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Chromosome segment substitution lines have been created in several experimental models, including many plant and animal spe-
cies, and are useful tools for the genetic analysis and mapping of complex traits. The traditional t-test is usually applied to identify 
a quantitative trait locus (QTL) that is contained within a chromosome segment to estimate the QTL’s effect. However, current 
methods cannot uncover the entire genetic structure of complex traits. For example, current methods cannot distinguish between 
main effects and epistatic effects. In this paper, a linear epistatic model was constructed to dissect complex traits. First, all the 
long substituted segments were divided into overlapping small bins, and each small bin was considered a unique independent 
variable. The genetic model for complex traits was then constructed. When considering all the possible main effects and epistatic 
effects, the dimensions of the linear model can become extremely high. Therefore, variable selection via stepwise regression 
(Bin-REG) was proposed for the epistatic QTL analysis in the present study. Furthermore, we tested the feasibility of using the 
LASSO (least absolute shrinkage and selection operator) algorithm to estimate epistatic effects, examined the fully Bayesian 
SSVS (stochastic search variable selection) approach, tested the empirical Bayes (E-BAYES) method, and evaluated the penalized 
likelihood (PENAL) method for mapping epistatic QTLs. Simulation studies suggested that all of the above methods, excluding 
the LASSO and PENAL approaches, performed satisfactorily. The Bin-REG method appears to outperform all other methods in 
terms of estimating positions and effects. 
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Since the landmark study by Lander and Botstein [1] in the 
field of quantitative genetics, interest in the genetic analysis 
of complex traits has increased enormously. During the past 
century, numerous investigators have inferred the action of 
a polygene to be the underlying cause of a complex pheno-
type with continuous variation. The quantitative trait loci 
(QTLs) responsible for phenotypic variation can be mapped 
within a chromosome interval using conventional segrega-
tion populations, such as the F2 and backcross mapping 
populations. Some QTLs have been cloned in rice, mouse, 

and other model organisms [2–4]. These achievements have 
enhanced our understanding of complex traits and enabled 
us to use marker-assisted selection (MAS) and genetic en-
gineering to introduce valuable alleles into crops and im-
prove crop breeding more effectively. 

Genetic studies can provide important insights into the 
detailed molecular mechanisms that underlie the variation 
of complex traits. However, conventional populations have 
several limitations for accurate identification and fine map-
ping of QTLs [5,6]. One of the shortcomings of these popu-
lations is that a major QTL can overshadow a small-effect 
QTL by increasing the total phenotypic variation; thus, the 
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small-effect QTL cannot reach the threshold of detection. 
An additional restriction of conventional populations is the 
background noise that results from the complex epistatic 
interactions of different loci. A number of studies have 
shown that these interactions substantially contribute to the 
genetic control and evolution of complex traits [7,8]. How-
ever, many other studies that attempted to explore the ge-
netic basis of complex traits ignored the possibility that loci 
interact [9]. Furthermore, in existing mapping populations, 
the wide variation in plant growth rate and morphology 
strongly influence the effects of QTLs. It is also difficult to 
perform repeated tests, because each individual has a unique 
genotype. These problems pose major challenges for de-
tecting and mapping QTLs in detail. Therefore, the devel-
opment of new resources is necessary to facilitate fine map-
ping and cloning of QTLs. 

To address these problems, Eshed and Zamir [5] pio-
neered research on the fine mapping of QTLs in tomato 
using introgression lines (ILs). Later, these novel mapping 
populations were further developed through successive in-
trogression backcrosses and marker-assisted selection to 
produce chromosome substitution lines in Arabidopsis [10], 
chromosome segment substitution lines (CSSLs) and ILs in 
rice [11–14], recombinant chromosome substitution lines in 
barley [15], and backcross inbreed lines in lettuce [16] and 
tomato [17]. In animal and human genetic studies, Matin et 
al. [18] were the first to use a chromosome-substitution strain 
for QTL mapping. Singer et al. [19] described the construc-
tion of the first complete set of chromosome-substitution 
strains and their application in genome-wide QTL mapping. 
The advantages of these libraries are clear. As homozygous 
immortal lines, CSSLs can be phenotyped repeatedly and 
used for the simultaneous mapping of many traits. Addi-
tionally, each line contains a single chromosome segment 
that originates from the donor parent in an otherwise uni-
form genetic background [20]. As a result, the background 
genetic noise is reduced, so that each QTL can explain a 
greater proportion of the total phenotypic variation, which 
allows for a more detailed and reliable QTL identification 
[5,21] as well as permitting fine mapping [22] and cloning 
of the QTL [23]. In addition, CSSLs containing the QTL of 
interest can be backcrossed to various lines to investigate 
interactive effects and gene network effects [24]. Moreover, 
these libraries will improve our understanding of genetic 
traits that have biological and economic importance in 
plants and animals [25]. 

