual, i say, is infected by the single-household epidemic
is independent of its infectious period, so χi and Ci are independent. Thus, taking
expectations of (2.2) and exploiting symmetries yields

E
[
C̃ (n)

]
= E[C0] + μ(n)(λL)E[C1]. (2.3)

Since the probability that a Poisson process of rate λG has no points in a time of
length I is e−λG I we have that the probability an infected individual infects a given
global neighbour is pG = 1− E[e−λG I ] = 1−φI (λG). We also have that the number
of uninfected global neighbours of individual 0 is distributed according to D̃ − 1.

Thus E[C0] = pGμD̃−1, where μD̃−1 = E[D̃ − 1] = μD + σ 2
D

μD
− 1. Similarly,

E[C1] = pGμD , since the number of uninfected global neighbours of individual 1
is distributed according to D. Substituting these results into (2.3) and then into (2.1)
yields

R∗ = pG

[

μD̃−1 + μD

∞∑

n=1

ρ̃nμ
(n)(λL)

]

. (2.4)

Let pmaj be the probability that a major outbreak occurs. Then standard branching
process theory [e.g. Haccou et al. (2005, Theorem 5.2)], shows that pmaj = 1− fC (σ ),
where σ is the smallest solution of fC̃ (s) = s in [0, 1]. Note that, analagous to (2.1),
fC (s) = ∑∞

i=1 ρ̃n fC(n) (s) and fC̃ (s) = ∑∞
n=1 ρ̃n fC̃(n) (s). The PGFs fC(n) and fC̃(n)

can be calculated using the methods described in Appendices B.1 and B.2. As noted
by Ball et al. (2010, Sect. 3.2), these calculations are much simpler in the case where
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the infectious period is constant, since in this case an infected individual infects its
global neighbours independently.

2.2.2 Final outcome of major outbreak

We now consider the fraction of the population that are ultimately infected by a major
outbreak. The key tool we use is the susceptibility set (Ball 2000; Ball and Lyne 2001;
Ball and Neal 2002), which we now describe. LetN = {1, 2, . . . , N } denote the entire
population of N individuals. For each i ∈ N , by sampling from the infectious period
distribution and then the relevant Poisson processes for local and global contacts,
draw up a (random) list of individuals i would make infectious contact with if it was
to become infected. Then construct a random directed graph on N , in which for any
pair, (i, j) say, of individuals there is an arc from i to j if and only if j is in i’s list.
The susceptibility set of a given individual, i say, consists of those individuals from
which there is a chain of arcs to i in the graph (including i itself). Note that any given
individual is ultimately infected by the epidemic if and only if the initial infective
belongs to its susceptibility set.

Similarly to the early stages of an epidemic, we can approximate the susceptibility
set of an individual, i say, chosen uniformly at random from the population, by a
households-based branching process. We first consider i’s local susceptibility set,
i.e. the susceptibility set obtained when only local (within-household) contacts are
considered. Suppose that this local susceptibility set has sizeM (n)+1, where n denotes
the size of i’s household; so M (n) is the size of the local susceptibility set excluding
i . (The probability mass function of M (n) is given by Eq. (B.23) in Appendix B.5.)
Let B be the number of individuals, who are not in i’s household, that in the random
directed graph have an edge leading directly to one of the M (n) + 1 individuals in i’s
local susceptibility set. Each individual in i’s local susceptibility set has global degree
distributed independently according to D, and, as m → ∞, each global neighbour of
i’s local susceptibility set enters i’s susceptibility set independently with probability
pG . Thus, taking expectations with respect to i’s household size,

fB(s) =
∞∑

n=1

ρ̃n fB(n) (s), (2.5)

where
fB(n) (s) = fD(1 − pG + pGs) fM(n) ( fD(1 − pG + pGs)). (2.6)

The above B individuals form the first generation of our approximating branching
process. We next consider each of these B individuals in turn, construct the local
susceptibility sets in their respective households (which are distinct with probability
tending to one as m → ∞) and then examine the global neighbours of these local
susceptibility sets to obtain the second generation of the approximating branching
process, and so on. Note that the initial individual in each of these B local susceptibility
sets has degree distributed according to D̃ and one of its global neighbours is already
in i’s susceptibility set. Thus, as above, the offspring distribution for the branching
process is different for the initial individual than for all subsequent individuals. If we
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let B̃ denote the offspring random variable of a typical non-initial individual, then
arguing as in the derivation of (2.5),

f B̃(s) =
∞∑

n=1

ρ̃n f B̃(n) (s),

where
f B̃(n) (s) = f D̃−1(1 − pG + pGs) fM(n) ( fD(1 − pG + pGs)). (2.7)

The probability that the approximating branching process survives (i.e. does not
go extinct) is given by z = 1 − fB(ξ), where ξ is the smallest solution of f B̃(s) = s
in [0, 1]. It is straightforward to show that E[B̃] = E[C̃], so z > 0 if and only if
R∗ > 1. Moreover, if R∗ > 1 then z is the expected proportion of the population
that is ultimately infected by a major outbreak in the limit as m → ∞; see Ball et al.
(2009) for a formal proof when all the households have the same size. Furthermore, the
proof of Ball et al. (2014, Theorem 3.4) can be adapted to show that, as m → ∞, the
proportion of the population that is ultimately infected by a major outbreak converges
in probability to z. Thus we refer to z as the relative final size of a major outbreak.

2.3 Vaccination

In modelling vaccination there are two distinct aspects that must be modelled: who
gets vaccinated and what happens to those who are vaccinated. Vaccine allocation
models (addressing the former issue) are our focus in this paper. We now outline the
vaccine action models (addressing the latter aspect) that we allow for in our analy-
sis.

We use a model for vaccine action, proposed by Becker and Starczak (1998), in
which the vaccine response of an individual who is vaccinated is described by a
random vector (A, B) which takes values in [0,∞)2. Here A denotes the relative
susceptibility (compared to an unvaccinated individual) and B the relative infectivity
if the vaccinated individual becomes infected. Thus all Poisson processes concerning
potential infection of the individual have their rates multiplied by A and the Pois-
son processes governing the contacts the individual makes, if infected, have their
rates multiplied by B. The vaccine responses of distinct vaccinees are assumed to
be mutually independent. Within this framework we consider two special cases, the
all-or-nothing and the non-random vaccine responses, where (A, B) is supported on 2
and 1 points respectively. Our methods extend to vaccine action models where (A, B)

is supported on finitely many points; the extension is straightforward analytically
but quickly becomes numerically cumbersome if there are more than a few possible
outcomes of (A, B).

The all-or-nothing model (see e.g. Halloran et al. 1992) is obtained by setting
P((A, B) = (0, 0)) = 1 − P((A, B) = (1, 1)) = ε, so vaccinated individuals are
rendered completely immune with probability ε, otherwise the vaccine has no effect.
The non-random model assumes that P((A, B) = (a, b)) = 1, for some (a, b),
so all vaccinated individuals respond identically (see e.g. Ball and Lyne 2006). An
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important special case is the leaky model (see e.g. Halloran et al. 1992), when b = 1,
so vaccination does not affect an individual’s ability to transmit the disease if they
become infected. Setting ε = 1 in the all-or-nothing model or a = b = 0 in the non-
random model yields a perfect vaccine response; that is one in which all vaccinated
individuals are rendered completely immune.

3 Households based vaccination

3.1 Introduction

In this section we consider vaccine allocation strategies based on household size and
determine their impact on R∗, pmaj and z under the all-or-nothing and non-random
vaccine action models. For n = 1, 2, . . . and v = 0, 1, . . . , n, let xnv denote the
proportion of households of size n that have v members vaccinated. Let pV denote
the proportion of the population that is vaccinated, i.e. the vaccination coverage. Then
pV is also the probability that an individual chosen uniformly at random from the
population is vaccinated. Conditioning on the size of such an individual’s household
yields

pV =
∞∑

n=1

ρ̃n

n∑

v=0

v

n
xnv. (3.1)

We derive results for an arbitrary but specified vaccine allocation however in the
numerical studies we consider four allocation schemes: uniformly chosen households,
uniformly chosen individuals, ‘best’ and ‘worst’. In the uniformly chosen households
scheme, households are chosen uniformly at random and all of their members are
vaccinated. Thus, if the vaccination coverage is pV , xnv = pV δvn + (1 − pV )δv0
(n = 1, 2, . . .; v = 0, 1, . . . , n), where δvk = 1 if v = k and δvk = 0 if v 	= k. In
the uniformly chosen individuals scheme, individuals are chosen uniformly at random
and vaccinated, so xnv = (n

v

)
pv
V (1− pV )n−v (n = 1, 2, . . .; v = 0, 1, . . . , n). The best

and worst schemes are the allocations that make R∗ respectively as small as possible
and as large as possible, for a given vaccination coverage.

3.2 All-or-nothing vaccine action

To analyse the consequences of a vaccination scheme using an all-or-nothing vaccine
actionmodel it is convenient to use the concept of a potential infectious global contact.
Consider a given infected individual, i say, and a given global neighbour j of i . Then
j is a potential infectious global contact of i if it is in i’s list of individuals it makes
infectious contact with (see the start of Sect. 2.2.2). The potential infectious global
contact becomes an actual infectious global contact if j is unvaccinated or is vaccinated
but the vaccination fails.

The early stages of an epidemic with vaccination are approximated by a branching
process of (potentially) infected households, and the offspring of a given individual in
the branching process are all households with which members of the single-household
epidemic in the parent household make a potential global infectious contact. As in the
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case without vaccination, the offspring distribution of this branching process is usually
different in the initial generation from all subsequent generations. Let C̃ ′ denote the
offspring random variable for a non-initial individual. Conditioning first on the size
of the corresponding household and then on the number of people vaccinated in that
household yields, in an obvious notation,

fC̃ ′(s) =
∞∑

n=1

ρ̃n

n∑

v=0

xnv fC̃ ′
n,v

(s). (3.2)

To determine fC̃ ′
n,v

(s), consider a household in state (n, v), i.e. of size n having v mem-

bers vaccinated. For k = 0, 1, . . . , v, the probability that k vaccinations are successful
is

(
v
k

)
εk(1 − ε)v−k , and given that k vaccinations are successful, the probability that

the initial potentially contacted individual in that household is susceptible and thus
triggers a local epidemic is n−k

n . Moreover, if such a local epidemic is triggered, the
number of potential infectious global contacts emanating from the local epidemic is
distributed as C̃ (n−k), where C̃ (n) is as in Eq. (2.1). Thus,

fC̃ ′
n,v

(s) =
v∑

k=0

(
v

k

)

εk(1 − ε)v−k
[
(n − k)

n
fC̃(n−k) (s) + k

n

]

. (3.3)

The distribution of the offspring random variable, C ′ say, for the initial generation
depends on how the initial infective is chosen. For n = 1, 2, . . . and v = 0, 1, . . . , n,
let pVn,v be the probability that a vaccinated individual chosen uniformly at random
resides in a household in state (n, v) and let pUn,v be the corresponding probability for
an unvaccinated individual. Then

pVn,v = ρ̃nxnv
v
n

pV
and pUn,v = ρ̃nxnv

(
1 − v

n

)

1 − pV
. (3.4)

Thus, if the epidemic is started by an individual chosen uniformly at random from all
unvaccinated individuals being infected, then C ′ is distributed as C ′

U , where

fC ′
U
(s) =

∞∑

n=1

n−1∑

v=0

pUn,v

v∑

k=0

(
v

k

)

εk(1 − ε)v−k fC(n−k) (s).

Alternatively, if the epidemic is started by choosing a vaccinated individual uniformly
at random, who triggers an outbreak only if its vaccination fails, then C ′ is distributed
as C ′

V , where

fC ′
V
(s) = ε + (1 − ε)

∞∑

n=1

n∑

v=1

pVn,v

v−1∑

k=0

(
v − 1

k

)

εk(1 − ε)v−1−k fC(n−k) (s).

The probability of a major outbreak may now be calculated as at the end of Sect. 2.2.1.
Again, the formulae simplify appreciably if the infectious period is constant.
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A post-vaccination threshold parameter is given by Rv = E[C̃ ′] = f ′
C̃ ′(1). Differ-

entiating (3.2) and (3.3), or a direct calculation, yields

Rv =
∞∑

n=1

ρ̃n

n∑

v=0

xnvμn,v, (3.5)

where μn,v = E[C̃ ′
n,v] is given by

μn,v =
v∑

k=0

(
v

k

)

εk(1 − ε)v−k
(
n − k

k

)

E[C̃ (n−k)].

As with the case of no vaccination, we can determine the relative final size of a
major outbreak by considering a households-based branching process that approxi-
mates the susceptibility set of a typical individual. As with the forward process, it
is convenient to consider potential global neighbours when constructing this branch-
ing process. Thus we start with an individual, i∗ say, chosen uniformly at random
from the population, construct its local susceptibility set, taking the vaccine status of
individuals in the household into account, then determine which global neighbours of
individuals in this local susceptibility set would enter the susceptibility set of i∗ if they
were susceptible (i.e. unvaccinated or unsuccessfully vaccinated). These individuals
correspond to the first generation of the approximating backward branching process.
Suppose that there are B ′ such individuals. Next we take each of these B ′ individuals
in turn, first determine whether they really do enter the susceptibility set of i∗ (this
happens with probability 1 if the individual is unvaccinated and with probability 1− ε

if it is vaccinated, independently for distinct individuals) and if they do enter the sus-
ceptibility set of i∗, determine the number of potential global neighbours of its local
susceptibility set to obtain its offspring in the branching process, and so on.

