177 research outputs found

    Frequency estimation of disease-causing mutations in the Belgian population of some dog breeds, part 1 : shepherds

    Get PDF
    In light of improving breeding advice, the frequency was estimated for all the disease-causing mutations that were known at the start of the study and that are potentially relevant for a group of dog breeds, which are relatively popular or in which the genetic diversity in Belgium is low to moderately low. In this study, the results for the German shepherd dog, Malinois, Lakenois, Groenendael, Tervuren, Australian shepherd and Border collie are presented. Disorders with a frequency high enough to warrant routine genotyping for breeding programs are (1) multidrug resistance 1 and hereditary cataract for the Australian shepherd, (2) degenerative myelopathy for the German shepherd dog, Malinois and Groenendael and (3) collie eye anomaly for the Border collie. In addition, the hyperuricosuria mutation described in the German shepherd dog was not found in its Belgian population, but was, to the authors' knowledge discovered for the first time in the Malinois

    Frequency estimation of disease-causing mutations in the Belgian population of some dog breeds, part 2 : retrievers and other breed types

    Get PDF
    A Belgian population of ten breeds with a low to moderately low genetic diversity or which are relatively popular in Belgium, i.e. Bichon frise, Bloodhound, Bouvier des Flandres, Boxer, Cavalier King Charles spaniel, Irish setter, Papillon, Rottweiler, Golden retriever and Labrador retriever, was genotyped for all potentially relevant disease-causing variants known at the start of the study. In this way, the frequency was estimated for 26 variants in order to improve breeding advice. Disorders with a frequency high enough to recommend routine genotyping in breeding programs are (1) degenerative myelopathy for the Bloodhound, (2) arrhythmogenic right ventricular cardiomyopathy and degenerative myelopathy for Boxers, (3) episodic falling syndrome and macrothrombocytopenia for the Cavalier King Charles spaniel, (4) progressive retinal atrophy rod cone dysplasia 4 for the Irish setter (5) Golden retriever progressive retinal atrophy 1 for the Golden retriever and (6) exercise induced collapse and progressive rod-cone degeneration for the Labrador retriever. To the authors' knowledge, in this study, the presence of a causal mutation for a short tail in the Bouvier des Flandres is described for the first time

    Spatial modulation of dark versus bright stimulus responses in the mouse visual system

    Get PDF
    A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1–4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems

    ENU Mutagenesis Identifies Mice with Morbid Obesity and Severe Hyperinsulinemia Caused by a Novel Mutation in Leptin

    Get PDF
    BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU) mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E) mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E) mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E) mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse model for the study of human obesity syndrome

    Phocid Seal Leptin: Tertiary Structure and Hydrophobic Receptor Binding Site Preservation during Distinct Leptin Gene Evolution

    Get PDF
    The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus

    Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress

    Get PDF
    BACKGROUND: Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase alpha and beta subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. CONCLUSIONS/SIGNIFICANCE: Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin

    Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development

    Get PDF
    Purpose: Disorders or differences of sex development (DSDs) are rare congenital conditions characterized by atypical sex development. Despite advances in genomic technologies, the molecular cause remains unknown in 50% of cases. Methods: Homozygosity mapping and whole-exome sequencing revealed an ESR2 variant in an individual with syndromic 46, XY DSD. Additional cases with 46, XY DSD underwent whole-exome sequencing and targeted next-generation sequencing of ESR2. Functional characterization of the identified variants included luciferase assays and protein structure analysis. Gonadal ESR2 expression was assessed in human embryonic data sets and immunostaining of estrogen receptor-beta (ER-beta) was performed in an 8-week-old human male embryo. Results: We identified a homozygous ESR2 variant, c.541_543del p. (Asn181del), located in the highly conserved DNA-binding domain of ER-beta, in an individual with syndromic 46, XY DSD. Two additional heterozygous missense variants, c.251G>T p.(Gly84Val) and c.1277T>G p.(Leu426Arg), located in the N-terminus and the ligand-binding domain of ER-beta, were found in unrelated, nonsyndromic 46, XY DSD cases. Significantly increased transcriptional activation and an impact on protein conformation were shown for the p.(Asn181del) and p.(Leu426Arg) variants. Testicular ESR2 expression was previously documented and ER-beta immunostaining was positive in the developing intestine and eyes. Conclusion: Our study supports a role for ESR2 as a novel candidate gene for 46, XY DSD
    • …
    corecore