260 research outputs found

    Observation of inhibited electron-ion coupling in strongly heated graphite

    Get PDF
    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter

    Thomson scattering measurement of a collimated plasma jet generated by a high-power laser system

    Get PDF
    One of the important and interesting problems in astrophysics and plasma physics is collimation of plasma jets. The collimation mechanism, which causes a plasma flow to propagate a long distance, has not been understood in detail. We have been investigating a model experiment to simulate astrophysical plasma jets with an external magnetic field [Nishio et al., EPJ. Web of Conferences 59, 15005 (2013)]. The experiment was performed by using Gekko XII HIPER laser system at Institute of Laser Engineering, Osaka University. We shot CH plane targets (3 mm × 3 mm × 10 ÎŒm) and observed rear-side plasma flows. A collimated plasma flow or plasma jet was generated by separating focal spots of laser beams. In this report, we measured plasma jet structure without an external magnetic field with shadowgraphy, and simultaneously measured the local parameters of the plasma jet, i.e., electron density, electron and ion temperatures, charge state, and drift velocity, with collective Thomson scattering

    Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Get PDF
    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock

    Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single shot ablation threshold

    Get PDF
    The process of damage accumulation in thin ruthenium films exposed to multiple femtosecond XUV free electron laser FEL pulses below the critical angle of reflectance at the Free electron LASer facility in Hamburg FLASH was experimentally analyzed. The multi shot damage threshold is found to be lower than single shot damage threshold. Detailed analysis of the damage morphology and its dependence on irradiation conditions justifies the assumption that cavitation induced by the FEL pulse is the prime mechanism responsible for multi shot damage in optical coating

    Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    Get PDF
    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities

    Targets for high repetition rate laser facilities: Needs, challenges and perspectives

    Get PDF
    A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities

    Social Justice and Technocracy: Tracing the Narratives of Inclusive Education in the United States

    Get PDF
    Over the past two decades, the percentage of American students with disabilities educated in general classrooms with their nondisabled peers has risen by approximately fifty percent. This gradual but steady policy shift has been driven by two distinct narratives of organisational change. The social justice narrative espouses principles of equality and caring across human differences. The narrative of technocracy creates top-down, administrative pressure through hierarchical systems based on quantitative performance data. This article examines these two primary policy narratives of inclusive education in the United States, exploring the conceptual features of each and initiating an analysis of their application in the public schools
    • 

    corecore