62 research outputs found

    Analysing Habitat Connectivity and Home Ranges of Bigmouth Buffalo and Channel Catfish Using a Large-Scale Acoustic Receiver Network

    Get PDF
    The determination if fish movement of potadromous species is impeded in a river system is often difficult, particularly when timing and extent of movements are unknown. Furthermore, evaluating river connectivity poses additional challenges. Here, we used large-scale, long-term fish movement to study and identify anthropogenic barriers to movements in the Lake Winnipeg basin including the Red, Winnipeg, and Assiniboine rivers. In the frame of the project, 80 Bigmouth Buffalo (Ictiobus cyprinellus) and 161 Channel Catfish (Ictalurus punctatus) were tagged with acoustic transmitters. Individual fish were detected with an acoustic telemetry network. Movements were subsequently analyzed using a continuous-time Markov model (CTMM). The study demonstrated large home ranges in the Lake Winnipeg basin and evidence of frequent transborder movements between Canada and the United States. The study also highlighted successful downstream fish passage at some barriers, whereas some barriers limited or completely blocked upstream movement. This biological knowledge on fish movements in the Lake Winnipeg basin highlights the need for fish passage solutions at different obstructions

    Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    Get PDF
    1. Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g. at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design. 2. We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement and habitat use. Performance of variably spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle SD: 5–30°); (2) variable tag transmission intervals along each track (nominal delay: 15–300 s); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1,500 m). From simulations, we quantified (i) time between successive detections on any receiver (detection time), (ii) time between successive detections on different receivers (transit time), and (iii) distance between successive detections on different receivers (transit distance). 3. In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km, 5.7 days at 7 km and 15.2 days at 25 km grid spacing; for the 1,500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted. 4. By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids

    Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    Get PDF
    1. Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g. at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design. 2. We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement and habitat use. Performance of variably spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle SD: 5–30°); (2) variable tag transmission intervals along each track (nominal delay: 15–300 s); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1,500 m). From simulations, we quantified (i) time between successive detections on any receiver (detection time), (ii) time between successive detections on different receivers (transit time), and (iii) distance between successive detections on different receivers (transit distance). 3. In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km, 5.7 days at 7 km and 15.2 days at 25 km grid spacing; for the 1,500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted. 4. By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids

    In Silico and In Vitro Investigations of the Mutability of Disease-Causing Missense Mutation Sites in Spermine Synthase

    Get PDF
    Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable.To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement.The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    AIAA 95-6093 Low-Speed Wind Tunnel Tests of Two Waverider Configuration Models

    No full text
    A definitive measurement of the low-speed flight characteristics of waverider-based aircraft is required to augment the overall design database for this important class of vehicles which have great potential for efficient high-speed flight. Two separate waverider-derived vehicles were tested; one in the 14- by 22-Foot Tunnel and the other in the 12-Foot Low-Speed Tunnel at Langley Research Center. These tests provided measurements of moments and forces about all three axes, control effectiveness, flow field characteristics and the effects of configuration changes. This paper will summarize the results of these tunnel tests and show the subsonic aerodynamic characteristics of the two configurations. Introduction Technologies related to high speed flight (the Mach 4 to 6 speed range) have matured in the last ten years to a level where serious consideration of a vehicle incorporating these technologies is warranted. A high speed vehicle could perform missions such as: cruise missile carri..

    Analysing Habitat Connectivity and Home Ranges of Bigmouth Buffalo and Channel Catfish Using a Large-Scale Acoustic Receiver Network

    Get PDF
    The determination if fish movement of potadromous species is impeded in a river system is often difficult, particularly when timing and extent of movements are unknown. Furthermore, evaluating river connectivity poses additional challenges. Here, we used large-scale, long-term fish movement to study and identify anthropogenic barriers to movements in the Lake Winnipeg basin including the Red, Winnipeg, and Assiniboine rivers. In the frame of the project, 80 Bigmouth Buffalo (Ictiobus cyprinellus) and 161 Channel Catfish (Ictalurus punctatus) were tagged with acoustic transmitters. Individual fish were detected with an acoustic telemetry network. Movements were subsequently analyzed using a continuous-time Markov model (CTMM). The study demonstrated large home ranges in the Lake Winnipeg basin and evidence of frequent transborder movements between Canada and the United States. The study also highlighted successful downstream fish passage at some barriers, whereas some barriers limited or completely blocked upstream movement. This biological knowledge on fish movements in the Lake Winnipeg basin highlights the need for fish passage solutions at different obstructions

    Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    Get PDF
    1. Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g. at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design. 2. We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement and habitat use. Performance of variably spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle SD: 5–30°); (2) variable tag transmission intervals along each track (nominal delay: 15–300 s); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1,500 m). From simulations, we quantified (i) time between successive detections on any receiver (detection time), (ii) time between successive detections on different receivers (transit time), and (iii) distance between successive detections on different receivers (transit distance). 3. In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km, 5.7 days at 7 km and 15.2 days at 25 km grid spacing; for the 1,500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted. 4. By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids
    corecore