29 research outputs found

    Association of CSF Glucocerebrosidase Activity With the Risk of Incident Dementia in Patients With Parkinson Disease

    Get PDF
    Background and Objectives Variations in the glucocerebrosidase gene (GBA) are common risk factors for Parkinson disease (PD) and dementia in PD (PDD) and cause a reduction in the activity of the lysosomal enzyme glucocerebrosidase (GCase). It is anticipated that GCase dysfunction might contribute to a more malignant disease course and predict cognitive impairment in PD, although evidence is lacking. We aimed to discover whether CSF GCase activity is altered in newly diagnosed patients with PD and associated with future development of dementia. Methods Patients with PD were participants of the ongoing population-based longitudinal ParkWest study in Southwestern Norway and were followed prospectively for up to 10 years. CSF was collected at diagnosis, and GBA carrier status was obtained. Control samples were from persons without neurodegenerative disorders. GCase activity was measured using a validated assay. PD dementia diagnosis was set according to the Movement Disorder Society criteria, and parametric accelerated failure time models were applied to analyze the association of GCase activity with dementia-free survival. Results This study enrolled 117 patients with PD (mean age 67.2 years, including 12 GBA non‐synonymous variant carriers) and 50 control participants (mean age 64 years). At the time of diagnosis, GCase activity was reduced in patients with PD with (mean ± SD, 0.92 ± 0.40 mU/mg, n = 12) or without GBA variations (1.00 ± 0.37 mU/mg, n = 105) compared with controls (1.20 ± 0.35, n = 50). GCase activity at the time of diagnosis was lower in patients with PD who developed dementia within 10 years (0.85 ± 0.27 mU/mg, n = 41) than in those who did not (1.07 ± 0.40 mU/mg, n = 76, p = 0.001). A 0.1-unit reduction in baseline GCase activity was associated with a faster development of PDD (hazard ratio 1.15, 95% CI 1.03–1.28, p = 0.014). Discussion The association of early CSF GCase activity with long-term progression to PD dementia will have important implications for the design of clinical trials for GCase targeting therapies and patient management. Classification of Evidence This study provides Class III evidence that reduced CSF GCase activity at the time of PD diagnosis is associated with an increased risk for later development of PDD.publishedVersio

    Inflammatory biomarkers in newly diagnosed patients with Parkinson’s disease and related neurodegenerative disorders

    Get PDF
    Background and Objectives Neuroinflammation contributes to Parkinson disease (PD) pathology, and inflammatory biomarkers may aid in PD diagnosis. Proximity extension assay (PEA) technology is a promising method for multiplex analysis of inflammatory markers. Neuroinflammation also plays a role in related neurodegenerative diseases, such as dementia with Lewy bodies (DLB) and Alzheimer disease (AD). The aim of this work was to assess the value of inflammatory biomarkers in newly diagnosed patients with PD and in patients with DLB and AD. Methods Patients from the Norwegian ParkWest and Dementia Study of Western Norway longitudinal cohorts (PD, n = 120; DLB, n = 15; AD, n = 27) and 44 normal controls were included in this study. A PEA inflammation panel of 92 biomarkers was measured in the CSF. Disease-associated biomarkers were identified using elastic net (EN) analysis. We assessed the discriminatory power of disease-associated biomarkers using receiver operating characteristic (ROC) curve analysis and estimated the optimism-adjusted area under the curve (AUC) using the bootstrapping method. Results EN analysis identified 9 PEA inflammatory biomarkers (ADA, CCL23, CD5, CD8A, CDCP1, FGF-19, IL-18R1, IL-6, and MCP-2) associated with PD. Seven of the 9 biomarkers were included in a diagnostic panel, which was able to discriminate between those with PD and controls (optimism-adjusted AUC 0.82). Our 7-biomarker PD panel was also able to distinguish PD from DLB and from AD. In addition, 4 inflammatory biomarkers were associated with AD and included in a panel, which could distinguish those with AD from controls (optimism-adjusted AUC 0.87). Our 4-biomarker AD panel was also able to distinguish AD from DLB and from PD. Discussion In our exploratory study, we identified a 7-biomarker panel for PD and a 4-biomarker panel for AD. Our findings indicate potential inflammation-related biomarker candidates that could contribute toward PD-specific and AD-specific diagnostic panels, which should be further explored in other larger cohorts.publishedVersio