Let B̃ ′ be the offspring random variable for any non-initial individual in this back-
ward branching process. Conditioning first on the state (n, v) of that individual’s
household and then on whether it joins the susceptibility set of i∗, we obtain

f B̃′(s) =
∞∑

n=1

ρ̃n

n∑

v=0

xnv f B̃′
n,v

(s),

where

f B̃′
n,v

(s) =
v∑

k=0

(
v

k

)

εk(1 − ε)v−k
[
(n − k)

n
f B̃(n−k) (s) + k

n

]

and f B̃(n) is as in Eq. (2.7).
The distribution of B ′ depends on how the initial individual i∗ is chosen. If i∗ is

chosen uniformly at random from all unvaccinated individuals, then B ′ is distributed
as B ′

U , say, and conditioning on the state (n, v) of i∗’s household yields
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fB′
U
(s) =

∞∑

n=1

n−1∑

v=0

pUn,v

v∑

k=0

(
v

k

)

εk(1 − ε)v−k fB(n−k) (s),

where fB(n) is as in Eq. (2.6). If i∗ is chosen uniformly at random from all vaccinated
individuals, then B ′ is distributed as B ′

V , where

fB′
V
(s) = ε + (1 − ε)

∞∑

n=1

n∑

v=1

pVn,v

v−1∑

k=0

(
v − 1

k

)

εk(1 − ε)v−1−k fB(n−k) (s).

Let ξV be the smallest solution of f B̃′(s) = s in [0, 1]. Then the proportion of
unvaccinated individuals that are ultimately infected by a major outbreak is zU =
1 − fB′

U
(ξV ) and the corresponding proportion for vaccinated individuals is zV =

1 − fB′
V
(ξV ). The overall proportion of the population infected by a major outbreak

is z = pV zV + (1 − pV )zU .

3.3 Non-random vaccine action

Analysing the consequences of a vaccination scheme using a non-random vaccine
action model is more difficult than with an all-or-nothing vaccine action model since
disease spread is now genuinely two type. Thus we now consider two types of individ-
ual: type-U , unvaccinated, and type-V , vaccinated. The early stages of the epidemic
can again be approximated by a branching process of infected households. This is now
a two-type branching process, with the type of an infected household being given by
the type of the initial case in that household. The offspring of a given individual in the
branching process correspond to the households that are contacted globally by mem-
bers of that individual’s corresponding single-household epidemic in the epidemic
process.

Let CU = (CUU ,CUV ) denote the offspring random variable for the initial indi-
vidual in the above branching process, given that individual is of type U , and let
CV = (CVU ,CVV ) be the corresponding offspring random variable when the initial
individual has type V . Thus, for example, CUU and CUV are respectively the number
of unvaccinated and vaccinated individuals globally infected by the initially infected
household, given that the first infective in that household is unvaccinated. Define

C̃
U = (C̃UU , C̃UV ) and C̃

V = (C̃VU , C̃V V ) similarly for subsequent individuals in
the branching process. For s = (sU , sV ) ∈ [0, 1]2, let fCU (s) = E[sCUU

U sCUV
V ] and

define fCV (s), f
C̃
U (s) and f

C̃
V (s) similarly. (Here and henceforth, for any discrete

random vector X we denote its joint PGF by fX .) Recall that when the network of
global contacts is formed half-edges are paired uniformly at random. It follows that,
for A ∈ {U, V },

f
C̃

A(s) =
∞∑

n=1

n∑

v=0

pA
n,v fC̃ A

n,v

(s),

123



Evaluation of vaccination strategies for SIR epidemics...

where C̃
A
n,v is a random vector giving the numbers of unvaccinated and vaccinated

global infections that emanate from a non-initial infected household of size n, having
v members vaccinated, whose primary case is of type A. The distributions of CU and
CV depend on how the initial infective is chosen. If it is chosen uniformly at random
from all individuals of the appropriate type in the population, then, for A ∈ {U, V },

fC A(s) =
∞∑

n=1

n∑

v=0

pA
n,v fC A

n,v
(s),

where C A
n,v is defined analogously to C̃

A
n,v but for the initial infected house-

hold.
Let

M̃ =
[
m̃UU m̃UV

m̃VU m̃VV

]

,

where, for example, m̃UU = E[C̃UU ]. The post-vaccination threshold parameter Rv

is given by the dominant eigenvalue (a real, positive eigenvalue of maximummodulus)
of M̃ . It is well known (e.g. Haccou et al. 2005, p. 123) that, provided m̃UV m̃VU 	= 0,
the two-type branching process has non-zero probability of surviving if and only if
Rv > 1. Moreover, if m̃UV m̃VU 	= 0 and Rv > 1, then the survival probability
(and hence the probability of a major outbreak) can be determined as follows. Let
σ = (σU , σV ) be the unique solution in [0, 1)2 of the equations

σU = fC̃U (σU , σV ), σV = fC̃V (σU , σV ). (3.6)

Then, if the epidemic is started by an unvaccinated individual chosen uniformly at
random from the population becoming infected, the probability of a major outbreak
is pUmaj = 1 − fCU (σ ). The corresponding probability when the initial infective is a

vaccinated individual is pVmaj = 1 − fCV (σ ). Calculation of the PGFs fCU
n,v
, fCV

n,v
,

f
C̃
U
n,v

and f
C̃
V
n,v

, which is rather involved unless the infectious period is constant,

requires the methods described in Appendices B.1 and B.3. Calculation of M̃ , which
is sufficient for determining optimal vaccination strategies, is simpler and we now
outline it.

Consider first a local (single-household) epidemic in a household in state (n, v),
initiated by one of the household members becoming infected. Let T (n,v)

U and T (n,v)
V

denote the number of unvaccinated and vaccinated individuals ultimately infected
by this local epidemic, not including the initial case. For A, A′ ∈ {U, V }, let
μ(n,v)(A, A′) be the mean of T (n,v)

A′ given that the initial case is of type A. (Calculation
of μ(n,v)(A, A′) is described in Appendix B.6.) Also, define the vaccine-status-
dependent marginal transmission probabilities pNRG (U,U ), pNRG (U, V ), pNRG (V,U )

and pNRG (V, V ) between global neighbours, where, for example, pNRG (U, V ) is the
probability that an unvaccinated infective infects a given vaccinated global neighbour.
Then
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PNR
G =

[
pNRG (U,U ) pNRG (U, V )

pNRG (U, V ) pNRG (V, V )

]

=
[
1 − φI (λG) 1 − φI (aλG)

1 − φI (bλG) 1 − φI (abλG)

]

, (3.7)

recalling that φI is the moment generating function of the generic infectious period
random variable I .

Conditioning on the state (n, v) of the infected household shows that, for A, A′ ∈
{U, V },

m̃ AA′ =
∞∑

n=1

n∑

v=0

pA
n,vm̃

(n,v)

AA′ , (3.8)

where m̃(n,v)

AA′ is defined analogously to m̃ AA′ but for a household in state (n, v). Further,
arguing as in the derivations of (2.3) and (2.4), yields

m̃(nv)

AA′ =
[
μD̃−1 p

NR
G (A, A′)+μD

(
μ(n,v)(A,U )pNRG (U, A′)+μ(n,v)(A, V )pNRG (V, A′)

)]
pA′ ,

(3.9)

where pU = 1 − pV . Hence, if we let

F =
[
FUU FUV

FVU FVV

]

and DV =
[
1 − pV 0

0 pV

]

,

where, for A, A′ ∈ {U, V },

FAA′ =
∞∑

n=1

n∑

v=0

pA
n,vμ

(n,v)(A, A′),

then (3.8) and (3.9) yield

M̃ = (μD̃−1 I + μDF)PNR
G DV . (3.10)

Turning to the relative final size of a major outbreak, we consider a households-
based branching process that approximates the susceptibility set of a given individual.
This is now a two-type branching process, with type (U or V ) corresponding
to the type of the primary member of the corresponding local susceptibility set.
Define the offspring random variables BU = (BUU , BUV ), BV = (BVU , BVV ),

B̃
U = (B̃UU , B̃UV ) and B̃

V = (B̃VU , B̃V V ) for this branching process in the obvi-

ous fashion (cf. the forward process offspring random variables CU , CV , C̃
U
and C̃

V

and the notation used in Sect. 3.2). We determine first the PGFs f
B̃
U (s) and f

B̃
V (s).

First note that, for A ∈ {U, V }, conditioning on the state (n, v) of a household
yields, in obvious notation,

f
B̃
A(s) =

∞∑

n=1

n∑

v=0

pA
n,v f B̃A

n,v

(s).
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Fix A ∈ {U, V } and (n, v), and let M(n,v)
A = (M (n,v)

AU , M (n,v)
AV ), where M (n,v)

AU and

M (n,v)
AV are respectively the numbers of unvaccinated and vaccinated individuals, not

including i∗ itself, in the local susceptibility set of a typical type-A individual, i∗ say,
that resides in a household in state (n, v). Then B̃

A
n,v admits the decomposition

B̃
A
n,v = B̃

A0
n,v +

M(n,v)
AU∑

i=1

B̃
AU
n,v (i) +

M(n,v)
AV∑

j=1

B̃
AV
n,v ( j), (3.11)

where B̃
A0
n,v , B̃

AU
n,v (i) and B̃

AV
n,v ( j) are the contributions to B̃

A
n,v from the primary

individual i∗, the i th secondaryunvaccinatedmember and the j th secondaryvaccinated
member of i∗’s local susceptibility set, respectively. Let Di∗ denote the number of
neighbours i∗ has in the global network, so Di∗ ∼ D̃, and recall that one of these
global neighbours is used when i∗ joins the susceptibility set process. Thus,

B̃
A0
n,v =

Di∗−1∑

k=1

χ A
k ,

where χ A
k = (1, 0) if the kth global neighbour of i∗ is unvaccinated and joins the

susceptibility set process, χ A
k = (0, 1) if this neighbour is vaccinated and joins the

susceptibility set process, and χ A
k = (0, 0) otherwise. Note that, independently, each

such global neighbour is vaccinated with probability pV , and it joins the susceptibility
set process with probability pNRG (U, A) if it is unvaccinated and with probability
pNRG (V, A) if it is vaccinated. Thus

f
B̃
A0
n,v

(s) = f D̃−1(p
A(s)),

where

pA(s) = fχ A
1
(s) = 1 − (1 − pV )pNRG (U, A)(1 − sU ) − pV pNRG (V, A)(1 − sV ).

A similar argument shows that f
B̃
AU
n,v (i)

(s)= fD(pU (s)) and f
B̃
AV
n,v ( j)

(s)= fD(pV (s)).

Exploiting the mutual independence of all the random quantities in (3.11) except the
components of M(n,v)

A then yields

f
B̃
A
n,v

(s) = f D̃−1(p
A(s)) fM(n,v)

A
( fD(pU (s)), fD(pV (s))).

Calculation of the mass function of M(n,v)
A is described in Appendix B.5.

The distributions of BU and BV depend on how the initial individual for the sus-
ceptibility set process is chosen. For A ∈ {U, V }, if this initial individual is chosen
uniformly at random from all type-A individuals in the population, then
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fBA(s) =
∞∑

n=1

n∑

v=0

pA
n,v fBA

n,v
(s),

where

fBA
n,v

(s) = fD(pA(s)) fM(n,v)
A

( fD(pU (s)), fD(pV (s))).

Suppose that m̃UV m̃VU 	= 0 and Rv > 1. Let ξ = (ξU , ξV ) be the unique solution in
[0, 1)2 of the equations

ξU = f
B̃
U (ξU , ξV ), ξV = f

B̃
V (ξU , ξV ).

Then the proportions of unvaccinated and vaccinated individuals that are infected by
a major epidemic are given by zU = 1 − fBU (ξU , ξV ) and zV = 1 − fBV (ξU , ξV ),
respectively. Thus the overall proportion of individuals infected by a major epidemic
is z = pV zV + (1 − pV )zU .

3.4 Optimal vaccination strategies

Amain aim of a vaccination scheme is to reduce the threshold parameter R∗ to below
one, i.e. to make Rv ≤ 1, and thus prevent a major outbreak occurring. The vaccine
response may be such that Rv > 1 even if the entire population is vaccinated, in which
case vaccination by itself is insufficient to be sure of preventing a major outbreak.
However, if R∗ > 1 and it is possible to make Rv ≤ 1 then it is of interest to determine
the allocation of vaccines that reduces Rv to 1 with the minimum vaccination coverage
pV .

Suppose that the population has a maximum household size nmax < ∞. Then pV
is a linear function of xnv (n = 1, 2, . . ., nmax; v = 0, 1, . . . , n) (recall (3.1)), as is Rv

when the vaccine action is all-or-nothing (recall (3.5)). Thus in this case determining
the allocation of vaccines that (i) minimises pV subject to Rv ≤ 1 or (ii) minimises Rv

subject to an upper bound on pV are both linear programming problems. Moreover, as
we outline below, the method of Ball and Lyne (2002, 2006) can be used to construct
explicitly the solutions of these linear programming problems. The situation is in
general more complicated if the vaccine action is non-random, since then Rv is the
dominant eigenvalue of the matrix M̃ , and the corresponding optimisation problems
are non-linear. However, the problem is linear if rank(M̃) = 1, a sufficient condition
for which is rank(PNR

G ) = 1, i.e. pNRG (U,U )pNRG (V, V ) = pNRG (U, V )pNRG (V,U ).
Note that rank(PNR

G ) = 1 if either a = 1 or b = 1, so a leaky vaccine response
satisfies this constraint.

