14 research outputs found

    Transcriptional Activator YesS Is Stimulated by Histidine-phosphorylated HPr of the Bacillus subtilis Phosphotransferase System*

    No full text
    In low GC content Gram-positive bacteria, the HPr protein is the master regulator of carbon metabolism. HPr is a key component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system that interacts with and/or phosphorylates proteins relevant to carbon catabolite repression. HPr can be phosphorylated by two distinct kinases as follows: the bifunctional enzyme HPr kinase/Ser(P)-HPr phosphorylase (HprK/P) phosphorylating the serine 46 residue (Ser(P)-HPr) and acting as a phosphorylase on Ser(P)-HPr; and the PEP-requiring enzyme I (EI) generating histidine 15-phosphorylated HPr (His(P)-HPr). The various HPr forms interact with numerous enzymes and modulate their activity. By carrying out a genome-wide yeast two-hybrid screen of a Bacillus subtilis library, we identified a novel HPr-interacting protein, the transcriptional activator YesS, which regulates the expression of pectin/rhamnogalacturonan utilization genes. Remarkably, yeast tri-hybrid assays involving the ATP-dependent HprK/P and the PEP-dependent EI suggested that YesS interacts with HPr and His(P)-HPr but not with Ser(P)-HPr. These findings were confirmed by in vitro interaction assays using the purified HPr-binding domain of the YesS protein. Furthermore, pectin utilization and in vivo YesS-mediated transcriptional activation depended upon the presence of His(P)-HPr, indicating that HPr-mediated YesS regulation serves as a novel type of carbon catabolite repression. In the yeast two-hybrid assays, B. subtilis HprK/P and EI were active and specifically recognized their substrates. Both kinases formed long lived complexes only with the corresponding nonphosphorylatable mutant HPr. These findings suggest that two-hybrid assays can be used for the identification of unknown kinases of phosphorylated bacterial proteins detected in phosphoproteome analyses

    Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone

    No full text
    Patients with glioblastoma (GBM) exhibit profound systemic immune defects that affect the success of conventional and immune-based treatments. A better understanding of the contribution of the tumor and/or therapy on systemic immune suppression is necessary for improved therapies, to monitor negative effects of novel treatments, to improve patient outcomes, and to increase understanding of this complex system. To characterize the immune profile of GBM patients, we phenotyped peripheral blood and compared these to normal donors. In doing so, we identified changes in systemic immunity associated with both the tumor and dexamethasone treated tumor bearing patients. In particular, dexamethasone exacerbated tumor associated lymphopenia primarily in the T cell compartment. We have also identified unique tumor and dexamethasone dependent altered monocyte phenotypes. The major population of altered monocytes (CD14+HLA-DRlo/neg) had a phenotype distinct from classical myeloid suppressor cells. These cells inhibited T cell proliferation, were unable to fully differentiate into mature dendritic cells, were associated with dexamethasone-mediated changes in CCL2 levels, and could be re-created in vitro using tumor supernatants. We provide evidence that tumors express high levels of CCL2, can contain high numbers of CD14+ cells, that tumor supernatants can transform CD14+HLA-DR+ cells into CD14+HLA-DRlo/neg immune suppressors, and that dexamethasone reduces CCL2 in vitro and is correlated with reduction of CCL2 in vivo. Consequently, we have developed a model for tumor mediated systemic immune suppression via recruitment and transformation of CD14+ cells

    The Power of Community Action: AntiiPayday Loan Ordinances in Three Metropolitan Areas

    No full text
    corecore