Although several CSSL libraries have recently been cre-
ated in a number of plant and animal experimental models, 
an appropriate method based on these populations has not 
been developed for dissecting complex traits. Currently, 
most researchers use the standard t-test to identify QTLs 
[12,26]. In an ideal case, each substitution line carries one 
donor segment; thus, the genetic difference between the 
substitution line and the recurrent line can only be caused 
by the donor segment. However, false positives are often 

produced when the multiple t-tests are performed because of 
imprecise error estimates. In addition, the t-test is not suita-
ble for CSSLs that each carry several donor segments. An 
alternative method to the standard t-test is Dunnett’s test 
[17,27,28] and the RSTEP-LRT mapping method recently 
proposed by Wang et al. [29]. However, these approaches 
can only detect the major effect of a QTL on the basis of the 
novel population. A method that can distinguish between 
main and epistatic QTL effects has not yet been developed. 
In this article, we proposed a bin-based epistatic model and 
evaluated several methods in variable selection. Addition-
ally, we performed a series of simulation experiments to test 
these methods. The goal of this study is to provide a suitable 
method for exploring the genetic basis of complex traits and, 
in doing so, to improve crop breeding. 

1  Model construction 

Figure 1 depicts the hypothetical CSSLs that were used in 
the present study. We present two types of CSSLs. Each 
CSSL contains one or several small, homozygous donor 
segments, shown as red bars in Figure 1. There was some 
overlap of donor segments between neighboring lines, such 
as between CSSL1 and CSSL2. High resolution QTL map-
ping will benefit from these overlaps. To localize a QTL to 
a smaller interval within a donor segment, the donor seg-
ment was divided into smaller segments according to the 
overlapping of different segments in each line (indicated by 
the vertical dashed lines). These smaller segments are re-
ferred to as bins [4]. A commonly used mapping scheme 
involves phenotyping all the lines in randomized replicate 
trials and presenting the results as a difference from the re-
current parent. The lines that contain a significant contribu-
tion can then be identified [28]. In our study, each bin is 
considered an independent variable. For example, bins from 
A to P in Figure 1(a) or bins from A to I in Figure 1(b) can 
be defined as x1 to x16 and x1 to x9. As such, the main effect 
model can be described by the following multiple linear 
model:  
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where yi is the mean value of the ith line of a CSSLs library 
comprising l lines; b0 is the overall mean of the population; 
m is the total number of bins in the entire genome; bk is the 
main effect associated with bin k; xik is an indicator variable, 
denoting xik = 1 for the donor parent bin and xik = 1 for the 
recurrent parent bin; and ej denotes the residual error fol-
lowing a normal distribution. 

The epistatic model can be easily derived from the above 
model and can be written as 
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Figure 1  Model of the CSSL library. (a) The entire mapping population, consisting of individual lines each containing a single or a few homozygous donor 
segments in a uniform genetic background. (b) The introgression line (IL) library, consisting of a series of lines harboring a single, long, homozygous donor 
segment introgressed into a homogenous genetic background.  

where bp.q is the epistatic effect between the pth and qth bin. 
xip and xiq have the same definition as xik. For the sake of 
clarity and notation, we redefined the design matrix and the 
partial regression coefficients as follows: let bj=bk and xij= 

xik when j=k=1,..., m; let bj=bp.q and xij=xipxiq when j=m+1,..., 
m(m+1)/2, p=1,..., m1 and q=p+1,..., m. Then, model (2) 
can be rewritten as 
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When model (2) and model (3) are compared, it is ap-
parent that bj=bk if the jth effect is the main effect, and 
bj=bp.q if the jth effect is the epistatic effect; therefore, we 
used a general linear model (3) to describe both the main 
effect and the epistatic effect. In terms of the method of 
estimation, a distinction between a main effect and an epi-
static effect is unnecessary. 

However, not all of the bin pair interactions can be esti-
mated with this model. Statistically, an interaction can be 
defined as the variation among the differences between the 
means for different levels of one factor over different levels 
of the other factor. Therefore, to consider the interaction 
between two bins, the mean value y(1,1) of substitution lines 
in bin pair (xip=1, xiq=1), y(1,1) in (xip=1, xiq=1), y(1,1) in 
(xip=1, xiq=1), and y(1,1) in (xip=1, xiq=1) should be 
evaluated, and the interaction effect estimated as (y(1,1)+ 
y(1,1))(y(1,1)+y(1,1)). If any of the means cannot be calcu-
lated, the interaction between the corresponding bin pairs 
cannot be estimated and must be removed from the model 
when analyzing the data set. For example, the interaction 
between bins A and B in Figure 1(a) could not be calculated 
because of the missing mean value of substitution lines in 
bin pair (xiA=1, xiB=1). 