Consider the non-random vaccine response and suppose that rank(M̃) = 1. Then
Rv = trace(M̃) and, recalling (3.10), it follows using (3.4), (3.8) and (3.9) that

Rv =
∞∑

n=1

n∑

v=0

ρ̃nxnvμ
NR
n,v, (3.12)
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where

μNR
n,v =

(
1 − v

n

) {
μD̃−1 p

NR
G (U,U ) + μD

[
μ(n,v)(U,U )pNRG (U,U ) + μ(n,v)(U, V )pNRG (V,U )

]}

+ v

n

{
μD̃−1 p

NR
G (V, V ) + μD

[
μ(n,v)(V,U )pNRG (U, V ) + μ(n,v)(V, V )pNRG (V, V )

]}
.

Observe that, when rank(M̃) = 1, Rv takes the same form as for the all-or-nothing
vaccine response; compare (3.12) and (3.5).

To characterise the optimal vaccination schemes in these cases, it is convenient to
consider a finite population ofm households, with maximum household size nmax. Let
mn = mρn be the number of households of size n and let hnv = mnxnv be the number
of households in state (n, v). Then ρ̃n = nmn/N , where N is the total population size,
and, writing μn,v for μAoN

n,v or μNR
n,v , as appropriate, (3.5) or (3.12) implies that

Rv =
nmax∑

n=1

n∑

v=0

hnvMn,v, (3.13)

where Mn,v = nμn,v/N , and (3.1) yields

pV = 1

N

nmax∑

n=1

n∑

v=0

vhnv.

Observe that (3.13) implies that Rv is obtained by summing Mn,v over all house-
holds in the population. For n = 1, 2, . . . , nmax and v = 0, 1, . . . , n − 1, let
Gn,v = Mn,v − Mn,v+1 be the reduction in Rv obtained by vaccinating one fur-
ther individual in a household in state (n, v). If Gn,v is decreasing in v for each
fixed n (so successive vaccinations in the same household have diminishing returns),
then it is straightforward to determine optimal vaccination schemes (Ball and Lyne
2002, 2006). One simply orders the states (n, v) according to decreasing Gn,v , and
then uses this ordering to determine the order in which individuals in the population
are vaccinated, stopping the process when either the vaccination coverage reaches
the desired level or when Rv ≤ 1, depending on the optimisation problem under
consideration. (The ‘worst’ scheme is obtained by vaccinating whole households in
increasing order of Mn,0 − Mn,n .) If for some n, say n = n′, Gn′,v is not decreas-
ing in v, then only those states, (n′, v′) say, on the lower edge of the convex hull of
{(v,Gn′,v) : v = 0, 1, . . . , n′ − 1} can be part of an optimal vaccination scheme. It is
still possible to give explicit solutions of associated optimisation problems (cf. Ball
et al. 2004), and of ‘worst’ schemes, but the details are more involved.

4 Acquaintance vaccination

4.1 Introduction

The acquaintance vaccine allocationmodel proposed byCohen et al. (2003) and further
analysed by Britton et al. (2007), both in the setting of a standard network model
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(i.e. a population modelled by a configuration model, without household structure),
is as follows. Each individual in the population is sampled independently a Poisson
distributed number of times, with mean κ > 0, and each time an individual is sampled
it chooses one of its neighbours uniformly at random, with replacement, and that
neighbour is vaccinated. If a sampled individual has no neighbours then that sampling
is ignored. Individuals are vaccinated at most once, even if they are chosen to be
vaccinated more than once.

If the vaccine is perfect then the early stages and final outcome of an epidemic with
this acquaintance vaccination model can be analysed relatively easily using branching
process approximations. Essentially this is because the epidemic involves only unvac-
cinated individuals, and the degrees of the neighbours of an unvaccinated individual
are mutually independent. However, if the vaccine is imperfect, then the epidemic
may also involve vaccinated individuals and the degrees of the neighbours of a vac-
cinated individual are dependent. (A low-degree neighbour of a given individual, A
say, is more likely to nominate A for vaccination than a high-degree neighbour but, if
A is vaccinated, at least one of A’s neighbours nominated A for vaccination.) It fol-
lows that the independence property required for a branching process approximation
breaks down. This dependence can be overcome if individuals are also typed by their
degree but, unless the support of D is small, the calculations become computationally
prohibitively expensive. Indeed, infinite-type branching processes are required if the
support of D is countably infinite. For these reasons, Ball and Sirl (2013) introduced
an alternative acquaintance vaccine allocation model and analysed it, in the setting of
a standard network model (without households). We now extend this analysis to the
present network and households model.

4.2 Model and results

4.2.1 Acquaintance vaccination model

We assume that each individual is sampled independently with probability pS and then
each sampled individual nominates each of its global neighbours independently with
probability pN . All individuals that are nominated at least once are then vaccinated.
Thus individuals are sampled only once and it is easily seen that the degrees of the
neighbours of both vaccinated and unvaccinated individuals aremutually independent,
thus facilitating branching process approximations which do not involve typing by
degree. Note that the probability that an individual is not named by a given neighbour
is 1 − pS pN , so the probability it is vaccinated is

pV = 1 −
∞∑

d=0

pd(1 − pS pN )d = 1 − fD(1 − pS pN ), (4.1)

which, of course, also gives the vaccination coverage.
We now describe the methods used to find threshold parameter, the major outbreak

probability and the relative final size of amajor outbreak. All details of the calculations
are deferred to Appendix A.
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Table 1 Numerical indices of
the 6 types of household
involved in non-initial
generations of the branching
process approximations

1 2 3 4 5 6

(N , S) (V, S) (U, S) (N , Sc) (V, Sc) (U, Sc)

4.2.2 Early stages of the epidemic

We approximate the early stages of the epidemic, with vaccination, by a multitype
(forward) branching process of infected households, in which households are typed
by the type of their primary (globally contacted) case. Such primary cases are typed by
(i) whether they are named (N ), vaccinated (V ) or unvaccinated (U ) and (ii) whether
or not they are sampled and thus might name their neighbours for vaccination (S
and Sc). Here N means that a primary case was named by its global infector and
therefore is vaccinated, V means that it is not named by its global infector but it is
nevertheless vaccinated (i.e. it is named by another neighbour) and U means that it
is unvaccinated (i.e. not named by any of its neighbours). Thus there are 6 types of
infected households, which for notational convenience we give numerical indices as
shown in Table 1. Secondary infected cases in a household, and also the primary case
in the initially infected household, need only to be typed V orU , according to whether
or not they are vaccinated. This forward branching process is in the same spirit as that
described in Sect. 3.3 for household-based vaccination with a non-random vaccine
action model, except to maintain the independence required for a branching process
there are now 6 rather than 2 types (and an additional 2 types that appear only in the
initial generation).

The offspring random variables for this forward branching process are as follows.
For i = 1, 2, . . . , 6, let C̃ i = (C̃i1, C̃i2, . . . , C̃i6) denote the offspring randomvariable
for a type-i non-initial individual in the forward branching process. Thus C̃i j is the
number of type- j primary household cases emanating from a typical single household
epidemic that is initiated by a single type-i primary case. Similarly, for A ∈ {U, V },
let C A = (CA1,CA2, . . . ,CA6) denote the offspring random variable for a type-A
individual in the initial generation of the forward branching process. In contrast to
similar analyses of previous models in this paper, when analysing the all-or-nothing
vaccine response, we consider actual, rather than potential, global infections. This
facilitates simultaneous analysis of the two vaccine action models to a much larger
extent than is otherwise possible, but has the consequence that the formulae for pmaj
and z below are slightly different for the different models of vaccine action.

A threshold parameter is then given by Rv , the dominant eigenvalue of the matrix
M̃ = [m̃i j ], where m̃i j = E[C̃i j ]. We assume that M̃ is positively regular, i.e. that
for some n > 0 the matrix M̃n has all of its entries strictly positive (e.g. Mode 1971,
Sect. 1.6), which will be satisfied in all practical situations. If Rv > 1 then a major
outbreak occurs with strictly positive probability; otherwise the probability of a major
outbreak is zero.

The probability of a major outbreak can be written in terms of the joint PGFs fC̃ i

and fC A of the random variables C̃ i (i = 1, 2, . . . , 6) and C A (A ∈ {U, V }). Let
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pUmaj be the probability of a major outbreak if the initial infective is unvaccinated and

pVmaj be the corresponding probability when the initial infective is vaccinated. With
an all-or-nothing vaccine this latter probability also assumes that the vaccination of
the initial case is unsuccessful, since the branching process considers actual global
infections. Conditioning on a single initial infective of type A ∈ {U, V }, we have
pA
maj = 1 − fC A(σ ), where σ = (σi , i = 1, 2, . . . , 6) is the unique solution of

fC̃ i
(σ ) = σi (i = 1, 2, . . . , 6) in [0, 1)6 (cf. (3.6)). The probability of amajor outbreak

with an initial infective chosen uniformly from the whole population is therefore

pmaj =
{
pV pVmaj + (1 − pV )pUmaj, non-random vaccine,

pV (1 − ε)pVmaj + (1 − pV )pUmaj, all-or-nothing vaccine.

(With an all-or-nothing vaccine, if the initial infective is vaccinated then a major out-
break can occur only if that vaccination is unsuccessful, which occurs with probability
1 − ε.)

4.2.3 Final outcome of a major outbreak

We approximate the susceptibility set of a given individual, i∗ say, by a households-
based (backward) multitype branching process, where, as in Sect. 3.3, the type of a
household is given by the type of the primary member of the corresponding local sus-
ceptibility set. As previously, the fraction of individuals that are ultimately infected by
a major outbreak is given by the survival probability of this branching process. In the
initial generation there are two types, V andU , depending onwhether or not i∗ is vacci-
nated. In subsequent generations, there are 6 types, numbered 1–6 as above,where now,
for example, N means that the primary casewas namedby the individual that it contacts
globally to join i∗’s susceptibility set. Similar to before, secondary members of a local
susceptibility set need only to be typed V orU . Let BU = (BU1, BU2, . . . , BU6) and
BV = (BV 1, BV 2, . . . , BV 6) denote the offspring random variables for the initial gen-
eration of this branching process, and let B̃i = (B̃i1, B̃i2, . . . , B̃i6) (i = 1, 2, . . . , 6)
be the offspring random variables for all subsequent generations.

Suppose that Rv > 1, so amajor outbreak is possible. The asymptotic proportions of
unvaccinated and vaccinated individuals that are infected by amajor outbreak are given
by zU = 1− fBU (ξ̃) and zV = 1− fBV (ξ̃), respectively, where ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃6)

is the unique solution in [0, 1)6 of the equations f B̃i
(s) = si (i = 1, 2, . . . , 6). The

overall proportion of the population infected by a major outbreak is therefore

z =
{
pV zV + (1 − pV )zU , non-random vaccine,

pV (1 − ε)zV + (1 − pV )zU , all-or-nothing vaccine.

5 Model exploration

In this section we explore the behaviour of the model and its dependence on some
key parameters. The main focus is on numerical comparison of the various vaccine
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allocation regimes for a variety of household size and network degree distributions.
First, however, we comment briefly on the relationship between outcomes in simulated
finite populations and our asymptotic analytical results, and also give some discussion
of the choice of the parameters pS and pN in acquaintance vaccination.

5.1 Outcomes in finite populations

One can compare the analytical, asymptotic, quantities of interest (pmaj and z) to
simulation-based estimates of the corresponding quantities on finite populations. We
find [consistent with Ball et al. (2009, Sect. 5)] that the agreement becomes reasonable
with the number of households m in the low hundreds and very close indeed for m
over about 1000, though the convergence is a little slower for heavier tailed degree
distributions.

5.2 Acquaintance vaccination dependence on pS and pN

The vaccine coverage c = pV = 1− fD(1− pS pN ) in our acquaintance vaccination
model is determined by the product pS pN [see Eq. (4.1)]. Here we investigate the
dependence of the model outcomes (Rv , pmaj and z) on the precise values of pN and
pS , for a fixed coverage.

In the case of a perfect vaccine some analytical progress is possible. It can be shown
(see Appendix A.2.3 for details) that in this case Rv has the form

Rv = η(p′)(1 − 2p′ + p′ pN ),

where the function η depends on pS and pN only through their product p′ = pS pN . It
is immediate that Rv is increasing in pN for fixed p′. Thus we have that the best effect
is achieved by taking (pS, pN ) = (1, p′) and the worst with (pS, pN ) = (p′, 1). The
corresponding values of Rv are Rb

v = η(p′)(1− p′)2 and Rw
v = η(p′)(1− p′), so we

have Rb
v = (1 − p′)Rw

v . Precisely as in the network-only model without households,
we note that this difference is generally quite small and is at its largest when p′ is
large, so there is high coverage and the epidemic is likely to be subcritical in any event.