    Tele-Operated Lunar Rover Navigation Using Lidar

    Get PDF
    Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors

    Temporal Changes in Extracellular Vesicle Hemostatic Protein Composition Predict Favourable Left Ventricular Remodeling after Acute Myocardial Infarction

    Get PDF
    The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plasminogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling. Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ratios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T (AUC = 0.389) (p \u3c 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling

    GBA and APOE Impact Cognitive Decline in Parkinson's Disease : A 10-Year Population-Based Study

    Get PDF
    Acknowledgments: We would like to thank all participants, study personnel from each study, and funders of individual studies and of PICC. We would like to thank Artur Wozniak and Adrian Martin from the University of Aberdeen, Data Management Department, for help in developing the PICC database. We acknowledge the contributions of members of the individual study groups as detailed below. Members of PICC Steering Group: Dr. Angus D. Macleod, Dr. Carl E. Counsell (Chair), University of Aberdeen, UK; Prof. Ole-Bjørn Tysnes, University of Bergen, Norway; Marta Camacho, Dr. Caroline WilliamsGray, University of Cambridge, UK; Dr. Rachael A. Lawson, Newcastle University, UK; Dr. Jodi Maple-Grødem, Prof. Guido Alves, Stavanger University Hospital, Norway; Prof. Lars Forgren, Umeå University, Sweden. CamPaIGN study: Roger A. Barker, Thomas Foltynie, Sarah L. Mason, Caroline H. Williams-Gray. ICICLE-PD Study: David Burn, Lynn Rochester, Alison J. Yarnall, Rachael A. Lawson, Gordon W. Duncan, Tien K. Khoo. NYPUM Study: Lars Forsgren, Jan Linder, Mona Edström, Jörgen Andersson, Linda Eriksson, David Bäckström, Gun-Marie Hariz, Magdalena Domellöf. ParkWest Study: ParkWest Principal investigators: Guido Alves (Norwegian Centre for Movement Disorders, Stavanger University Hospital) and Ole-Bjørn Tysnes (Haukeland University Hospital). Study personnel: Michaela Dreetz Gjerstad, Kenn Freddy Pedersen, Elin Bjelland Forsaa, Veslemøy Hamre Frantzen, Anita Laugaland, Jodi MapleGrødem, Johannes Lange, Karen Simonsen, Eldbjørg Fiske and Ingvild Dalen (Stavanger University Hospital); Bernd Müller, Geir Olve Skeie and Marit Renså (Haukeland University Hospital); Wenche Telstad, Aliaksei Labusau and Jane Kastet (Førde Hospital); Ineke HogenEsch, Marianne Kjerandsen and Liv Kari Håland (Haugesund Hospital); Karen Herlofson, Solgunn Ongre, and Siri Bruun (Sørlandet Hospital Arendal). PICNICS study: Roger A. Barker, Marta Camacho, Gemma Cummins, Jonathan R. Evans, David P. Breen, Ruwani S. Wijeyekoon, Caroline H. Williams-Gray. PINE Study: Medical: Carl E. Counsell, Kate S. M. Taylor, Robert Caslake, Angus D. Macleod, David J. M. McGhee, Diane Swallow; Research nurse/assistant: Joanne Gordon, Clare Harris, Ann Hayman, Nicola Johannesson, Hazel Forbes; Data management: Valerie Angus, Alasdair Finlayson, David Dawson, Katie Wilde, David Ritchie, Artur Wozniak; Statisticians: Neil Scott, Shona Fielding; Radiology: Prof. Alison Murray; Pathology: Ishbel Gall, Dr. James MacKenzie, Prof. Colin Smith; Secretarial: Aileen Sylvester, Susan Mitchell, Pam Rebecca, Ann Christie, and Diane McCosh. Funding agencies: This work was supported by the Research Council of Norway (287842). The CamPaIGN study has received funding from the Wellcome Trust, the Medical Research Council, the Patrick Berthoud Trust, and the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The ICICLE-PD study was funded by Parkinson’s UK (J-0802, G-1301, G-1507) and supported by the Lockhart Parkinson’s Disease Research Fund, National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit and Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The NYPUM study was supported by grants from the Swedish Medical Research Council, Erling-Persson Foundation, the Swedish Brain Foundation (Hjärnfonden), Umeå University, Västerbotten County Council, King Gustaf V and Queen Victoria Freemason Foundation, Swedish Parkinson Foundation, Swedish Parkinson Research Foundation, Kempe Foundation, Swedish PD Association, the European Research Council, and the Knut and Alice Wallenberg Foundation. The Norwegian ParkWest study has received funding from the Research Council of Norway (177966), the Western Norway Regional Health Authority (911218), the Norwegian Parkinson’s Research Foundation, and Rebergs Legacy. The PICNICS study was funded by the Cure Parkinson’s Trust, the Van Geest Foundation, the Medical Research Council, Parkinson’s UK, and the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The PINE study was funded by Parkinson’s UK (grant numbers G0502, G0914, and G1302), the Scottish Chief Scientist Office (CAF/12/05, PCL/17/10), Academy of Medical Sciences, NHS Grampian endowments, the BMA Doris Hillier award, RS Macdonald Trust, the BUPA Foundation, and SPRING. The PICC collaboration has been supported by The Chief Scientist Office of the Scottish Government (PCL/17/10), the Academy of Medical Sciences, Parkinson’s UK (initial collaborator meeting) and the Norwegian Association for Public Health. C.R.S.’s work was supported by NIH grants NINDS/NIA R01NS115144, U01NS095736, U01NS100603, and the American Parkinson Disease Association Center for Advanced Parkinson Research. This research was funded in whole, or in part by the UKRI Medical Research Council [MR/R007446/1]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson's disease