The genotype indicator variable for a QTL is not ob-
servable. However, in our model, we assume that each QTL 
was placed in a bin; thus, the effect of the individual QTL is 
replaced by that of the corresponding bin. Therefore, the 
proposed method is essentially a multiple bin analysis. For 
this reason, we will use the terms bin and QTL inter-
changeably. 

2  Variable selection strategy 

This study considers the estimation of the coefficients of a 
linear regression model with a dependent variable y and a 
large number regressor x. Usually, a model is said to be 
“large” if m(m+1)/2>l. Here, model (3) saturates quickly as 
the number of bins increases. Thus, the ordinary least- 
square approach does not have a unique solution. We as-
sume that the number of variables that are known to affect 
phenotypic value yi is less than the number of substitution 
lines. Although the number of parameters m or m(m+1)/2 
can be very large, most of them will be zero. Therefore, 
research has focused on selecting the variables that signifi-
cantly affect yi. In this section, several methods capable of 
dealing with the large regression model are presented and 
evaluated in the following simulation study. 

2.1  Bin-based stepwise regression method 

For simplicity, we call this method Bin-REG here. In statis-
tics, stepwise regression is the most intuitive method for 
choosing predictive variables and is carried out by an auto-
matic procedure. The main approach includes the following 
steps: (i) forward selection, which involves starting out with 
zero variables in the model and testing the variables one by 
one. Variables that are statistically significant are then in-
cluded in the analysis. (ii) Backward selection involves 
starting out with all of the candidate variables, evaluating 
them one by one for statistical significance and eliminating 
any that meet the criterion for removal. (iii) Stepwise selec-
tion, a method that is a combination of (i) and (ii), involves 
testing at each stage for variables that will be included or 
excluded. In a stepwise regression analysis, the selection 
criterion is one of the key issues in variable selection. Usu-
ally, this takes the form of a sequence of F-tests, but other 
techniques are also possible. 

2.2  Spike and slab variable selection 

Stochastic search variable selection (SSVS) is a fully Bayesian 
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variable selection method implemented via Markov chain 
Monte Carlo (MCMC) and was originally proposed by 
George and McCulloch [30]. Yi et al. [31] applied this 
method to multiple QTL analyses. In SSVS, the dimension-
ality of the model is not changed by limiting the posterior 
distribution of nonsignificant variables to a small value near 
zero, instead of removing them from the model. Therefore, 
SSVS can be easily implemented via the Gibbs sampler and 
can provide the posterior probability of each variable that is 
included in the model. The effect of each variable can then 
be evaluated. 

2.3  LASSO algorithm 

Least absolute shrinkage and selection operator, or LASSO, 
is a shrinkage and selection method for linear regression 
[32]. As a method of model selection designed to be used 
when the number of variables is larger than the number of 
observables, LASSO minimizes the residual sum of squared 
errors, with a limit on the sum of the absolute values of the 
coefficients. The nature of this constraint allows LASSO to 
produce some coefficients that are exactly zero and, as a 
result, provides an interpretable model. 

2.4  Penalized maximum likelihood method 

The penalized maximum likelihood (PENAL) method was 
originally developed by Zhang and Xu [33] and does not 
remove all the nonsignificant variables from the model; thus, 
PENAL can also handle supersaturated models. The pro-
posed method adopts a penalty that depends on the values of 
the parameters and allows spurious QTL effects to be min-
imized toward zero, while QTLs with large effects are esti-
mated with virtually no shrinkage. Under the shrinkage es-
timation framework for a supersaturated model, PENAL can 
produce similar results to the fully Bayesian shrinkage ap-
proach and is quickly computable. 

2.5  Empirical Bayes method 

Empirical Bayes (E-BAYES) methods use empirical data to 
evaluate the conditional probability distributions and com-
bine Bayesian and frequentist approaches in the estimation. 
These methods have been introduced into statistical ge-
nomics by Beasley et al. [34] and Zhang et al. [35]. Recently, 
Xu [36] proposed an empirical Bayes method that can sim-
ultaneously estimate the main effects of all individual 
markers and the epistatic effects of all pairs of markers. 
This method does not require MCMC samplings, but can 
still estimate the variance parameters for prior regression 
coefficients. The method is intended for estimating epistatic 
effects in situations where many of them are actually zero. 
More recently, Xu and Jia [37] applied the empirical Bayes 
method to simultaneously estimate the main effects for all 
markers and interaction effects for all marker pairs in a sin-

gle model. 