When the vaccine action is not perfect we cannot make analytical progress in this
direction, but extensive numerical calculations suggest that Rv , pmaj and z are usually
monotonic in pN when pS pN is fixed and that in any case the difference in outcomes
between the best and worst choices are very small. We do not explicitly demonstrate
this here, but we note that (asmight be expected) this is the same as Ball and Sirl (2013)
found for themodel without households. It can be seen to some extent in all of the plots
in Sect. 5.3, where the two acquaintance vaccination plots are barely distinguishable
in most cases.

In the numerical studies below we use the terms ‘best’ and ‘worst’ to refer to the
acquaintance vaccination schemes with (pS, pN ) = (1, p′) and (pS, pN ) = (p′, 1)
even though the names are not necessarily correct. As noted above, the precise choice
of pS and pN seems to have only a very weak influence on the final outcome of the
epidemic model and these two cases seem to give bounds for the quantities of interest.
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5.3 Effect of different vaccine allocation regimes

We now explore the relative effectiveness of the different vaccine allocation regimes
discussed in this paper, across a small but representative variety of household size and
degree distributions. In the following figures we plot an outcome (Rv or z) against the
vaccine coverage c for several vaccine allocation strategies; with all other parameters
held fixed. Using different plots within the same figure we vary some of these other
parameters. The vaccine allocation methods we consider are (i) uniformly chosen
individuals (Ind UAR), (ii) uniformly chosen households (HH UAR), (iii & iv) best
and worst household-based allocation (HH Best and HH Worst), (v & vi) ‘best’ and
‘worst’ acquaintance vaccination (Acq Best and Acq Worst); see the end of Sect. 3.1
for descriptions of the household-based vaccination schemes.

In this numerical sectionweusehousehold size distributionsρUK = (31, 32, 16, 14,
5, 2)/100 and ρPak = (9, 45, 77, 118, 141, 146, 123, 104, 237)/1000, which have
respective means 2.4 and 6.8, as realistic household size distributions from the
UK (Office for National Statistics 2011, Table 3.1) and Pakistan (National Institute of
Population Studies 2013, Table 2.9), respectively. The degree distributions we use are
the standard Poisson distribution and a power law distribution with exponential cutoff
(see, for example, Amaral et al. 2000). For this latter distribution we use the notation
D ∼ PowC(a, κ) to denote that pk ∝ k−ae−k/κ (k = 1, 2, . . . ), i.e. a power law with
index a and exponential cutoff at about κ . In particular, we use the degree distribution
D ∼ PowC(2, 120), which has mean μD ≈ 3.001 and σ 2

D ≈ 66. We also use the
notation Gam(k, r) to denote a Gamma distribution with shape parameter k and scale
parameter r (and thus mean kr and variance kr2).

First we look at the relative effectiveness of the various allocation schemes, and how
this changes with the household size distribution and the network degree distribution.
Figure 1 shows plots of the post-vaccination threshold parameter Rv as a function of
the vaccine coverage c for the 6 vaccine allocation schemes with a perfect vaccine.
The different plots use different combinations of household size and network degree
distribution, with all other parameters kept fixed (full details are in the figure caption).
Firstly we note that the patterns of the household-based allocation schemes are con-
sistent with those of Ball and Lyne (2006, Sect. 4) for the standard households model.
We see that when the network degree distribution is not very variable (Poisson) good
household-based schemes perform similarly to acquaintance vaccination. On the other
hand, when the network degree distribution is much more variable (cut-off power law)
we see that acquaintance vaccination significantly outperforms the household-based
schemes, though to a slightly lesser extent when the household size distribution is also
more variable.

Figures 2 and 3 are similar to Fig. 1, but we consider imperfect vaccine action
models (with the same efficacy 1−E[AB] = 0.7) andweplot both the post-vaccination
threshold parameter Rv and expected final size of a large outbreak z. In Fig. 2 we use
an all-or-nothing vaccine action model with success probability ε = 0.7 and consider
two network degree distributions, with fixed (less variable) household size distribution.
In Fig. 3 we use a non-random vaccine action model with relative susceptibility and
infectivity a = 0.5 and b = 0.6, respectively, and vary the household size distibution,
with a fixed (more variable) network degree distribution. Note that for this choice of a
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Fig. 1 Plots of Rv versus coverage (c) for various kinds of allocation of a perfect vaccine. We use two
different household size distributions: left plotsρ = ρUK, right plotsρ = ρPak; and two different degree dis-
tributions:upper plots D ∼ Poi(5), lower plots D ∼ PowC(2, 120).Other parameters are I ∼ Gam(5, 1/5),
λL = 1, λG = 0.3

and b, determining the ‘best’ and ‘worst’ household-based vaccine allocation schemes
are not linear programming problems (see Sect. 3.4). In our numerical routine we use
the MATLAB constrained optimisation solver fmincon.

We see in the upper plots (of Rv) in Figs. 2 and 3 broadly similar patterns to those
in Fig. 1. The lower plots in Fig. 2 show the ordering of z for the different allocation
regimes being the same as the ordering of Rv . These two lower plots look qualitatively
quite different, but it is important to note that in one the vaccine can and in the other the
vaccine cannot bring the epidemic below threshold. These plots suggest that, as might
be expected, when the network degree distribution is not so variable (e.g. the Poisson
case) then vaccine allocation should be focussed on households-basedmethods, whilst
when the network degree distribution is more variable (e.g. the cutoff power law) then
targeting vaccination effort based on the network might give better results. Precisely
which method is preferable will of course depend heavily on the other parameters of
the model, but we have demonstrated that either allocation method, household-based
or acquaintance-based, can be preferable to the other.
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Fig. 2 Plots of Rv and z versus coverage (c) for various kinds of allocation of an all-or-nothing vaccine
with success probability ε = 0.7. We use two different degree distributions: left plots D ∼ Poi(5), right
plots D ∼ PowC(2, 120). Other parameters are ρ = ρUK, I ∼ Gam(5, 1/5), λL = 1, λG = 0.2

The lower plots of Fig. 3 follow similar patterns in that we are considering the
case of a quite variable network degree distribution so acquaintance vaccination out-
performs the household-based methods. There are however some unexpected patterns
in the lower-right plot of Fig. 3, in that the ordering of the various household-based
allocation regimes are not the same as in the corresponding plot of Rv immediately
above it. In particular, for lower coverages the ‘worst’ households based allocation
outperforms, in terms of z, the ‘best’! This demonstrates that when the epidemic
is well above threshold, optimising vaccine allocation based on R∗ does not nec-
essarily result in an expected final size that is as low as possible; cf. Keeling and
Ross (2015), who observe a similar phenomenon in the standard households model
with a perfect vaccine. The threshold parameter Rv measures household-to-household
transmission, but does not directly take into account the size of the within-household
outbreaks. This could perhaps be resolved by optimising an individual-based thresh-
old parameter instead (see Pellis et al. 2012; Ball et al. 2016), but the optimisation
problem would be more difficult than the one we have considered. We also note
that this phenomenon appears to arise only when the epidemic is well above
criticality.
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Fig. 3 Plots of Rv and z versus coverage (c) for various kinds of allocation of a non-random vaccine with
relative susceptibility and infectivity a = 0.5 and b = 0.6 respectively. We use two different household
size distributions: left plots ρ = ρUK, right plots ρ = ρPak. Other parameters are D ∼ PowC(2, 120),
I ∼ Gam(5, 1/5), λL = 1, λG = 0.2

Lastly we note that the behaviour of pmaj is broadly similar to that of z. We do not
present any plots, but they have shapes and patterns similar to those in the z plots that
are shown, including the unexpected ordering observed in the lower-right plot of Fig. 3.

6 Concluding remarks

In this paper we have analysed vaccine allocation strategies in stochastic SIR epidemic
models upon populationswith household and randomnetwork (of configurationmodel
type) structure. By exploiting branching process approximations we derive asymptotic
results describing the threshold behaviour of this epidemic model when there are few
initial infectives and the final outcome in the event of a major outbreak. Particu-
lar attention has been paid to the analysis of acquaintance vaccination, which aims
to target vaccination at individuals who are highly connected in the network. We
find that acquaintance vaccination potentially offers substantial benefits over other
(households-based) vaccine allocation regimes.

123



F. Ball, D. Sirl

Whilst we have shown that acquaintance vaccination is potentially useful, it is
clearly not feasible to implement in practice in human populations, so investigation
of a more ethically acceptable allocation regime that preserves the targeting of well-
connected individuals is a clear direction for future work. It is also likely that the
effectiveness of acquaintance vaccination will depend on the amount of clustering in
the network in an interesting way; we have touched on this through the use of different
household size distributions, but clearly there is scope for considerably more work in
this direction. Further issues that warrant more investigation include (i) comparison to
the optimal network-based vaccine allocation, assuming knowledge of the degree of
every individual in the network (Ball and Sirl 2012, Sect. 5 and Appendix B), (ii) the
determination of optimal or near-optimal vaccination strategies based on household
and network information and (iii) extending acquaintance vaccination to include the
possiblity of naming individuals who are in the same household.

A particularly striking feature of the numerical study is the fact that, when vaccine
coverage is insufficient to prevent a major outbreak, the ordering of the performance
of the household-based allocation strategies can be different depending on whether Rv

(the post-vaccination R∗) or z is used as the measure of performance. We emphasise
that this does not imply that minimising Rv is not worthwhile. When using household-
based vaccine allocationwith a limited quantity of vaccine (i.e. amaximumvaccination
coverage, c say), a natural approach is first to minimise Rv among all strategies having
coverage c. If the minimised value of Rv is no greater than 1 then major outbreaks
can be prevented and Rv can be used to determine the vaccine allocation that prevents
a major outbreak with minimum vaccination coverage. If the minimised value of Rv

is not less than 1 then households-based vaccination cannot prevent major outbreaks
with the available quantity of vaccine. It then makes sense to minimise the expected
cost of an outbreak; measured for example by pmaj, z or some combination of these
such as their product, which gives the probability that a typical individual is infected by
the epidemic. The numerical examples in Sect. 5.3 suggest that in these circumstances
minimising Rv (which is a much simpler optimisation problem than, for example,
minimising z) still produces a near-optimal vaccine allocation unless, post-vaccination,
the epidemic is stillwell above threshold.However, this topic is not straightforward and
clearly warrants further research. It will be investigated in more detail in a subsequent
paper.

We also note in closing that there are some numerical challenges involved in
implementing the methods we have presented. These are particularly relevant for
the calculations relating to the forward process (i.e. calculation of pmaj), but do also
apply to the backward process (calculation of z). The main issue that arises is that of
slowly converging infinite sums and the resulting possibilities for numerical overflow
and underflow. Writing doubly or triply-infinite sums as one infinite and one or two
finite sums (for example

∑∞
i=0

∑∞
j=0 ai, j = ∑∞

k=0
∑k

l=0 ak−l,l ) helps in some regards
(e.g. faster computing since there is only one truncation to have to control the error
of) but hinders in others (e.g. slower computing since methods to avoid underflow and
overflow errors become more involved).
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Appendix A: Acquaintance vaccination branching process offspring
distributions

In this appendix we consider the detail of calculating the offspring PGFs and means
of the approximating branching processes for the acquaintance vaccination model
described in Sect. 4.

In our analysis of the approximating branching processes (both forward and back-
ward) it is convenient to think of the process of an individual in a household producing
offspring (i.e. infecting network neighbours and thus contributing to the offspring of
its household) in two phases. In the forward process the first phase involves consider-
ation of the individual’s network neighbours, excluding its infector if it is a primary
case. We consider howmany such neighbours there are and what type they (and there-
fore their household) would be if they were to be infected. We call these individuals
next-generation neighbours. In the second phase we consider which of these next-
generation neighbours are actually infected and thus become primary cases in the
offspring households. The above description of the first phase applies mutatis mutan-
dis to the backward process; here the second phase is different in that the possible
infectious contacts originate from outside rather than within the household under con-
sideration. Since the first phase is the same in both the forward and backward branching
processes we first consider it separately.

In Sect. A.1 we study the next-generation neighbour distributions. In Sect. A.2
we determine the mean offspring matrix for the forward process, and hence the post-
vaccination threshold parameter Rv; in Sect. A.3we consider the offspring distribution
PGFs for the forward process, and hence the probability of a major outbreak; and in
Sect. A.4 we determine the offspring PGFs for the backward process, and hence the
relative final size of a major outbreak. The offspring distribution PGFs for the forward
process are generally more complicated and some further detail of their calculation is
described in Appendix B.4.

A.1 Degree and next-generation neighbour distributions

As outlined above, the first phase of individuals producing offspring (which this sub-
section describes) applies equally to the forward and backward processes. To simplify
the exposition we use only the language of the forward process of epidemic spread.
We also use ‘household’ and ‘individual’ in the population sense (as opposed to the
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branching process sense where an individual corresponds to a household in the epi-
demic model).

Recall the typing described in Sect. 4.2, in which infectious households are charac-
terised by the type (1, 2, . . . , 6) of their primary case (see Table 1). Secondary cases
in a household and the primary case in the initially infected household are typed (V
orU ) according to whether they are vaccinated or unvaccinated. Recall also that next-
generation neighbours of an infected individual are the individuals (in neighbouring
households) that it may infect. In this subsection we first calculate the degree distri-
bution of the various secondary and primary cases conditional on their type. Then we
consider the next-generation neighbour distributions: the number of network neigh-
bours, excluding its infector, of each secondary type that a typical type-i individual
has (for i ∈ {1, 2, . . . , 6,U, V }).