    Get PDF
    There is great heterogeneity in both the clinical presentation and rate of disease progression among patients with Parkinson’s disease (PD). This can pose prognostic difficulties in a clinical setting, and a greater understanding of the risk factors that contribute to modify disease course is of clear importance for optimizing patient care and clinical trial design. Genetic variants in SNCA are an established risk factor for PD and are candidates to modify disease presentation and progression. This systematic review aimed to summarize all available primary research reporting the association of SNCA polymorphisms with features of PD. We systematically searched PubMed and Web of Science, from inception to 1 June 2020, for studies evaluating the association of common SNCA variants with age at onset (AAO) or any clinical feature attributed to PD in patients with idiopathic PD. Fifty-eight studies were included in the review that investigated the association between SNCA polymorphisms and a broad range of outcomes, including motor and cognitive impairment, sleep disorders, mental health, hyposmia, or AAO. The most reproducible findings were with the REP1 polymorphism or rs356219 and an earlier AAO, but no clear associations were identified with an SNCA polymorphism and any individual clinical outcome. The results of this comprehensive summary suggest that, while there is evidence that genetic variance in the SNCA region may have a small impact on clinical outcomes in PD, the mechanisms underlying the association of SNCA polymorphisms with PD risk may not be a major factor driving clinical heterogeneity in PD.publishedVersio

    Association of SNCA Parkinson's Disease Risk Polymorphisms With Disease Progression in Newly Diagnosed Patients

    Get PDF
    Objectives: To evaluate the impact of SNCA polymorphisms originally identified as risk factors for Parkinson's disease (PD) on the clinical presentation and progression of the disease in a large cohort of population-based patients with incident PD. Methods: Four hundred thirty-three patients and 417 controls from three longitudinal cohorts were included in the study. Disease progression was recorded annually for up to 9 years using the Unified Parkinson's Disease Rating Scale (UPDRS) or Mini-Mental State Examination. Genotypes for five variants within the SNCA locus (rs2870004, rs356182, rs5019538, rs356219, and rs763443) were determined. We studied the association between each variant and disease progression using linear mixed-effects regression models. Results: The clinical profile of the patients with PD at the point of diagnosis was highly uniform between genotype groups. The rs356219-GG genotype was associated with a higher UPDRS II score than A-allele carriers (β = 1.52; 95% confidence interval 0.10–2.95; p = 0.036), but no differences were observed in the rate of progression of the UPDRS II scores. rs356219-GG was also associated with a faster annual change in Mini-Mental State Examination score compared with A-carriers (β = 0.03; 95% confidence interval 0.00–0.06; p = 0.043). Conclusions: We show that the known PD-risk variant rs356219 has a minor effect on modifying disease progression, whereas no differences were associated with rs2870004, rs356182, rs5019538, and rs763443. These findings suggest that SNCA variants associated with PD risk may not be major driving factors to the clinical heterogeneity observed for PD.publishedVersio