3  Simulation study 

To illustrate the application of the above methods, we sim-
ulated two data sets according to the CSSLs model depicted 
in Figure 1, which denote two types of substitution lines. 
For simplicity, we call the two novel populations librarys A 
and B, respectively. Library A, which consists of 62 lines 
including two parent lines, was simulated for a genome of 
1970 cm with 12 chromosomes. Similarly, Library B, which 
consists of 135 lines, including two parent lines, was simu-
lated for a single giant chromosome of 1660 cm. The length 
of the substituted component from the donor parent in each 
line was generated randomly. According to the overlap be-
tween each donor segment, we created 112 and 107 map-
ping bins for Library A and Library B, respectively. Four of 
the bins overlapped with the main effect QTL and three out 
of all possible bin pairs had interaction effects. The genetic 
variance  2

g  
was approximately 3.83 and 14.5 for library 

A and library B, respectively, which was calculated by 

  
 

  4 32 2 2

1 1g q iq i
, where    2 2 2 2 2( 2 )q a l f a l  

and    2 2 2 2 2( 2 )i i ia l f a l . a and ai represent the main 

effect and the epistatic effect, respectively, and f equals the 
number of xij=1 in the column associated with a QTL and 
QTL interaction in the design matrix. The residual variance 
 2

e was defined as   2 2 2(1 )e pH , where H2 was the total 

hereditary capacity. H2=0.8 was chosen for our simulation 
study, and  2

e  for the two populations was 0.96 and 3.6 for 

library A and library B, respectively. The phenotypic vari-
ance  2

p  was about 4.79 and 18.1 for library A and library 

B, respectively. The theoretical proportion of the phenotyp-
ic variance contributed by each individual QTL and the in-
teraction were simply defined by  2 2 2

q ph
 

and h2= 

 2 2
i p , respectively. In our simulation experiment, the h2 

of an individual QTL and a pair of QTLs ranged from 2.6% 
to 20.2%. Some of the QTLs had main effects only, while 
others had both main and epistatic effects. Additionally, 
some QTLs with epistatic effects had no main effects. In 
total, the models contained 6383 and 5779 effects for library 
A and library B, respectively, which is approximately 102 
and 42 times as large as the sample size for library A and 
library B, respectively. 

To evaluate the different methods, we analyzed simulated 
dataset based on libraries A and B. The Bin-REG method 
was adopted to analyze the simulated data through the 
SAS/IML program. The LASSO method was implemented 
using the ‘lasso’ option of GLMSELECT in SAS/STAT. 
The SAS/IML procedures implementing SSVS, PENAL, 
and E-BAYES methods are available under the Paper In-
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formation link at the Biometris website (http://www.statgen. 
ucr.edu/) and were written by Xu [36]. 

In the Bin-REG method, the significance levels required 
for a variable to enter and stay in the regression are speci-
fied by the ‘sle’ and ‘sls’ options, respectively. The default 
for both parameters is 0.15, and 0.01 was chosen as the sig-
nificance level. In the GLMSELECT procedure of the 
SAS/STAT model, ‘lasso’ was chosen as the model selec-
tion method to implement the LASSO algorithm. A modifi-
cation of SSVS was chosen to determine a prior probability 
of j =1, where j is an indicator variable used to include or 
exclude the jth bin effect. Typically, the original SSVS 

method       1( ) (1 )j j

jp , where 0<<1 is a constant 

and = 0.5, is used [30]. However, Xu [36] suggested that 
= 0.5 was only suitable when the number of predictors was 
relatively small, such as in the main effect QTL model. For 
the epistatic effect model,  should be very small. For this 
reason, = 0.1 was chosen for our experiment. The hyper 
parameters of E-BAYES were (, )=(1, 0.003), in ac-
cordance with Xu [36]. We also tested other hyper parame-
ters and found that other values did not shrink the parame-
ters properly.  

The results for Library B are presented in Table 1 and 
plotted in Figure 2. Simulation results for library A are not 
presented because the results were uninterruptible. One 
possible reason for this result may be that the design matrix 
for library A was not suitable for dissecting statistical epi-
static effects. In comparing the same data sets from Library 
B (Table 1 and Figure 2), we found that the Bin-REG 
method generated better results than LASSO, SSVS, 
E-BAYES, and PENAL on the estimates of QTL position. 
SSVS and E-BAYES produced similar results, with the ex-
ception that the SSVS method missed one QTL with a large 
epistatic effect. The E-BAYES method, using the hyper 
parameters setting of (, )=(1, 0.003) reported a con-
founded result. Bin pairs (3, 100) and (27, 50) interfered 
with each other and generated spurious interactions as bin 

pairs (3, 50) and (27, 100). In addition, exact effect estima-
tion could also be observed. Overall, Bin-REG, SSVS, and 
E-BAYES produced satisfactory results. However, LASSO 
and PENAL differed from the other methods in that: (i) 
most of the large effect was overshrunk; (ii) the estimated 
QTLs with main effects only were biased in position esti-
mates, while the other methods detected the position of the-
se QTLs exactly, and (iii) the epistatic QTLs were not de-
tected. 