A.1.1 Degree distributions

Let DV and DU respectively denote the degree of a typical vaccinated andunvaccinated
secondary case. Then, recalling from Eq. (4.1) that pV = 1 − fD(1 − pS pN ),

P(DU = d) = P(D = d)P(U |D = d)

P(U )
= pd(1 − pS pN )d

1 − pV
(d = 0, 1, . . .)

(A.1)
and, similarly,

P(DV = d) = pd(1 − (1 − pS pN )d)

pV
(d = 1, 2, . . .).

These follow because an unvaccinated individual has avoided being named by any of
its neighbours and a vaccinated individual has not done so.

Now consider an individual of one of the primary types 1, 2, . . . , 6. Note that
whether or not it is sampled is independent of its degree. Thus primary cases of types
1 and 4 have the same degree distribution, as do primary cases of types 2 and 5, and
primary cases of types 3 and 6. Let D̃N , D̃V and D̃U denote generic random variables

having these respective distributions. First note that D̃N
D= D̃, where

D= denotes
equality in distribution. Second, consider a typical unvaccinated primary case. It has
unconditional degree distribution D̃ but, in addition to not being named by its infector,
we also know that it is not named by any of its other global neighbours. Thus

P(D̃U = d) = P(D̃ = d)P(U |D̃ = d)

1 − p̃V
= p̃d(1 − pN pS)d−1

1 − p̃V
(d = 1, 2, . . .),

(A.2)
where

p̃V =
∞∑

d=1

p̃d(1 − (1 − pN pS)
d−1) = 1 − f D̃−1(1 − pN pS) (A.3)
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is the probability that a typical unnamed neighbour of an infector is vaccinated. Sim-
ilarly,

P(D̃V = d) = p̃d(1 − (1 − pN pS)d−1)

p̃V
(d = 2, 3, . . .). (A.4)

A.1.2 Next-generation neighbour distributions

For i = 1, 2, . . . , 6 we write X̃ i = (X̃i1, X̃i2, . . . , X̃i6) for the number of next-
generation neighbours of a type-i primary case; i.e. X̃i j is the number of neighbours
of a type-i individual who will become type- j individuals if they are infected by the
type-i primary case. For A = U, V we similarly define X A = (XA1, XA2, . . . , XA6)

to be the corresponding quantities for a secondary case or the primary case in the initial
household. To calculate the threshold parameter we need expressions for the means
μ̂i j and μ̂Aj of the elements of these random vectors and to calculate the offspring
distribution PGFs we require the joint PGFs f X̃ i

and fX A .

Means The mean E[X̃i j ] = μ̂i j can be written as μ̂i j = μ̃G
i p̂i j , where μ̃G

i is the
mean number of network neighbours a typical type-i primary case has in addition to
its infector and p̂i j is the probability that a given such global neighbour is of type j
(or, more accurately, the probability it will be of type j if it is infected). Similarly we
write E[XAj ] = μ̂Aj = μG

A p̂Aj for the secondary cases and primary case in the initial
household.

Consider a type-1 (i.e. (N , S)) primary case. Its global degree is distributed as D̃N
D=

D̃, so μ̃G
1 = μD̃−1. A given neighbour is namedwith probability pN , and, if that neigh-

bour is unnamed, it is vaccinatedwith probability p̃V and otherwise unvaccinated. Fur-
ther, independently, that neighbour is sampled with probability pS . So, p̂11 = pN pS ,
p̂12 = (1 − pN ) p̃V pS , p̂13 = (1 − pN )(1 − p̃V )pS , p̂14 = pN (1 − pS),
p̂15 = (1 − pN ) p̃V (1 − pS) and p̂16 = (1 − pN )(1 − p̃V )(1 − pS). The situation is
similar for a type-4 (i.e. (N , Sc)) individual, except a type-4 individual is not sampled
and hence cannot name its global neighbours. Hence μ̃G

4 = μD̃−1, p̂41 = p̂44 = 0,
p̂42 = p̃V pS , p̂43 = (1 − p̃V )pS , p̂45 = p̃V (1 − pS) and p̂46 = (1 − p̃V )(1 − pS).

Next consider a type-2 (i.e. (V, S)) primary case, i∗ say. Its global degree is dis-
tributed as D̃V , so μ̃G

2 = μD̃V −1 and, using (A.4),

μD̃V −1 =
μD̃−1 − (1 − pN pS) f ′

D̃−1
(1 − pN pS)

p̃V
.

Let ÑS be the number of next-generation neighbours of i∗ that are sampled. Then
ÑS ≥ 1, since i∗ is vaccinated but not named by its global infector, and, for k =
1, 2, . . . , d − 1,

P(ÑS = k | D̃V = d) =
(d−1

k

)
pkS(1 − pS)d−1−k(1 − (1 − pN )k)

1 − (1 − pN pS)d−1 , (A.5)
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whence, using (A.4),

μÑS
=

pS
(
μD̃−1 − (1 − pN ) f ′

D̃−1
(1 − pN pS)

)

p̃V
. (A.6)

It follows that the probability that a given next-generation neighbour of i∗ is sampled

is pṼS = μÑS
/μ̃G

2 and that, for j = 1, 2, . . . , 6, p̂2 j is given by p̂1 j with pS replaced

by pṼS . Similar arguments for a type-5 (i.e. (U, Sc)) primary case establish that μ̃G
5 =

μD̃V −1 and, for j = 1, 2, . . . , 6, p̂5 j is given by p̂4 j with pS replaced by pṼS .
Now consider a type-3 (i.e. (U, S)) primary case, j∗ say. Its global degree is dis-

tributed as D̃U , so μ̃G
3 = μD̃U−1 and, using (A.2),

μD̃U−1 =
(1 − pN pS) f ′

D̃−1
(1 − pN pS)

1 − p̃V
. (A.7)

Since j∗ is not vaccinated, none of its next-generation neighbours name j∗, so the
probability that a given such neighbour, k∗ say, is sampled is given by

pUS = P(k∗ sampled | k∗ does not name j∗) = pS(1 − pN )

1 − pS pN
.

It follows that, for j = 1, 2, . . . , 6, p̂3 j is given by p̂1 j with pS replaced by pUS .
Similarly, μ̃G

6 = μD̃U−1 and, for j = 1, 2, . . . , 6, p̂6 j is given by p̂4 j with pS
replaced by pUS .

Now consider an individual, i∗ say, of type U (i.e. chosen uniformly from the
population and unvaccinated). Its global degree is distributed as DU so, using (A.1),
its expected number of next-generation neighbours is

μG
U = μDU = (1 − pS pN ) f ′

D(1 − pS pN )

1 − pV
. (A.8)

Further, i∗ is sampled with probability pS , and the type of a given neighbour of i∗ is
distributed according to p̂3 j if i∗ is sampled and according to p̂6 j if i∗ is not sampled.
Thus p̂U j = pS p̂3 j + (1 − pS) p̂6 j .

Finally, consider an individual, j∗ say, of type V (i.e. chosen uniformly from the
population and vaccinated). Let NS and NSc denote the number of next-generation
neighbours of j∗ that are sampled and not sampled, respectively. Then arguing as in
the derivation of (A.6) shows that

μNS = pS
(
μD − (1 − pN ) f ′

D(1 − pS pN )
)

pV
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and

μNSc = (1 − pS)
(
μD − f ′

D(1 − pS pN )
)

pV
.

Further, j∗ is sampled with probability pS . If j∗ is sampled then a given neighbour
is named, vaccinated or unvaccinated with respective probabilities pN , (1 − pN ) p̃V
and (1 − pN )(1 − p̃V ); whilst if j∗ is not sampled these probabilities are 0, p̃V and
1 − p̃V . We therefore have p̂V j = pS p̂1 j + (1 − pS) p̂4 j .

Joint PGFs We determine next the PGFs f X̃ i
(i = 1, 2, . . . , 6). For i = 1, 2, . . . , 6,

let D̃(i) denote the degree of a typical type-i primary individual, who thus has D̃(i)−1

next-generation neighbours. We therefore have D̃(i)−1
D= ∑6

j=1 X̃i j . For i = 1, 3, 4

and6, the types of these D̃(i)−1next-generation neighbours are chosen independently,
according to ( p̂i j , j = 1, 2, . . . , 6), so

f X̃ i
(s) = f D̃(i)−1(ĝi (s)) (i = 1, 3, 4, 6),

where ĝi (s) = ∑6
j=1 p̂i j s j . Further D̃(1)

D= D̃(4) ∼ D̃ and D̃(3)
D= D̃(6) ∼ D̃U

[see (A.2)].
Now consider a typical type-2 primary individual. The situation is more complex

here (and for type-5 individuals) because we know that at least one of its neighbours
named it for vaccination and thus must be sampled. Let ÑS and ÑSc be the number of
its D̃(2)−1 next-generation neighbours that are sampled and unsampled, respectively,
so ÑS + ÑSc = D̃(2)−1. Each of these D̃(2)−1 neighbours is named independently
with probability pN and any neighbour not so named is vaccinated with probability
p̃V . Thus

f X̃2
(s) = E

[
(ĝ21(s))ÑS (ĝ22(s))ÑSc

]
,

where ĝ21(s) = pN s1 + (1− pN ) p̃V s2 + (1− pN )(1− p̃V )s3 and ĝ22(s) = pN s4 +
(1− pN ) p̃V s5 + (1− pN )(1− p̃V )s6. Furthermore, D̃(2) ∼ D̃V , whence using (A.4)
and (A.5) we obtain

f X̃2
(s) = p̃−1

V

[
f D̃−1

(
ĝ2(s, 0)

) − f D̃−1

(
ĝ2(s, pN )

)]
, (A.9)

where ĝ2(s, x) = pS(1− x)ĝ21(s) + (1− pS)ĝ22(s). A similar argument shows that

f X̃5
(s) = p̃−1

V

[
f D̃−1

(
ĝ5(s, 0)

) − f D̃−1

(
ĝ5(s, pN )

)]
, (A.10)

where ĝ5(s, x) = pS(1−x)ĝ51(s)+(1− pS)ĝ52(s), with ĝ51(s) = p̃V s2+(1− p̃V )s3
and ĝ52(s) = p̃V s5 + (1 − p̃V )s6.

A typical type-U secondary individual, j∗U say, has degree distributed according to
DU [recall (A.1)], so its number of next-generation neighbours is also distributed as
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DU . Further, j∗U is sampled with probability pS , in which case, apart from its degree,
j∗U behaves similarly to a type-3 primary individual, otherwise j∗U is not sampled and
behaves similarly to a type-6 primary individual. Thus,

fXU (s) = pS fDU (ĝ3(s)) + (1 − pS) fDU (ĝ6(s)).

A typical type-V secondary individual, j∗V say, is also sampled with probability pS . A
similar argument to the derivation of (A.9) and (A.10), using appropriatemodifications
as j∗V has degree distributed according to DV , yields

fXV (s) = p−1
V

{
pS

[
fD

(
ĝ2(s, 0)

) − fD
(
ĝ2(s, pN )

)]

+ (1 − pS)
[
fD

(
ĝ5(s, 0)

) − fD
(
ĝ5(s, pN )

)]}
.

A.2 Threshold parameter

As far as is possible, we treat the all-or-nothing and non-random models simultane-
ously. As explained in the second paragraph of Sect. 4.2.2, in contrast to Sect. 3.2,
when analysing the all-or-nothing vaccine response we consider actual, rather than
potential, global infections. The forward branching process for both models is then
similar to that used for the non-random model in Sect. 3.3, except now it is a 6-type
(rather than 2-type) branching process.As always, the offspring distributions are differ-
ent in the initial generation from subsequent generations, but only those for the latter
are required to determine the threshold parameter. Recall that, for i = 1, 2, . . . , 6,
C̃ i = (C̃i1, C̃i2, . . . , C̃i6) denotes the offspring random variable for a type-i non-
initial individual in the forward branching process. Thus C̃i j is the number of type- j
primary household cases emanating from a typical single-household epidemic that is
initiated by a single type-i primary case. Since the post-vaccination threshold parame-
ter Rv is the dominant eigenvalue of M̃ = [m̃i j ], our goal is to determine these matrix
entries m̃i j = E[C̃i j ].

To calculate m̃i j it is convenient to decompose it into m̃i j = m̃ P
i j + m̃S

i j , where

m̃ P
i j is the mean number of global infections of type- j individuals emanating from the

primary type-i case and m̃S
i j is the mean total number of global infections of type- j

individuals emanating from all secondary cases in the single-household epidemic.

A.2.1 Infections emamating from primary cases

Define the matrix PG of marginal global transmission probabilities, so PG = PNR
G

[recall (3.7)] if the vaccine action is non-random and PG = PAoN
G if the vaccine action

is all-or-nothing, where

PAoN
G =

[
pAoNG (U,U ) pAoNG (U, V )

pAoNG (V,U ) pAoNG (V, V )

]

= (1 − φI (λG))

[
1 1 − ε

1 1 − ε

]

.

