29 research outputs found

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    A Bioinspired Neural Network for Data Processing in an Electronic Nose

    No full text

    Two-dimensional Surface Raman Imaging of a Roughened Iron Electrode in Saline Water

    No full text
    本文利用具有表面增强活性的铁电极 ,对其在盐水中的点蚀过程进行现场拉曼光谱研究 .利用四氧化三铁的特征峰 ,对发生点蚀的铁电极表面进行拉曼成像 ,发现拉曼成像和普通显微镜下所观测到的图象有着显著的不同 ,点蚀抗内存在多种腐蚀产物 ,且其分布也不均匀 ,体现了拉曼成像技术具有化学的敏感性的独特优势 .The analysis of the composite and distribution of iron oxide due to pit corrosion in saline solutions (3.4% NaCl) is of great importance. Many electrochemical methods, XPS, and other photoelectronic techniques have been applied to this domain. Surface?enhanced Raman scattering (SERS) spectroscopy can provide the vibrational information of surface species with high sensitivity and is very useful in the study of surface chemistry of iron. Notwithstanding, the application of SERS in iron corrosion is hampered for its SERS?inactivity. Efforts have been devoted to extend the use of SERS to the study of iron. Approaches include the deposition of particles or layers of silver or gold on iron surface to obtain surface Raman spectra from species in the vicinity [1] . However the application of the substrate was limited to potential region in which the silver or gold is thermodynamically stable in the aqueous solution. Another method is to deposit thin films of iron onto surfaces of silver to obtain the enhanced Raman scattering of species through the electromagnetic long?range effect. But the analysis of the spectra is difficult due to the existence of pinhole. The most liable method would be to obtain the surface Raman spectra directly from the bare iron surfaces. By using proper roughening pretreatments and high?sensitivity confocal Raman system (LabRam I), Tian and coworkers now can obtain directly from bare iron electrode surface Raman spectra of some adsorbates [2] . This enables us to further study the surface chemical reaction of iron. This paper reports our preliminary results in the study of the distribution of surface species caused by pit corrosion of iron in a simulated saline solution. Fig. 1 represents the normal image of a roughened iron surface with an area of 100×100 μm 2 under white lamp. The electrode potential was held at -0.2 V (vs. SCE)in a saline solution during the measurement. The darker region (inserted box in Fig. 1) refers to the hole of pit corrosion. Raman spectra of surface species in this region have been acquired in two?dimension, a typical Raman spectrum is shown in Fig. 2. The results clearly show the complexity in composition of the corrosion products. The band at ca. 660 cm -1 was assigned to magnetite; the bands at 402 and 292 cm -1 may be accounted for the existence of Fe 2O 3. The Raman image of the same region at 660 cm -1 was displayed in Fig. 3. The scanning area was 30×30 μm 2. The brighter regions in the Raman image correspond to regions with higher Raman intensity. It can be found that the Raman intensity varies largely over the pit corrosion region, showing that the distribution of magnetite was not uniform.The success in obtaining surface Raman spectra and Raman image of the pit corrosion region on iron surface enable us to further study the corrosion mechanism. Obviously, the potential?dependent Raman images will inevitably provide more information. This work was still in progress.作者联系地址:苏州大学化学系!江苏苏州215000,厦门大学固体表面物理化学国家重点实验室!化学系,福建厦门361005,苏州大学化学系!江苏苏州215000,厦门大学固体表面物理化学国家重点实验室!化学系,福建厦门361005,苏州大学化学系!江苏苏州215000,厦门大学固体表面物理化学国家重点实验室!化学Author's Address: 1. Dept. of Chem., Suzhou Univ., Suzhou 215006, 2. State Key Lab. for Phys. Chem. of Solid Surfaces, Dept. of Chem., Xiamen Univ., Xiamen 361
    corecore