4  Discussion 

Novel CSSLs have been developed in several plant and 
animal species for fine mapping, cloning, and functional 
research on QTLs [11,19,24]. Ideal CSSLs carrying one 
donor segment can be analyzed efficiently using the t-test 
method, which is commonly used by researchers. However, 
the disadvantage of the t-test is apparent. When multiple 
t-tests are performed, researchers run the risk of greatly in-
flating the family wise error rate (FWER) or the false posi-
tive rate (FPR), defined as the probability of making one or 
more Type I errors [38]. Thus, some donor segments con-
taining no QTLs would show a significant difference from 
the background parent. Non-ideal CSSLs may contain two 
or more donor segments per substitution line. Under this 
situation, the t-test method cannot distinguish which seg-
ment contains the QTL of interest. In contrast, the target 
QTL can be localized within a smaller segment by a bin 
mapping method [4,28]. However, the problem of high FPR 
still exists for bin mapping methods. To control the high 
FPR in multiple t-tests, Dunnett’s test has been suggested 
[17,27,28]. In reality, the critical value of Dunnett’s test is 
always higher than that of t-tests, which means that stricter 
criteria are used in Dunnett’s test, and as a result, some 
QTLs with small effects may not be detected. 

To address this problem, Tang and Xu [39] proposed an 
improved t-test method. First, the variations within each CSSL  

Table 1  Simulated QTL positions and effects, and estimates using various methods on the design matrix of Library B 

Bins 
(i, j) 

True 
value 

h2  
(%) 

Bin-REG  LASSOa)  SSVS  E-BAYES  PENALa) 

Position 
Estimated 

effect 
 
 

Position 
Estimated 

effect 
 
 

Position 
Estimated 

effect 
 
 

Position 
Estimated 

effect 
 
 

Position 
Estimated 

effect 

(3, 3) 1.8 17.9 (3, 3) 1.68±0.08  (3, 3) 1.70  (3, 3) 1.66±0.17  (3, 3) 1.53±0.09  (1,1) 2.40±0.24 

(27, 27) 1.3 9.3 (27, 27) 1.47±0.08  (27, 27) 1.16  (27, 27) 1.23±0.70  (27, 27) 2.00±0.08  (25, 25) 2.55±0.24 

(39, 39) 1.5 12.4 (39, 39) 1.33±0.07  (42, 42) 0.19  (39, 39) 1.27±0.57  (41,41)b) 0.98±0.15    

(100, 100) 1.3 9.3 (100, 100) 1.31±0.07  (102, 102) 0.06  (100, 100) 1.20±0.54c)  (100, 100) 1.61±0.08    

(3, 100) 2.3 10.1 (3, 100) 2.35±0.07  d)   (3, 100) 2.57±0.33  (3, 50)e) 2.26±0.39    

(27, 50) 2 15.3 (27, 50) 2.01±0.05  (50, 50) 0.60  (27, 49) 1.40±0.47  (27, 100) e) 1.89±0.38    

(66, 80) 1.6 5.6 (66, 80) 1.56±0.07        (66, 80) 1.78±0.38    

a) Some of the estimated bins are confused, and some of them are obtained from the neighboring bins using the LASSO and PENAL algorithms for the 
bins pair (i, j)). b) The estimated bin is shifted to the neighboring position. c) The estimated effect was obtained from both the assumed bin and a neighboring 
bin. d) The short horizontal lines denote that the assumed bins or bin pairs have not been detected. e) The two bin pairs interfere with each other. 
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Figure 2  Estimated main and epistatic effects of bin pairs from library B using the following four methods and the same simulated data set: the Bin-REG 
method proposed in this study, SSVS, LASSO, PENAL, and E-BAYES. The green- and blue-colored prisms represent estimated positive and negative ef-
fects, respectively. 

are combined to estimate environmental variance Mse; the 
improved protected least significant difference (IPLSD) can 
then be used as a new criterion to examine the difference 
between each CSSL and the background parent. The IPLSD 

is calculated using the formula IPLSD=  ,

2
df

MSe
t

n
, 

where n is the number of individuals of each line. For non- 
ideal CSSLs classified as Library A in our paper, we also 
proposed a bin-based regression method to detect a small 
chromosome region of interest using the main effect model 
(Eq. (1)) [39]. We assumed that several bins contained only 
main effects in libraries A and B and analyzed the simulated 
data using the main effect model; the results show that bins  

of interest can be detected with high statistical power. Fur-
ther analyses revealed that increasing the number of indi-
viduals within each line can improve both the statistical 
power of QTL detection and QTL effects estimation, espe-
cially for a QTL with heritability lower than 5%, which is 
consistent with our general expectations. 