123



Evaluation of vaccination strategies for SIR epidemics...

The marginal global transmission probabilities, for the types i, j = 1, 2, . . . , 6, are
then given by pGi j = pG(α(i), α( j)), where α(k) = U if k = 3, 6 and α(k) = V
if k = 1, 2, 4, 5. Since each type- j next-generation neighbour of a type-i infective
is infected with probability pGi j it is immediate that m̃ P

i j = μ̂i j pGi j , where μ̂i j is the
mean number of next-generation neighbours calculated in Sect. A.1.2.

A.2.2 Infections emamating from secondary cases

We first note that, for j = 1, 2, . . . , 6, m̃S
1 j = m̃S

2 j = m̃S
4 j = m̃S

5 j (= m̃S
V j say) and

m̃S
3 j = m̃S

6 j (= m̃S
U j say). Further, for A ∈ {U, V } and j = 1, 2, . . . , 6,

m̃S
A j = μS(A,U )m̂U j + μS(A, V )m̂V j ,

where, for A, A′ ∈ {U, V },μS(A, A′) is the mean number of type-A′ secondary cases
in a typical single-household epidemic initiated by a primary case of type A and, for
A ∈ {U, V }, m̂ A j is the mean number of type- j primary cases emanating from a
typical type-A secondary case.

Now observe that m̂ A j = μ̂Aj pG(A, α( j)), where α( j) is as in Sect. A.2.1. Condi-
tioning on the size of a typical globally contacted household, we obtain in an obvious
notation that

μS(A, A′) =
∞∑

n=1

ρ̃nμ
(n)
S (A, A′) (A, A′ ∈ {U, V }).

Note that in the limit as the number of households m → ∞, secondary individuals in
a typical household have no common global neighbour with probability one, so they
are vaccinated independently, each with probability pV . Thus, again in an obvious
notation,

μ
(n)
S (A, A′) =

n−1∑

k=0

(
n − 1

k

)

pkV (1 − pV )n−1−kμ
(n,k)
S (A, A′).

If the vaccine action is non-random then, recalling the notation in Sect. 3.3,
μ

(n,k)
S (A, A′) = μ(n,k+δA,V )(A, A′), where δA,V = 1 if A = V and 0 otherwise.

If the vaccine action is all-or-nothing, we condition on the number of successfully
vaccinated secondary individuals in the household to obtain, for A ∈ {U, V },

μ
(n,k)
S (A, V ) =

min(k,n−2)∑

l=0

(
k

l

)

εl(1 − ε)k−lμ(n−l)(λL)

(
k − l

n − l − 1

)

and

μ
(n,k)
S (A,U ) =

min(k,n−2)∑

l=0

(
k

l

)

εl(1 − ε)k−lμ(n−l)(λL)

(
n − k − 1

n − l − 1

)

.
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(Note that μ(n−l)(λL) = 0 when l = n − 1.)

A.2.3 Perfect vaccine

In the situation where the vaccine is perfect, we have only households of types 3 and
6 (i.e. (U, S) and (U, Sc)); and since these two types are sampled independently with
the same probability, the forward process reduces to single-type. The mean number
of next-generation neighbours of an infected individual is μD̃U−1 + μS(U,U )μDU .

Each infected individual is sampled with probability pUS , so fails to name each next-
generation neighbour with probability pUS (1− pN )+1− pUS . Then each such unnamed
individual avoids vaccination (by other neighbours in the network) with probability
1 − p̃V . Thus

Rv = (μD̃U−1 + μDU μS(U,U ))(pUS (1 − pN ) + 1 − pUS )(1 − p̃V )pG .

Using (A.3), (A.7) and (A.8) this can be written as

Rv = f D̃−1(1 − pS pN )pG

(
f ′
D̃−1

(1 − pS pN )

f D̃−1(1 − pS pN )
+ μS(U,U )

f ′
D(1 − pS pN )

fD(1 − pS pN )

)

× (1 − 2pS pN + pS p
2
N )

= η(p′)(1 − 2p′ + p′ pN ),

where p′ = pS pN and η depends on pS and pN only through p′.

A.3 Probability of a major outbreak

To determine the probability of a major outbreak we need to derive the PGFs fC̃ i
(s)

and fC A (s), where s = (s1, s2, . . . , s6) ∈ [0, 1]6, for i = 1, 2, . . . , 6 and A = U, V ;
i.e. the offspring PGFs for the forward process.

Recall that secondary individuals in a household are vaccinated independently, each
with probability pV . Thus, conditioning first on household size and then on the number
of secondary members that are vaccinated yields, for i = 1, 2, . . . , 6,

fC̃ i
(s) =

∞∑

n=1

ρ̃n

n−1∑

vs=0

(
n − 1

vs

)

pvs
V (1 − pV )n−1−vs f

C̃
(n,vs )
i

(s),

where C̃
(n,vs )

i is the offspring random variable for a type-i non-initial individual,
given that the corresponding household is of size n and has vs secondary members
vaccinated. Similarly, and in an obvious notation, for A ∈ {U, V },

fC A (s) =
∞∑

n=1

ρ̃n

n−1∑

vs=0

(
n − 1

vs

)

pvs
V (1 − pV )n−1−vs fC(n,vs )

A
(s).
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With an all-or-nothing vaccine action, we may condition also on the number of vac-
cinations of secondary members that are unsuccessful to obtain, for i = 1, 2, . . . , 6,

f
C̃

(n,vs )
i

(s) =
vs∑

us=0

(
vs

us

)

(1 − ε)us εvs−us f
Ĉ

(n−vs+us ,us )
i

(s),

where Ĉ
(n′,v′)
i is the offspring random variable for a type-i non-initial individual, given

that the corresponding household contains n′ − 1 other susceptibles, of which v′ are
unsuccessfully vaccinated. (Note that, unlike with household-based vaccination, the
vaccine status of these susceptibles is important as it affects their degree distributions.)
Similarly, and in an obvious notation, for A ∈ {U, V },

fC(n,vs )
A

(s) =
vs∑

us=0

(
vs

us

)

(1 − ε)us εvs−us f
Ĉ

(n−vs+us ,us )
A

(s).

The PGFs f
C̃

(n,vs )
i

(s) and fC(n,vs )
A

(s) when the vaccine action is non-random and

f
Ĉ

(n′,v′)
i

(s) and f
Ĉ

(n′,v′)
A

(s) when the vaccine action is all-or-nothing can be calculated

using the methods described in Appendices B.1 and B.4. As with other calculations
of PGFs relating to forward branching process approximations, these simplify appre-
ciably if the infectious period is constant.

A.4 Final outcome of major outbreak

To calculate the asymptotic final size of a major outbreak we need the joint PGFs
f B̃i

(s), for i = 1, 2, . . . , 6, and fBA(s), for A = U, V ; where s = (s1, s2, . . . , s6) ∈
[0, 1]6. We determine first the former joint PGFs. For i = 1, 2, . . . , 6, let M i =
(MiU , MiV ), where MiU and MiV are respectively the number of unvaccinated and
vaccinated secondary individuals in the local susceptibility set of a typical type-i
primary individual. Then B̃i admits the decomposition

B̃i = B̂
P
i +

MiU∑

k=1

B̂
S
U (k) +

MiV∑

l=1

B̂
S
V (l), (A.11)

where B̂
P
i , B̂

S
U (k) and B̂

S
V (l) are the respective contributions to B̃i from the pri-

mary individual, the kth unvaccinated secondary individual and the lth vaccinated
secondary individual in the local susceptibility set. All summands on the right hand
side of (A.11) are mutually independent and also independent of M i , so, in an obvious
notation,

f B̃i
(s) = f

B̂
P
i
(s) fM i ( f B̂S

U
(s), f

B̂
S
V
(s)). (A.12)

To derive the PGF fM i , note that fM1 = fM2 = fM4 = fM5 (= fMV say) and
fM3 = fM6 (= fMU say). Further, conditioning on the size of the household and
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recalling that secondary individuals in the household are vaccinated independently,
each with probability pV , yields

fM A (s) =
∞∑

n=1

ρ̃n

n−1∑

v=0

(
n − 1

v

)

pv
V (1 − pV )n−1−v f

M
(n,v+δA,V )

A

(s) (s ∈ [0, 1]2),

for A ∈ {U, V }, where M(n,v)
A is as in Sect. 3.3. Calculation of fM(n,v)

A
(s) for the two

models of vaccine action is addressed in Appendix B.5.
We determine next the PGFs f

B̂
P
i
(i = 1, 2, . . . , 6). We do so by conditioning on

X̃ i , the numbers of next-generation neighbours of different types of a typical type-i
primary case, i∗ say, and then considering how many of the X̃ i individuals of the
various types actually join the susceptibility set. Each of i∗’s D̃(i) − 1 = ∑6

j=1 X̃i j

next-generation neighbours in the construction of the backward process enters the
susceptibility set independently, with probability depending on the types of the two
individuals involved. The probability that a type- j neighbour of a type-i individual
joins the susceptibility set is

pBi j =
{
pGji non-random vaccine,

pGi j all-or-nothing vaccine.

(The different formulae arise from the fact that in the all-or-nothing case, in addition to
requiring a contact from the neighbour to the type-i individual of interest, a vaccinated
neighbour is able to join the susceptibility set only if its vaccination fails.) Hence, for
i = 1, 2, . . . , 6,

f
B̂
P
i
(s) = f X̃ i

(hB
i (s)),

where hB
i (s) = (hB

i1(s1), h
B
i2(s2), . . . , h

B
i6(s6)), with hB

i j (s) = 1 − pBi j + spBi j ( j =
1, 2, . . . , 6). The PGFs f

B̂
S
U
and f

B̂
S
V
follow using exactly the same arguments. In an

obvious notation,

f
B̂
S
A
(s) = fX A (h

B
A(s)) (A ∈ {U, V }),

where hB
U = hB

3 and hB
V = hB

1 .
Finally, we determine the offspring PGFs for the initial generation, fBU and fBV .

Observe that, for A ∈ {U, V }, in the initial generation, a primary individual of type A
behaves according to the same probability law as a typical secondary type-A individual
(in any generation), so (A.12) becomes

fBA (s) = f
B̂
S
A
(s) fM A ( f B̂S

U
(s), f

B̂
S
V
(s)) (A ∈ {U, V })

and fBA (s) can be evaluated using results given above.
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Appendix B: Properties of single-household epidemics

In this appendix we first outline the theory of final state random variables as studied
by Ball and O’Neill (1999). We then apply this (in Sects. B.2, B.3, B.4) to calculating
the PGFs of offspring distributions of the various forward branching process approx-
imations in the paper. In Sects. B.5 and B.6 we give results pertaining to the size of
local susceptibility sets and the expected size of local epidemics.

We use the following notation. The symbols Z+ and R+ denote the non-
negative integers and reals, respectively. For vectors x = (x1, x2, . . . , xm) and
y = (y1, y2, . . . , ym) in R

m , we define x y = ∏m
i=1 xi yi and x y = ∏m

i=1 x
yi
i . We

write x ≤ y if xi ≤ yi (i = 1, 2, . . . ,m) and x < y if, in addition, xi < yi for at
least one i . For n, k ∈ Z+, n[k] denotes the falling factorial n(n − 1) . . . (n − k + 1),
with n[0] = 1. For n, k ∈ Z

m+, we define n[k] = ∏m
i=1 ni [ki ]. For i, j ∈ Z

m+, we write∑ j
k=i for

∑ j1
k1=i1

∑ j2
k2=i2

. . .
∑ jm

km=im
. We take 0 and 1 to be vectors with all entries 0

and 1 respectively, with the dimensions being clear from the context. Finally, we let
f (r) denote the r -th order derivative of the function f .

B.1 Multitype single-household epidemic and key result

Consider a single-household SIR epidemicmodel withm types of individuals, labelled
1, 2, . . . ,m. Suppose that, for i = 1, 2, . . . ,m, there are initially ai infectives and ni
susceptibles of type i , and let a = (a1, a2, . . . , am) and n = (n1, n2, . . . , nm). For i =
1, 2, . . . ,m, the infectious periods of type-i infectives are each distributed according
to a randomvariable I (i). For i, j = 1, 2, . . . ,m, the individual-to-individual infection
rate from a given type-i infective to a given type- j susceptible is λi j . As in Sect. 2.1,
such infections are governed by Poisson processes, and all Poisson processes and
infectious periods are mutually independent.

To each type-i infective we attach a vector of p non-negative integer-valued
random attributes distributed according to a vector random variable A(i) =
(A(i)

1 , A(i)
2 , . . . , A(i)

p ). In our applications A(i) will describe the numbers of global
infections of different types of individualsmade by an infective in the single-household
epidemic. The realisations of the random variables (I (i), A(i)) are independent for dis-
tinct infectives and identically distributed for infectives of the same type. Note that
I (i) and A(i) may be dependent. For i = 1, 2, . . . ,m, let Ti be the number of initial
susceptibles of type i that are ultimately infected by the epidemic and let A(i)(Ti )
be the sum of the attribute vectors over all ai + Ti infectives of type i . Further, let
T = (T1, T2, . . . , Tm) and let A(T ) = ∑m

i=1 A
(i)(Ti ) be the sum of the attribute

vectors over all
∑m

i=1(ai + Ti ) infectives in the epidemic. Thus, in applications,
A(T ) will give the offspring random variable for the forward branching process.
For x = (x1, x2, . . . , xm) ∈ R

m and s = (s1, s2, . . . , sp) ∈ [0, 1]p, let

φ(x, s) = E[xn−T sA(T )].