    Identification of diagnostic and prognostic biomarkers of PD using a multiplex proteomics approach

    Get PDF
    Given the complexity of Parkinson's disease (PD), achieving acceptable diagnostic and prognostic accuracy will require the support of a panel of diverse biomarkers. We used Proximity extension assays to measure a panel of 92 proteins in CSF of 120 newly diagnosed PD patients and 45 control subjects without neurological disease. From 75 proteins detectable in the CSF of >90% of the subjects, regularized regression analysis identified four proteins (β-NGF, CD38, tau and NCAN) as downregulated in newly diagnosed PD patients (age at diagnosis 67.2 ± 9.4 years) compared to controls (age 65.4 ± 10.9 years). Higher tau (β −0.82 transformed MMSE points/year, 95% CI −1.37 to −0.27, P = 0.005) was also linked to faster cognitive decline over the first ten years after PD diagnosis. These findings provide insights into multiple aspects of PD pathophysiology and may serve as the foundation for identifying new biomarkers and therapeutic targets

    Dopaminergic and Opioid Pathways Associated with Impulse Control Disorders in Parkinson’s Disease

    No full text
    IntroductionImpulse control disorders (ICDs) are frequent non-motor symptoms in Parkinson’s disease (PD), with potential negative effects on the quality of life and social functioning. ICDs are closely associated with dopaminergic therapy, and genetic polymorphisms in several neurotransmitter pathways may increase the risk of addictive behaviors in PD. However, clinical differentiation between patients at risk and patients without risk of ICDs is still troublesome. The aim of this study was to investigate if genetic polymorphisms across several neurotransmitter pathways were associated with ICD status in patients with PD.MethodsWhole-exome sequencing data were available for 119 eligible PD patients from the Norwegian ParkWest study. All participants underwent comprehensive neurological, neuropsychiatric, and neuropsychological assessments. ICDs were assessed using the self-report short form version of the Questionnaire for Impulsive-Compulsive Disorders in PD. Single-nucleotide polymorphisms (SNPs) from 17 genes were subjected to regression with elastic net penalization to identify candidate variants associated with ICDs. The area under the curve of receiver-operating characteristic curves was used to evaluate the level of ICD prediction.ResultsAmong the 119 patients with PD included in the analysis, 29% met the criteria for ICD and 63% were using dopamine agonists (DAs). Eleven SNPs were associated with ICDs, and the four SNPs with the most robust performance significantly increased ICD predictability (AUC = 0.81, 95% CI 0.73–0.90) compared to clinical data alone (DA use and age; AUC = 0.65, 95% CI 0.59–0.78). The strongest predictive factors were rs5326 in DRD1, which was associated with increased odds of ICDs, and rs702764 in OPRK1, which was associated with decreased odds of ICDs.ConclusionUsing an advanced statistical approach, we identified SNPs in nine genes, including a novel polymorphism in DRD1, with potential application for the identification of PD patients at risk for ICDs

    A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson's disease

    No full text
    There is great heterogeneity in both the clinical presentation and rate of disease progression among patients with Parkinson’s disease (PD). This can pose prognostic difficulties in a clinical setting, and a greater understanding of the risk factors that contribute to modify disease course is of clear importance for optimizing patient care and clinical trial design. Genetic variants in SNCA are an established risk factor for PD and are candidates to modify disease presentation and progression. This systematic review aimed to summarize all available primary research reporting the association of SNCA polymorphisms with features of PD. We systematically searched PubMed and Web of Science, from inception to 1 June 2020, for studies evaluating the association of common SNCA variants with age at onset (AAO) or any clinical feature attributed to PD in patients with idiopathic PD. Fifty-eight studies were included in the review that investigated the association between SNCA polymorphisms and a broad range of outcomes, including motor and cognitive impairment, sleep disorders, mental health, hyposmia, or AAO. The most reproducible findings were with the REP1 polymorphism or rs356219 and an earlier AAO, but no clear associations were identified with an SNCA polymorphism and any individual clinical outcome. The results of this comprehensive summary suggest that, while there is evidence that genetic variance in the SNCA region may have a small impact on clinical outcomes in PD, the mechanisms underlying the association of SNCA polymorphisms with PD risk may not be a major factor driving clinical heterogeneity in PD
    corecore