We used the proposed main effect model to analyze the 
rice dataset [40], with the aim of identifying loci that influ-
ence heading data, which is an important agronomic char-
acteristic in any rice breeding program. A collection of 
SSSLs consisting of 52 lines was created from six donors 
with an elite cultivar ‘Huajingxian 74’ genetic background; 
20 of these individuals were included in each line. On the  



2672 Tang Z X, et al.   Chin Sci Bull   July (2012) Vol.57 No.21 

basis of the linkage map information, we constructed the 
design matrix and chromosome bin map. A total of 162 
markers covering the genome were used in the analysis, and 
56 bins were generated. The proposed approach (Eq. (1)) 
was used for data analysis using the regression options 
‘sls=0.1’ and ‘sle=0.1’. As we expected, our result was con-
sistent with the t-test result obtained by He et al. [40], with 
the exception that three of the 30 donor segments could not 
be detected. Detailed examination showed that these three 
segments had small effects and relatively smaller contribu-
tions. However, our simulation studies suggest that under 
options ‘sls=0.1’ and ‘sle=0.1’, spurious effects will be 
generated because of the low significance level. 

In investigating the genetic basis of complex traits, the 
extent to which epistasis controls variation in complex traits 
can never be explored using the main effect model. Hence, 
simultaneous mapping of QTLs using an epistatic model is 
needed, as it can detect the loci that mainly affect the quan-
titative trait through epistatic interactions with another locus. 
In our study, donor segments were divided into small bins 
according to the overlap of segments in the CSSLs, and 
each bin was considered a different indicator variable de-
scribing the different parental origin. Based on this design 
matrix, an epistatic QTL mapping model (Eqs. (2) and (3)) 
was constructed that is more flexible than that (Eq. (1)) for 
individual QTLs. 

The epistatic model is essentially an oversaturated linear 
model. Our primary interest concerned the regression coef-
ficients (additive and epistatic effects, both denoted by bj). 
In this study, we evaluated several approaches capable of 
dealing with the oversaturated linear model. The classic 
regression method was sufficiently robust to analyze the 
dataset. We chose stepwise selection with regression op-
tions ‘sls=0.01’ and ‘sle=0.01’. We also tested a signifi-
cance level ranging from 0.01 to 0.15, and the result pro-
duced the target QTL in addition to many spurious QTLs 
that were also generated. Furthermore, we performed a sim-
ulation study using different sample sizes and different lev-
els of heritability, and the results were consistent with our  
general expectations. Large sample sizes and high heritabil-
ity produced accurate estimates with small estimation errors. 

The simulated results suggested that a guarantee of high 
heritability is important in detecting the target QTL and 
QTL interactions correctly. Our simulation also showed that 
the forward selection strategy produces a similar result; the 
backward selection strategy does not, because of the differ-
ent strategy used in variable selection. 

In an oversaturated model, a heuristic search is possible, 
but may not ensure the generation of an optimal model 
within a reasonable time frame, even when using a super 
computer [37]. Bayesian model selection, by taking ad-
vantage of the MCMC method, is a more efficient algorithm 
than both exhaustive and heuristic searches [30]. We em-
ployed SSVS, which is a Bayesian model selection algo-
rithm, and E-BAYES to analyze the simulated dataset. Pa-
rameter = 0.1 [36] was used in the SSVS algorithm, and 
the hyper parameters (, )=(1, 0.003) were used for 
E-BAYES. According to our simulation studies, other pa-
rameter settings cannot guarantee satisfactory results based 
on the design matrix of library B. However, running SSVS 
takes a considerable amount of time on any computer. We 
also tried E-BAYES using the hyper parameters setting (, 
)=(2, 0), which means a uniform prior was used for each 
variance component, as suggested by Xu [36]. The results 
from this analysis showed that numerous spurious effects 
were generated; however, bins of interest were still detected, 
though the analysis misidentified bin pairs (3, 100) and (27, 
50) as (3, 50) and (27, 100), respectively. 

The comparison of different algorithms applied to the 
data from library B revealed that the PENAL and LASSO 
algorithms failed to estimate the genetic parameters. The 
precise reason for this failure is unclear, but multicollinear-
ity of the oversaturated independent variables has contrib-
uted to this result. Overall, the Bin-REG method proposed 
in this study provides a direct approach to locate QTLs with 
main or epistatic effects in small chromosome bins. Our 
simulation studies suggest that this approach outperforms 
LASSO, PENAL, SSVS, and E-BAYES in terms of esti-
mating position and effects. Additional simulation studies 
also suggest that the statistical power of Bin-REG is very 
high for both main effects and epistatic effects (Table 2). 
Surprisingly, the statistical power is close to 100% for the  

Table 2  Simulated QTL positions and effects, and the estimated values from Library B 

Bins (i, j)a) True value h2 (%) Estimated bins Powerb) Estimated valuec) Standard error 

