23 research outputs found

    A Simulation Study on the Effect of Cavity Shapes on the Penetration of Linear Shaped Charges with Curved Liners

    No full text
    The finite element models of curved-liner shaped charges penetrating aluminum-alloy thin plates were constructed with the ANSYS/LS-DYNA software to analyze the effect of cavity shapes on the charge penetration with curved liners. The cavity height, radius, and spatial dimensions were numerically simulated. Simulation results indicate that these properties are important factors in determining the penetration of curved-liner charges. The penetration depth exhibits an initial increase followed by a decrease with the fixed cavity radius. When the cavity height is fixed, the penetration depth decreases with the cavity radius. When the cavity is semicircular, the penetration depth first increases and then decreases with the cavity radius and height.Построены конечноэлементные модели кумулятивных зарядов со сложнопрофильной облицовкой, проникающих через тонкие пластины из алюминиевого сплава. Использовано программное обеспечение ANSYS/LS-DYNA для анализа влияния формы выемки на их проницаемость. Выполнены численные расчеты высоты, радиуса и пространственных размеров выемки. Показано, что эти характеристики являются важными факторами при определении проницаемости зарядов. Глубина проникновения увеличивается, а затем уменьшается с увеличением высоты выемки при постоянном радиусе. При фиксированной высоте глубина проникновения уменьшается с увеличением радиуса. При полуокружной выемке глубина проникновения увеличивается, затем уменьшается с увеличением ее радиуса и высоты

    Formation of CdS nanoparticles in mixed cationic-anionic surfactant vesicle system

    No full text
    Materials Chemistry and Physics49187-92MCHP

    Response enhancement of olfactory sensory neurons-based biosensors for odorant detection*

    No full text
    This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET)

    Search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe

    No full text
    We search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe in a sample of 4.5fb−1 of e+e− annihilation data collected in the center-of-mass energy region between 4.600GeV and 4.699GeV by the BESIII detector at the BEPCII. No significant signals are observed, and the upper limits on the decay branching fractions are set to be B(Λc+→Λπ+π−e+νe)<3.9×10−4 and B(Λc+→pKS0π−e+νe)<3.3×10−4 at the 90% confidence level, respectively

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade
    corecore