127 research outputs found

    Aplastic Anemia Complicating Orthotopic Liver Transplantation for Non-A, Non-B Hepatitis

    Get PDF
    Aplastic anemia developed in 9 of 32 patients (28 percent) undergoing orthotopic liver transplantation for acute non-A, non-B hepatitis, at one to seven weeks after the procedure. No patient previously had evidence of hematologic dysfunction or conditions known to be associated with aplastic anemia. No other cases of aplastic anemia were identified among 1463 patients undergoing liver transplantation for all other indications at the four centers participating in the study (chi-square = 415, P<0.001; 95 percent confidence interval for the incidence of aplastic anemia after transplantation for non-A, non-B hepatitis, 13 to 44 percent, vs. 0.00 to 0.13 percent for all other indications). The operative and postoperative treatment of these patients was not otherwise different, indicating that the aplastic anemia was a complication of the hepatitis, not of the transplantation procedure. Four of the nine patients died of complications due to infections. Three of the surviving patients have been followed for less than six months, one for one year, and one for two years. The two patients followed the longest have recovered marrow function to an appreciable degree, and two of the others have evidence of early recovery. We conclude that patients undergoing orthotopic liver transplantation for non-A, non-B hepatitis are at a high risk for the development of aplastic anemia. (N Engl J Med 1988; 319:393–6.) © 1988, Massachusetts Medical Society. All rights reserved

    Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    Get PDF
    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits

    SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers

    Get PDF
    S′adenosyl-l-methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g−1 fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1–2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO)

    Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    Get PDF
    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm

    Epistatic Association Mapping in Homozygous Crop Cultivars

    Get PDF
    The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted

    How absolute is zero? An evaluation of historical and current definitions of malaria elimination

    Get PDF
    Decisions to eliminate malaria from all or part of a country involve a complex set of factors, and this complexity is compounded by ambiguity surrounding some of the key terminology, most notably "control" and "elimination." It is impossible to forecast resource and operational requirements accurately if endpoints have not been defined clearly, yet even during the Global Malaria Eradication Program, debate raged over the precise definition of "eradication." Analogous deliberations regarding the meaning of "elimination" and "control" are basically nonexistent today despite these terms' core importance to programme planning. To advance the contemporary debate about these issues, this paper presents a historical review of commonly used terms, including control, elimination, and eradication, to help contextualize current understanding of these concepts. The review has been supported by analysis of the underlying mathematical concepts on which these definitions are based through simple branching process models that describe the proliferation of malaria cases following importation. Through this analysis, the importance of pragmatic definitions that are useful for providing malaria control and elimination programmes with a practical set of strategic milestones is emphasized, and it is argued that current conceptions of elimination in particular fail to achieve these requirements. To provide all countries with precise targets, new conceptual definitions are suggested to more precisely describe the old goals of "control" - here more exactly named "controlled low-endemic malaria" - and "elimination." Additionally, it is argued that a third state, called "controlled non-endemic malaria," is required to describe the epidemiological condition in which endemic transmission has been interrupted, but malaria resulting from onwards transmission from imported infections continues to occur at a sufficiently high level that elimination has not been achieved. Finally, guidelines are discussed for deriving the separate operational definitions and metrics that will be required to make these concepts relevant, measurable, and achievable for a particular environment
    corecore