(3, 3) 1.8 17.9 (3, 3) 100 1.90 0.51 

(27, 27) 1.3 9.3 (27, 27) 100 1.30 0.13 

(39, 39) 1.5 12.4 (39, 39) 100 1.51 0.14 

(100, 100) 1.3 9.3 (100, 100) 100 1.29 0.15 

(3, 100) 2.3 10.1 (3, 100) 100 2.48 0.49 

(27, 50) 2.0 15.3 (27, 50) 99 2.00 0.21 

(66, 80) 1.6 5.6 (66, 80) 99 1.62 0.17 

a) When i=j, the QTL is a main effect; otherwise, it is an epistatic effect. b) The power was obtained from both the assumed bin pairs and a neighboring 
bin pair, rather than only from simulated bin pairs. c) The estimated effect is expressed as the weighted mean multiplied by the power and mean value of 
significant QTLs or QTL interaction.  
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bin pair (66, 80), with a heritability of about 5%. In conclu-
sion, accurate and precise estimates of QTL main effects 
and epistatic effects can be produced using the Bin-REG 
method with Library B (Table 2). 

The epistatic model could not be used to analyze the data 
from library A through the epistatic regression method. 
Some possible reasons for this failure include: (1) strong 
collinearity or multicollinearity of the independent variables; 
and (2) the small variation of each independent variable. 
Figure 1(a) illustrates these two possibilities clearly. The 
failure of these algorithms was reflected by a confused re-
sult. However, that does not mean this population is not 
suitable for mapping genes. Each line of library A consists 
of a series of lines harboring a single homozygous donor 
segment introgressed into a uniform genetic background. 
The genetic noise from the genomic background is well 
controlled. The benefit is that even a QTL with a small ef-
fect can be identified significantly. Furthermore, crosses 
between individual introgression lines, each bearing one of 
the interacting alleles, can be set up to investigate the extent 
of the interaction [24,41,42]. 

This work was supported by the National Basic Research Program of Chi-
na (2011CB100106), the National Natural Science Foundation of China 
(30971846 and 31171187), and the Vital Project of Natural Science of 
Universities in Jiangsu Province (09KJA210002) to C. Xu, the National 
Natural Science Foundation of China (31100882) to Z. Tang, and National 
Natural Science Foundation of China (31000539) to J. Xiao. 

1 Lander E S, Botstein D. Mapping mendelian factors underlying quan-
titative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199 

2 Salvi S, Tuberosa R. To clone or not to clone plant QTLs: Present 
and future challenges. Trends Plant Sci, 2005, 10: 297–304 

3 Flint J, Valdar W, Shifman S, et al. Strategies for mapping and clon-
ing quantitative trait genes in rodents. Nat Rev Genet, 2005, 6: 271– 
286 

4 Paran I, Zamir D. Quantitative traits in plants: Beyond the QTL. 
Trends Genet, 2003, 19: 303–316 

5 Eshed Y, Zamir D. An introgression line population of Lycopersicon 
pennellii in the cultivated tomato enables the identification and fine 
mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 

6 Doerge R W. Mapping and analysis of quantitative trait loci in ex-
perimental populations. Nat Rev Genet, 2002, 3: 43–52 

7 Cheverud J M. Detecting epistasis among quantitative trait loci. In: 
Wade M, Brodie B, Wolf J, eds. Epistasis and the Evolutionary Pro-
cess. New York: Oxford University Press, 2000. 58–81 

8 Malmberg R L, Held S, Waits A, et al. Epistasis for fitness-related 
quantitative traits in Arabidopsis thaliana grown in the field and in 
the greenhouse. Genetics, 2005, 171: 2013–2027 

9 Carlborg O, Haley C S. Epistasis: Too often neglected in complex 
trait studies? Nat Rev Genet, 2004, 5: 618–625 

10 Koumproglou R, Wilkes T M, Townson P, et al. STAIRS: A new 
genetic resource for functional genomic studies of Arabidopsis. Plant 
J, 2002, 31: 355–364 

11 Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population 
of chromosome single-segment substitution lines in the genetic back-
ground of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 
49: 476–484 

12 Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation 
of chromosome segment substitution lines carrying overlapping 
chromosome segments of indica rice cultivar kasalath in a genetic 

background of japonica elite cultivar koshihikari. Breed Sci, 2005, 55: 
65–73 

13 Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome seg-
ment substitution series derived from japonica and indica cross of 
rice (Oryza sativa L.). Breed Sci, 2002, 52: 319–325 

14 Doi K, Iwata N, Yoshimura A. The construction of chromosome sub-
stitution lines of African rice (Oryza glaberrima Steud.) in the back-
ground of Japonica rice (O. sativa L.). Rice Genet Newslett, 1997, 14: 
39–41 

15 Matus I, Corey A, Filichkin T, et al. Development and characteriza-
tion of recombinant chromosome substitution lines (RCSLs) using 
Hordeum vulgare subsp. spontaneum as a source of donor alleles in a 
Hordeum vulgare subsp. vulgare background. Genome, 2003, 46: 
1010–1023 

16 Jeuken M J, Lindhout P. The development of lettuce backcross inbred 
lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) 
germplasm. Theor Appl Genet, 2004, 109: 394–401 