We give below an expression for φ(x, s) in terms of multivariate Gontcharoff
polynomials, first studied byLefèvre andPicard (1990),whichwe nowdefine. LetU =
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(u j ∈ R
m : j ∈ Z

m+) be a collection of real numbers. The Gontcharoff polynomials
associated with U , denoted (Gk(x|U), k ∈ Z

m+, x ∈ R
m), are defined recursively by

k∑

j=0

k[ j ]uk− j
j G j (x|U) = xk (k ≥ 0).

Note that G0(x|U) ≡ 1 and that Gk(x|U) is a polynomial of degree k1, k2, . . . , km
in x1, x2, . . . , xm , respectively, depending only on (u j : j < k). The following result
is derived easily from Ball and O’Neill (1999, Theorem 5.1), so its proof is omitted.

Theorem 1 For x ∈ R
m and s ∈ [0, 1]p,

φ(x, s) =
n∑

j=0

n[ j ](ψ(s, j))n+a− jG j (x|U), (B.1)

where ψ(s, j) = (ψ1(s, j), ψ2(s, j), . . . , ψm(s, j)), with

ψi (s, j) = E

[

exp

(

−I (i)
m∑

k=1

λik jk

)

sA
(i)

]

(i = 1, 2, . . . ,m),

and U = (u j : j ∈ Z
m+) has components u j = ψ(s, j).

We now describe how Theorem 1 can be used to determine offspring PGFs for the
forward branching processes in the earlier parts of the paper. Recall that primary and
secondary infectives in a household typically have distinct global degree distributions.
Hence, in addition to being typed according to their vaccination status, individuals also
need to be typed as primary or secondary. Thus we may write m = mP + mS , where
types 1, 2, . . . ,mP correspond toprimary individuals and typesmP+1,mP+2, . . . ,m
to secondary individuals. Write a = (aP , aS), n = (nP , nS), x = (xP , xS), T =
(T P , T S) and ψ(s, j) = (ψ P (s, j),ψ S(s, j)) in the obvious fashion. Note that all
susceptibles are secondary individuals, so nP = 0, and all initial infectives are primary
individuals, so aS = 0. It follows that T P = 0 and the index j of the summation in
(B.1) takes the form (0, j S). Let

φ̃(xS, s) = E
[
xnS−T S
S sA(T )

]
(xS ∈ R

mS , s ∈ [0, 1]p).

Then the following corollary follows easily from Theorem 1. For i = 1, 2, . . . ,m, let
λ

(i)
S = (λi,mP+1, λi,mP+2, . . . , λi,m)�, where � denotes transpose.

Corollary 2 For xS ∈ R
mS and s ∈ [0, 1]p,

φ̃(xS, s) =
nS∑

j S=0

nS[ j S ](ψ̃ P (s, j S))
aP (ψ̃ S(s, j S))

nS− j S G j S (xS|U S), (B.2)
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where ψ̃ P (s, j S) =
(
ψ̃1(s, j S), ψ̃2(s, j S), . . . , ψ̃mP (s, j S)

)

and ψ̃ S(s, j S) =
(
ψ̃mP+1(s, j S), ψ̃mP+2(s, j S), . . . , ψ̃m(s, j S)

)
, with

ψ̃i (s, j S) = E
[
exp(−I (i) j Sλ

(i)
S )sA

(i)
]

(i = 1, 2, . . . ,m) (B.3)

and U S = (uS
j S

: j S ∈ Z
mS+ ) has components uS

j S
= ψ̃ S(s, j S).

We are primarily concerned with determining the PGF of A(T ), which of course is
obtained by setting xS = 1 in (B.2). Thus, all that remains is to determine ψ̃i (s, j S),
which is application dependent. Note from (B.3) that it is sufficient to determine, for
θ ∈ R+ and s ∈ [0, 1]p,

ψ̂i (θ, s) = E
[
exp(−θ I (i))sA

(i)
]

(i = 1, 2, . . . ,m),

which we now do for the various models in the paper.

B.2 No vaccination

This model is studied by Ball et al. (2010), so we just state the result. Note that there
are two types of individual, primary (P) and secondary (S), with their number of
uninfected global neighbours distributed according to DP ∼ D̃ − 1 and DS ∼ D,
respectively. Further p = 1, so s is a scalar, s say. For a degree distribution D and real
numbers c1, c2, θ , define the function F(D, c1, c2, θ) by

F(D, c1, c2, θ) =
∞∑

r=0

cr1
r ! φI (θ + rλG) f (r)

D (c2). (B.4)

Then, for A ∈ {P, S},
ψ̂A(θ, s) = F(DA, 1 − s, s, θ),

cf. Ball et al. (2010, Theorem 1). Equation (B.4), in conjunction with Corollary 2,
enables the PGFs fC(n) and fC̃(n) , defined in Sect. 2.2.1, to be evaluated.

B.3 Households based vaccination

Recall from Sect. 3 that with an all-or-nothing vaccine action all required PGFs and
means can be expressed in terms of fC(n) , fC̃(n) and μn(λL), so here we need consider
only the non-random vaccine action model. This model has four types of individuals:
primary-unvaccinated (PU ), primary-vaccinated (PV ), secondary-unvaccinated (SU )
and secondary-vaccinated (SV ), their number of uninfected global neighbours being
distributed as DPU , DPV , DSU and DSV , respectively. Recall from Sect. 3.3 that

DPU
D= DPV ∼ D̃ − 1 and DSU

D= DSV ∼ D. For F ∈ {PU, PV, SU, SV }, the
random attribute of interest is A(F) = (A(F)

U , A(F)
V ), where A(F)

U and A(F)
V are the
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number of unvaccinated and vaccinated global infections made by a type-F infective
in the single household epidemic. Thus mS = 2 and we determine ψ̂F (θ, s), where
s = (sU , sV ).

Consider first ψ̂SU (θ, s). Conditioning on the degree DSU and infectious period I
of a typical type-SU infective, i∗ say, yields

ψ̂SU (θ, s) = EDSU ,I

[
e−θ I E

[
sA

(SU ) | DSU , I
]]

. (B.5)

Let NV denote the number of i∗’s uninfected global neighbours that are vaccinated.

Then
(
A(SU )
U | NV , DSU , I

)
∼ Bin

(
DSU − NV , 1 − e−λG I

)
and independently

(
A(SU )
V | NV , DSU , I

)
∼ Bin

(
NV , 1 − e−λGaI

)
, so

E
[
sA

(SU ) | NV , DSU , I
]

=
(
e−λG I + (1 − e−λG I )sU

)DSU−NV
(
e−λGaI + (1 − e−λGaI )sV

)NV
, (B.6)

whence, since (NV | DSU ) ∼ Bin(DSU , pV ),

E
[
sA

(SU ) | DSU , I
]

=
(
(1 − pV )

[
e−λG I + (1 − e−λG I )sU

]
+ pV

[
e−λGaI + (1 − e−λGaI )sV

])DSU
.

(B.7)

(As usual, Bin(n, p) denotes a binomial distribution with parameters n ∈ Z+ and
p ∈ [0, 1].) Let â(s) = pV sV + (1 − pV )sU , b̂(s) = pV (1 − sV ) and ĉ(s) =
(1 − pV )(1 − sU ). Then, using (B.5) and (B.7),

ψ̂SU (θ, s) = EDSU ,I

[

e−θ I
(
â(s) + b̂(s)e−λGaI + ĉ(s)e−λG I

)DSU
]

=
∞∑

k=0

P(DSU = k)EI

[

e−θ I
k∑

r=0

k−r∑

l=0

k!
r !l!(k − r − l)! (â(s))k−l−r (b̂(s)e−λGaI )r (ĉ(s)e−λG I )l

]

=
∞∑

r=0

∞∑

l=0

∞∑

k=r+l

P(DSU = k)
k!

r !l!(k − r − l)! (â(s))k−l−r (b̂(s))r (ĉ(s))l E
[
e−(θ+(ar+l)λG )I

]
.

(B.8)

For a degree distribution D and real numbers c1, c2, c3, θ, a, b, define the function
G(D, c1, c2, c3, θ, a, b) by

G(D, c1, c2, c3, θ, a, b) =
∞∑

r=0

∞∑

l=0

cr2
r !

cl3
l! φI (θ + λGb(ar + l)) f (r+l)

D (c1). (B.9)

Then (B.8) implies that

ψ̂SU (θ, s) = G(DSU , â(s), b̂(s), ĉ(s), θ, a, 1). (B.10)
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A similar argument shows that

ψ̂SV (θ, s) = G(DSV , â(s), b̂(s), ĉ(s), θ, a, b), (B.11)

and that ψ̂PU (θ, s) is given by (B.10), with DSU replaced by DPU , and ψ̂PV (θ, s) is
given by (B.11), with DSV replaced by DPV .

If a closed-form expression for fD is available then G(D, c1, c2, c3, θ, a, b) may
be computed by using a finite truncation of (B.9). If a closed-form expression for
fD is unavailable then G(D, c1, c2, c3, θ, a, b) may be computed by using a finite
truncation of a corresponding triple sum (cf. (B.8)).

Note that if the infectious period is constant, say I ≡ ι, then (B.5) to (B.7) imply
that

ψ̂SU (θ, s) = e−θι fDSU

(
â(s) + e−λGaιb̂(s) + e−λG ιĉ(s)

)

and corresponding expressions for ψ̂SV (θ, s), ψ̂PU (θ, s) and ψ̂PV (θ, s) are easily
derived.

B.4 Acquaintance vaccination

This model has eight types of individuals, six primary and two secondary, which, as
in Sect. 4.2, we label 1, 2, . . . , 6 and U, V , respectively. For each type i , the random
attribute of interest A(i) = (A(i)

1 , A(i)
2 , . . . , A(i)

6 ), where A(i)
j is the number of global

infections of a type j individual made by an infective type i individual. Thus we
determine, in an obvious notation, ψ̂i (θ, s) (i = 1, 2, . . . , 6), ψ̂U (θ, s) and ψ̂V (θ, s);
for θ ∈ R+ and s = (s1, s2, . . . , s6) ∈ [0, 1]6. It is convenient to treat the all-or-
nothing and non-random vaccine action models separately.

B.4.1 All-or-nothing vaccine action

For i = 1, 2, . . . , 6, recall that D̃(i) is the global degree of a typical type-i primary
individual, i∗ say, and also that X̃ i = (X̃i1, X̃i2, . . . , X̃i6), where X̃i j is the number
of i∗’s next-generation neighbours that have type j . Recall that types 3 and 6 have not
been vaccinated and types 1, 2, 4 and 5 have been vaccinated. Thus

(
A(i)
j |X̃i j , I

)
∼

⎧
⎨

⎩

Bin
(
X̃i j , 1 − e−λG I

)
if j = 3, 6,

Bin
(
X̃i j , (1 − ε)(1 − e−λG I )

)
if j = 1, 2, 4, 5,

and

E
[
sA

(i) |X̃ i , I
]

=
∏

j=3,6

(

e−λG I + (1 − e−λG I )s j
)X̃i j

×
∏

j=1,2,4,5

(
ε + (1 − ε)e−λG I + (1 − ε)(1 − e−λG I )s j

)X̃i j
.

(B.12)
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Further, for i = 1, 3, 4, 6, the types of the D̃(i)−1 of i∗’s next-generation neighbours
are chosen independently according to p̂i j , defined in Sect. A.1.2, so

E
[
sA

(i) |D̃(i), I
]

=
(
p̂i (s, ε) + (1 − p̂i (s, ε))e−λG I

)D̃(i)−1
, (B.13)

where
p̂i (s, ε) =

∑

j=3,6

p̂i j s j +
∑

j=1,2,4,5

p̂i j (ε + (1 − ε)s j ).

Hence,

ψ̂i (θ, s) = E
[
e−θ I sA

(i)
]

= EI

[
e−θ I ED̃(i)

[
E

[
sA

(i) |D̃(i), I
]]]

= EI

[
e−θ I ED̃(i)

[
( p̂i (s, ε) + (1 − p̂i (s, ε))e−λG I )D̃(i)−1

]]
. (B.14)

A similar argument to the derivation of (B.8), using the binomial theorem rather than
the multinomial theorem, then yields

ψ̂i (θ, s) = F(D̃(i) − 1, 1 − p̂i (s, ε), p̂i (s, ε), θ).

For i = 2 and i = 5, (B.12) still holds but f X̃ i
(s) is given by (A.9) and (A.10),

respectively. Omitting the details, similar arguments to the above show that, for i =
2, 5,

ψ̂i (θ, s) = p̃−1
V

[
F

(
D̃ − 1, p̃i (s, 0), q̃i (s, 0), θ

)
− F

(
D̃ − 1, p̃i (s, pN ), q̃i (s, pN ), θ

)]
,

(B.15)

where p̃i (s, x) = pS(1−x) p̃i1(s)+(1− pS) p̃i2(s) and q̃i (s, x) = 1− pSx− p̃i (s, x),
with

p̃21(s) = pN (1 − ε)(1 − s1) + (1 − pN )[ p̃V (1 − ε)(1 − s2) + (1 − p̃V )(1 − s3)],
p̃22(s) = pN (1 − ε)(1 − s4) + (1 − pN )[ p̃V (1 − ε)(1 − s5) + (1 − p̃V )(1 − s6)],
p̃51(s) = p̃V (1 − ε)(1 − s2) + (1 − p̃V )(1 − s3) and

p̃52(s) = p̃V (1 − ε)(1 − s5) + (1 − p̃V )(1 − s6).

