214 research outputs found

    Travelling Wave Solution of Degenerate Coupled KdV Equations

    Get PDF
    Cataloged from PDF version of article.We give a detailed study of the traveling wave solutions of (l = 2) Kaup-Boussinesq type of coupled KdV equations. Depending upon the zeros of a fourth degree polynomial, we have cases where there exist no nontrivial real solutions, cases where asymptotically decaying to a constant solitary wave solutions, and cases where there are periodic solutions. All such possible solutions are given explicitly in the form of Jacobi elliptic functions. Graphs of some exact solutions in solitary wave and periodic shapes are exhibited. Extension of our study to the cases l = 3 and l = 4 are also mentioned. (C) 2014 AIP Publishing LLC

    miQC : An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data

    Get PDF
    Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used QC metrics to identify a 'low-quality' cell are (i) if the cell includes a high proportion of reads that map to mitochondrial DNA (mtDNA) encoded genes and (ii) if a small number of genes are detected. Current best practices use these QC metrics independently with either arbitrary, uniform thresholds (e.g. 5%) or biological context-dependent (e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner. Current practices are often overly stringent and especially untenable on certain types of tissues, such as archived tumor tissues, or tissues associated with mitochondrial function, such as kidney tissue [1]. We propose a data-driven QC metric (miQC) that jointly models both the proportion of reads mapping to mtDNA genes and the number of detected genes with mixture models in a probabilistic framework to predict the low-quality cells in a given dataset. We demonstrate how our QC metric easily adapts to different types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for downstream analyses. Our software package is available at https://bioconductor.org/packages/miQC. Author summary We developed the miQC package to predict the low-quality cells in a given scRNA-seq dataset by jointly modeling both the proportion of reads mapping to mitochondrial DNA (mtDNA) genes and the number of detected genes using mixture models in a probabilistic framework. We demonstrate how our QC metric easily adapts to different types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for downstream analyses.Peer reviewe

    Periodic revisions of the international choices criteria: Process and results

    Get PDF
    Unhealthy diets contribute to an increased risk of non-communicable diseases, which are the leading causes of deaths worldwide. Nutrition policies such as front-of-pack labeling have been developed and implemented globally in different countries to stimulate healthier diets. The Choices Programme, including the International Choices criteria, is an established tool to support the implementation of such policies. The Choices criteria were developed to define the healthier choices per product group, taking saturated fatty acids, trans fatty acids, sodium, sugars, energy, and fiber into account. To keep these criteria updated, they are periodically revised by an independent international scientific committee. This paper explains the most important changes resulting from revisions between 2010 and 2016 and describes the process of the latest revision, resulting in the International Choices criteria version 2019. Revisions were based on national and international nutrition and dietary recommendations, large food composition databases, and stakeholders’ feedback. Other nutrient profiling systems served as benchmarks. The product group classification was adapted and new criteria were determined in order to enhance global applicability and form a credible, intuitively logical system for users. These newly developed criteria will serve as an international standard for healthier products and provide a guiding framework for food and nutrition policies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.publishedVersio
    corecore