17 Finkers R, van Heusden A W, Meijer-Dekens F, et al. The construc-
tion of a Solanum habrochaites LYC4 introgression line population 
and the identification of QTLs for resistance to Botrytis cinerea. 
Theor Appl Genet, 2007, 114: 1071–1080 

18 Matin A, Collin G B, Asada Y, et al. Susceptibility to testicular 
germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution 
strain. Nat Genet, 1999, 23: 237–240 

19 Singer J B, Hill A E, Burrage L C, et al. Genetic dissection of com-
plex traits with chromosome substitution strains of mice. Science, 
2004, 304: 445–448 

20 Zamir D. Improving plant breeding with exotic genetic libraries. Nat 
Rev Genet, 2001, 2: 983–989 

21 Rousseaux M C, Jones C M, Adams D, et al. QTL analysis of fruit 
antioxidants in tomato using Lycopersicon pennellii introgression 
lines. Theor Appl Genet, 2005, 111: 1396–1408 

22 Monforte A J, Tanksley S D. Fine mapping of a quantitative trait lo-
cus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit 
characteristics and agronomic traits: Breaking linkage among QTLs 
affecting different traits and dissection of heterosis for yield. Theor 
Appl Genet, 2000, 100: 471–479 

23 Frary A, Nesbitt T C, Grandillo S, et al. fw2.2: A quantitative trait 
locus key to the evolution of tomato fruit size. Science, 2000, 289: 
85–88 

24 Lin H X, Yamamoto T, Sasaki T, et al. Characterization and detection 
of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling 
heading date in rice using nearly isogenic lines. Theor Appl Genet, 
2000, 101: 1021–1028 

25 Peleman J D, van der Voort J R. Breeding by design. Trends Plant 
Sci, 2003, 8: 330–834 

26 Wan X Y, Wan J M, Su C C, et al. QTL detection for eating quality 
of cooked rice in a population of chromosome segment substitution 
lines. Theor Appl Genet, 2004, 110: 71–79 

27 Dunnett C W. A multiple comparison procedure for comparing sev-
eral treatments with a control. J Am Stat Assoc, 1955, 50: 1096–1121 

28 Fridman E, Liu Y S, Carmel-Goren L, et al. Two tightly linked QTLs 
modify tomato sugar content via different physiological pathways. 
Mol Genet Genomics, 2002, 266: 821–826 

29 Wang J, Wan X, Crossa J, et al. QTL mapping of grain length in rice 
(Oryza sativa L.) using chromosome segment substitution lines. 
Genet Res, 2006, 88: 93–104 

30 George E I, McCulloch R E. Variable selection via Gibbs sampling. J 
Am Stat Assoc, 1993, 88: 881–889 

31 Yi N, George V, Allison D B. Stochastic search variable selection for 
identifying multiple quantitative trait loci. Genetics, 2003, 164: 
1129–1138 

32 Tibshirani R. Regression shrinkage and selection via the lasso. J Roy 
Stat Soc Ser B, 1996, 58: 267–288 

33 Zhang Y M, Xu S. A penalized maximum likelihood method for es-
timating epistatic effects of QTL. Heredity, 2005, 95: 96–104 

34 Beasley T M, Wiener H, Zhang K, et al. Empirical bayes method for 
incorporating data from multiple genome scans. Hum Hered, 2005, 
60: 36–42 



2674 Tang Z X, et al.   Chin Sci Bull   July (2012) Vol.57 No.21 

35 Zhang K, Wiener H, Beasley M, et al. An empirical Bayes method 
for updating inferences in analysis of quantitative trait loci using in-
formation from related genome scans. Genetics, 2006, 173: 2283– 
2296 

36 Xu S. An empirical Bayes method for estimating epistatic effects of 
quantitative trait loci. Biometrics, 2007, 63: 513–521 

37 Xu S, Jia Z. Genomewide analysis of epistatic effects for quantitative 
traits in barley. Genetics, 2007, 175: 1955–1963 

38 Bekiroğlu N. Multiple t-tests or ANOVA (analysis of variance)? Turk 
Respir J, 2001, 2: 21–22 

39 Tang Z X, Xu C. A preliminary study of mapping genes underlying 
complex traits based on chromosome segment substitution lines. Mol 
Plant Breed, 2007, 5: 242–244 

40 He F, Xi Z, Zeng R, et al. Mapping of heading date qtls in rice (Ory-
za sativa L.) using single segment substitution lines. Sci Agricul Sin, 
2005, 38: 1505–1513 

41 Peleman J D, van der Voort J R. Breeding by design. Trends Plant 
Sci, 2003, 8: 330–334 

42 Eshed Y, Zamir D. Less than additive epistatic interactions of QTL in 
tomato. Genetics, 1996, 143: 1807–1817

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 