To simplify the exposition we write (B.15) as

ψ̂i (θ, s) = p̃−1
V �0,pN F

(
D̃ − 1, p̃i (s, x), q̃i (s, x), θ

)
.

In the sequel we use, without comment, a similar notation for differences of other
functions evaluated at 0 and pN .
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Turning now to secondary individuals, note that a type-U individual has global
degree and therefore number of next-generation neighbours distributed as DU . Such
an individual is sampled with probability pS , in which case the type of each next-
generation neighbour is distributed according to p̂3 j , otherwise it is unsampled and
the type of each next-generation neighbour is distributed according to p̂6 j . Thus

ψ̂U (θ, s) = pS F
(
DU , 1 − p̂3(s, ε), p̂3(s, ε), θ

) + (1 − pS)F
(
DU , 1 − p̂6(s, ε), p̂6(s, ε), θ

)
.

(B.16)

Similarly,

ψ̂V (θ, s) = p−1
V

[
pS�0,pN F (DV , p̃2(s, x), q̃2(s, x), θ) + (1 − pS)�0,pN F (DV , p̃5(s, x), q̃5(s, x), θ)

]
.

(B.17)

To simplify the exposition we write (B.16) and (B.17) as

ψ̂U (θ, s) = p3,6S F(DU , 1 − p̂(s, ε), p̂(s, ε), θ)

and
ψ̂V (θ, s) = p−1

V p2,5S �0,pN F(DV , p̃(s, x), q̃(s, x), θ).

In the sequel, we use a similar notation without comment.
The above expressions simplify appreciably if the infectious period is constant, say

I ≡ ι. In that case, Eq. (B.14) implies that

ψ̂i (θ, s) = e−θι f D̃(i)−1

(
p̂i (s, ε) + (1 − p̂i (s, ε))e−λG ι

)
(i = 1, 3, 4, 6)

and exploiting the PGFs for X̃2 and X̃5 [see (A.9) and (A.10)] yields

ψ̂i (θ, s) = p̃−1
V e−θι�0,pN f D̃−1

(
q̃i (s, x) + p̃i (s, x)e−λG ι

)
(i = 2, 5).

Similar arguments show that

ψ̂U (θ, s) = e−θι p3,6S fDU

(
p̂(s, ε) + (1 − p̂(s, ε))e−λG ι

)

and
ψ̂V (θ, s) = p−1

V e−θι p2,5S �0,pN fDV

(
q̃(s, x) + p̃(s, x)e−λG ι

)
.

B.4.2 Non-random vaccine

Note that now

(A(i)
j |X̃i j , I ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

Bin(X̃i j , 1 − e−λG I ) if i, j ∈ {3, 6},
Bin(X̃i j , 1 − e−aλG I ) if i ∈ {3, 6}, j ∈ {1, 2, 4, 5},
Bin(X̃i j , 1 − e−bλG I ) if i ∈ {1, 2, 4, 5}, j ∈ {3, 6},
Bin(X̃i j , 1 − e−abλG I ) if i, j ∈ {1, 2, 4, 5}.

(B.18)
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For i ∈ {1, 3, 4, 6}, let

âi (s) =
6∑

j=1

p̂i j s j , b̂i (s) =
∑

j=1,2,4,5

p̂i j (1 − s j ) and ĉi (s) =
∑

j=3,6

p̂i j (1 − s j ).

Suppose that i ∈ {3, 6}. Then, arguing as in the derivation of (B.13),

E
[
sA

(i) |D̃(i), I
]

=
(
âi (s) + b̂i (s)e−aλG I + ĉi (s)e−λG I

)D̃(i)−1
,

whence

ψ̂i (θ, s) = EI

[

e−θ I ED̃(i)

[(
âi (s) + b̂i (s)e−aλG I + ĉi (s)e−λG I

)D̃(i)−1
]]

.

(B.19)
Arguing as in the derivation of (B.8) then yields that

ψ̂i (θ, s) = G
(
D̃(i) − 1, âi (s), b̂i (s), ĉi (s), θ, a, 1

)
.

Similarly, for i ∈ {1, 4},

ψ̂i (θ, s) = G
(
D̃(i) − 1, âi (s), b̂i (s), ĉi (s), θ, a, b

)
.

Suppose that i = 5. Then, using (B.18),

E
[
sA

(5) |X̃5, I
]

=
∏

j=3,6

(
e−bλG I + (1 − e−bλG I )s j

)X̃5 j

×
∏

j=1,2,4,5

(
e−abλG I + (1 − e−abλG I )s j

)X̃5 j
.

Invoking (A.10) now gives

ψ̂5(θ, s) = p̃−1
V E

[
e−θ I�0,pN f D̃−1

(
ĝ5(hF

5 (s, I ), x)
)]

, (B.20)

where hF
5 (s, I ) = (hF

51(s1, I ), h
F
52(s2, I ), . . . , h

F
56(s6, I )), with h

F
5 j (s, I ) = e−bλG I +

(1− e−bλG I )s if j = 3, 6 and hF
5 j (s, I ) = e−abλG I + (1− e−abλG I )s if j = 1, 2, 4, 5;

and ĝ5(s, x) is as defined immediately following (A.10) in Sect. A.1.2. A simple
calculation now shows that

ĝ5
(
hF
5 (s, I ), x

)
= â5(s, x) + b̂5(s, x)e−abλG I + ĉ5(s, x)e−bλG I , (B.21)

where â5(s, x) = pS(1 − x)[ p̃V s2 + (1 − p̃V )s3] + (1 − pS)[ p̃V s5 + (1 − p̃V )s6],
b̂5(s, x) = pS(1 − x) p̃V (1 − s2) + (1 − pS) p̃V (1 − s5) and lastly

123



Evaluation of vaccination strategies for SIR epidemics...

ĉ5(s, x) = pS(1 − x)(1 − p̃V )(1 − s3) + (1 − pS)(1 − p̃V )(1 − s6). Arguing as
in the derivation of (B.8) now gives, for i = 5,

ψ̂i (θ, s) = p̃−1
V �0,pN G

(
D̃ − 1, âi (s, x), b̂i (s, x), ĉi (s, x), θ, a, b

)
. (B.22)

A similar argument shows that (B.22) holds also for i = 2, with

â2(s, x) = pS(1 − x){pN s1 + (1 − pN )[ p̃V s2 + (1 − p̃V )s3]}
+ (1 − pS){pN s4 + (1 − pN )[ p̃V s5 + (1 − p̃V )s6]},

b̂2(s, x) = pS(1 − x)[pN (1 − s1) + (1 − pN ) p̃V (1 − s2)]
+ (1 − pS)[pN (1 − s4) + (1 − pN ) p̃V (1 − s5)] and

ĉ2(s, x) = (1 − pN )(1 − p̃V )[pS(1 − x)(1 − s3) + (1 − pS)(1 − s6)].

Expressions for ψ̂U (θ, s) and ψ̂V (θ, s) are derived in exactly the same way as with
an all-or-nothing vaccine, yielding

ψ̂U (θ, s) = p3,6S G
(
DU , â(s), b̂(s), ĉ(s), θ, a, 1

)

and

ψ̂V (θ, s) = p−1
V p2,5S �0,pN G

(
DV , â(s, x), b̂(s, x), ĉ(s, x), θ, a, b

)
.

As usual, the above expressions simplify if I ≡ ι. Eq. (B.19) then implies that, for
i = 3, 6,

ψ̂i (θ, s) = e−θι f D̃(i)

(
âi (s) + b̂i (s)e−aλG ι + ĉi (s)e−λG ι

)
,

which also holds for i = 1, 4, provided λG is replaced by bλG . Further, exploiting
(B.20), (B.21) and similar equations for ψ̂2(θ, s), gives, for i = 2, 5,

ψ̂i (θ, s) = p̃−1
V e−θι�0,pN f D̃−1

(
âi (s, x) + b̂i (s, x)e−abλG ι + ĉi (s, x)e−bλG ι

)
.

Lastly, we also find that

ψ̂U (θ, s) = e−θι p3,6S fDU

(
â(s) + b̂(s)e−aλG ι + ĉ(s)e−λG ι

)

and

ψ̂V (θ, s) = p−1
V e−θι p2,5S �0,pN fDV

(
â(s, x) + b̂(s, x)e−abλG ι + ĉ(s, x)e−bλG ι

)
.
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B.5 Local susceptibility set size

In this section we give formulae for the probability mass functions of the size of
local susceptibility sets. The corresponding PGFs are then simple to calculate numer-
ically. Consider first the model without vaccination and recall the definition of M (n)

in Sect. 2.2.2. Then it follows directly from Ball (2000, Lemma 3.1) (see also Ball and
Neal (2002, Lemma 3.1), which gives the same result but not in terms of Gontcharoff
polynomials) that

P(M (n) = k) = (n − 1)[k]qn−1−k
k+1 Gk+1(1|V ) (k = 0, 1, . . . , n − 1), (B.23)

where qi = φI (λLi) and V = (qi+1 : i = 0, 1, . . .).
Consider next the model with a non-random vaccine action and recall the definition

of M(n,v)
A = (M (n,v)

AU , M (n,v)
AV ) (A ∈ {U, V }) in Sect. 3.3. It is convenient to now use a

different notation. For n = (nU , nV ) ∈ Z
2+, let M̂

(n)

U = (M̂ (n)
UU , M̂ (n)

UV ), where M̂ (n)
UU

and M̂ (n)
UV are the numbers of unvaccinated and vaccinated individuals, respectively,

in the local susceptibility set of an unvaccinated individual, i∗ say, who resides in
a household containing nU other unvaccinated individuals and nV vaccinated indi-
viduals, so the household has size nU + nV + 1. Note that M̂ (n)

UU does not include

the individual i∗. Define M̂
(n)

V = (M̂ (n)
VU , M̂ (n)

VV ) similarly, but for a vaccinated indi-

vidual. Hence, to connect with the notation in Sect. 3.3, M(n,v)
U = M̂

(n−1−v,v)

U and

M(n,v)
V = M̂

(n−v,v−1)
V . For n ≥ 0 and A ∈ {U, V }, the probability mass function of

M̂
(n)

A can be derived using the same argument as in the proof of Lemma 3.1 in Ball
(2000). For brevity, we omit the details and just state the result.

For j = ( jU , jV ) ≥ 0, let q j = (qUj , qVj ), where qUj = φI (λL( jU + bjV )) and

qVj = φI (aλL( jU + bjV )). Let 1U = (1, 0) and 1V = (0, 1). Then, for n ≥ 0 and
A ∈ {U, V },

P
(
M̂

(n)

A = k
)

= n[k]qn−k
k+1A

Gk(1|V A) (0 ≤ k ≤ n − 1A), (B.24)

where V A = (vA
j : j ≥ 0) has components vA

j = qA
j+1A

.
In the model with an all-or-nothing vaccine action we can calculate the mass func-

tion of M(n,v)
A by conditioning on the number, vS say, of the v vaccinations that are

successful. The mass function of M(n−vS ,v−vS)
A can then be calculated as above, but

with qUj = qVj = φI (λL( jU + jV )).

B.6 Mean local epidemic size

Themean single-household epidemic final sizeμn(λL), defined in Sect. 2.2.1, is given
in terms of Gontcharoff polynomials by
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μn(λL) = n − 1 −
n−1∑

i=1

(n − 1)[i]qn−i
i Gi−1(1|V ), (B.25)

where qi = φI (iλL) and V = (qi+1 : i = 0, 1, . . .); cf. Lefévre and Picard (1990,
Corollary 3.3).

Finally, we consider the meansμ(n,v)(A, A′) (A, A′ ∈ {U, V }) defined in Sect. 3.3.
Again it is convenient to use a different notation. Forn = (nU , nV ) ≥ 0, let μ̂(n)(U,U )

and μ̂(n)(U, V ) denote respectively the mean number of unvaccinated and vaccinated
susceptibles that are ultimately infected in a single-household epidemic with 1 ini-
tial infective, who is unvaccinated, nU unvaccinated susceptibles and nV vaccinated
susceptibles. Define μ̂(n)(V,U ) and μ̂(n)(V, V ) similarly, for when the initial infec-
tive is vaccinated. Thus, to connect with the notation in Sect. 3.3, for A ∈ {U, V },
μ(n,v)(U, A) = μ̂(n−1−v,v)(U, A) and μ(n,v)(V, A) = μ̂(n−v,v−1)(V, A). Suitable
differentiation applied to Theorem 3.5 of Ball (1986), or Corollary 4.4 of Picard and
Lefèvre (1990), yields that, for n ≥ 0 and A, A′ ∈ {U, V },

μ̂(n)(A, A′) = nA′ −
n∑

k=1A′
n[k]qn+1A−k

k Gk−1A′ (1|V A′
),

where qk (k ≥ 0) and V A (A ∈ {U, V }) are as in (B.24).
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