2,174 research outputs found
Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia
The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu)
Assessing the Relationship between Probability of Default and Loss Given Default in an Agricultural Loan Portfolio
Agricultural Finance,
Vibrational signatures for low-energy intermediate-sized Si clusters
We report low-energy locally stable structures for the clusters Si20 and Si21. The structures were obtained by performing geometry optimizations within the local density approximation. Our calculated binding energies for these clusters are larger than any previously reported for this size regime. To aid in the experimental identification of the structures, we have computed the full vibrational spectra of the clusters, along with the Raman and IR activities of the various modes using a recently developed first-principles technique. These represent, to our knowledge, the first calculations of Raman and IR spectra for Si clusters of this size
First-principle density-functional calculation of the Raman spectra of BEDT-TTF
We present a first-principles density-functional calculation for the Raman
spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement
with experimental results. We show that a planar structure is not a stable
state of a neutral BEDT-TTF molecule. We consider three possible conformations
and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200
DFT calculation of the intermolecular exchange interaction in the magnetic Mn dimer
The dimeric form of the single-molecule magnet
[MnOCl(OCEt)(py)] recently revealed interesting
phenomena: no quantum tunneling at zero field and tunneling before magnetic
field reversal. This is attributed to substantial antiferromagnetic exchange
interaction between different monomers. The intermolecular exchange
interaction, electronic structure and magnetic properties of this molecular
magnet are calculated using density-functional theory within
generalized-gradient approximation. Calculations are in good agreement with
experiment.Comment: 4 page
Reconceptualizing human rights attitudes: understanding outcomes and determinants
Collective Behavior & Social Movements section of the American Sociological Association, the Development Sociology section of the American Sociological Association, the Human Rights section of the American Sociological Association, the RC02 (Economy and Society) of the International Sociological Association and the School of Social & Political Sciences of the University of Sydney
The Hamiltonian of the V Spin System from first-principles Density-Functional Calculations
We report first-principles all-electron density-functional based studies of
the electronic structure, magnetic ordering and anisotropy for the V
molecular magnet. From these calculations, we determine a Heisenberg
Hamiltonian with four antiferromagnetic and one {\em ferromagnetic} coupling.
We perform direct diagonalization to determine the temperature dependence of
the susceptibility. This Hamiltonian reproduces the experimentally observed
spin =1/2 ground state and low-lying =3/2 excited state. A small
anisotropy term is necessary to account for the temperature independent part of
the magnetization curve.Comment: 4 pages in RevTeX format + 2 ps-figures, accepted by PRL Feb. 2001
(previous version was an older version of the paper
Coupling to haloform molecules in intercalated C60?
For field-effect-doped fullerenes it was reported that the superconducting
transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br)
crystals, than for pure C60. Initially this was explained by the expansion of
the volume per C60-molecule and the corresponding increase in the density of
states at the Fermi level in the intercalated crystals. On closer examination
it has, however, turned out to be unlikely that this is the mechanism behind
the increase in Tc. An alternative explanation of the enhanced transition
temperatures assumes that the conduction electrons not only couple to the
vibrational modes of the C60-molecule, but also to the modes of the
intercalated molecules. We investigate the possibility of such a coupling. We
find that, assuming the ideal bulk structure of the intercalated crystal, both
a coupling due to hybridization of the molecular levels, and a coupling via
dipole moments should be very small. This suggests that the presence of the
gate-oxide in the field-effect-devices strongly affects the structure of the
fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication
Density-functional-based predictions of Raman and IR spectra for small Si clusters
We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems
Coulomb parameters and photoemission for the molecular metal TTF-TCNQ
We employ density-functional theory to calculate realistic parameters for an
extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra-
and intermolecular screening in the crystal, we find significant longer-range
Coulomb interactions along the molecular stacks, as well as inter-stack
coupling. We show that the long-range Coulomb term of the extended Hubbard
model leads to a broadening of the spectral density, likely resolving the
problems with the interpretation of photoemission experiments using a simple
Hubbard model only.Comment: 4 pages, 2 figure
- …