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Abstract: The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipopro-
tein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the
association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarc-
tion (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations
of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted
from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI
from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV
remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month
period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used
to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein
levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse
versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased
whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plas-
minogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling.
Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but
lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen
at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ra-
tios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly
better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T
(AUC = 0.389) (p < 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios
of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma
biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to
uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling.

Keywords: extracellular vesicles; coagulation; fibrinolysis; acute myocardial infarction; ventricular
remodeling; heart failure
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1. Introduction

Advances in revascularization and adjunctive pharmacotherapies have reduced the
mortality from acute myocardial infarction (AMI) over recent decades. However, heart fail-
ure (HF) secondary to post-AMI adverse (or maladaptive) left ventricular (LV) remodeling
remains a leading cause of morbidity and mortality worldwide [1]. The macroscopic mani-
festations of post-AMI adverse LV remodeling are characterized by gradual geometrical
changes including peri-infarct and more remote wall thinning, increased ventricular vol-
umes and mass, conversion from an ovoid to a more spherical architecture and consequent
deterioration in function. Activation of inflammatory and coagulant pathways, cardiac
fibrosis and microvascular obstruction promote adverse LV remodeling [2,3]. Conversely,
reduction in LV volumes, defined as “reverse” LV remodeling, occurs in a proportion
of post-infarct cases and is associated with improved cardiac function which, alongside
pharmacotherapy targeting neurohormonal pathways, results in improved outcome and re-
duced progression to HF [4,5]. Change in LV end systolic volume (LVESV; applying a cutoff
of ±15%) at six months after MI is a widely accepted echocardiographic measure to define
adverse (−) or reverse (+) LV remodeling [5,6]. Given the relatively high interobserver
variability in echocardiographic measurement of cardiac volumes, combining changes in
LVESV with circulating biological markers associated with the pathophysiological process
of LV remodeling may improve the accuracy of risk stratification to better guide clinical
management and ensure patients at high-risk of adverse LV remodeling receive more timely
and effective intervention.

Extracellular vesicles (EVs) are lipid bilayer membrane vesicles containing biological
material (proteins, lipids, RNAs and microRNAs) derived from the cell of origin that reflect
the prevailing physiological and/or pathological conditions at the time of EV packaging
and secretion [7]. Thus, plasma EVs have emerged as a potential source of biomarkers for
cardiovascular diseases [8–13]. EVs released from various cardiac cells post-AMI may con-
tribute to LV remodeling by mediating intercellular communication [14–18]. Furthermore,
plasma EVs are markedly increased following AMI [19–21]. EVs from AMI patients are
correlated with myocardial microvascular obstruction and cause endothelial dysfunction
in vitro [15,21]. Plasma EVs from AMI patients harbor hemostatic proteins including tissue
factor and Serpin F2 [20,22], suggesting possible involvement of thrombogenic EVs in post-
AMI remodeling. Previous reports have provided informative cross-sectional “snapshots”
of circulating EVs in AMI patients [14,15,19,20]. However, there are few longitudinal studies
investigating temporal change in plasma EVs during the progression of well documented
post-AMI LV remodeling.

After precipitating low-density lipoprotein (LDL) from plasma, we recently identified
a subset of coprecipitated procoagulant EVs (LDL-EVs) containing several hemostatic
proteins [23]. We now explore whether temporal changes in LDL-EV related hemostatic
proteins, and the ratios between procoagulant and fibrinolytic proteins in particular, are
associated with post-AMI LV remodeling in a clinical cohort (primary outcome), given
their potential contrasting roles in post-MI healing and scaring. The secondary outcomes
of this study are (1) clinical correlations of LDL-EV protein ratios in patients with adverse
and reverse LV remodeling with selected clinical variables and (2) prognostic value of these
protein ratios for predicting post-AMI LV remodeling.

2. Methods
2.1. Study Design and Population

The present study is a nested case-control study matching patients with adverse LV
remodeling to patients with reverse LV remodeling from the IMMACULATE registry study
(Figure 1) [24,25]. The IMMACULATE registry was a multicenter study and the inclusion
criteria for this study are as follows: history of typical ischemic chest pain lasting more than
30 min, electrocardiographic changes, cardiac troponin levels above the 99th percentile
upper reference limit and angiographic findings of more than 50% occlusion in one or more
coronary arteries. Patients above 85 years of age, with valvular heart disease, cardiogenic
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shock, malignancy, renal impairment (eGFR < 15 mL/min/1.73 m2), liver impairment,
anemia, HIV, hepatitis B or hepatitis C were excluded.
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Blood samples were collected into sodium-citrate tubes at three timepoints, namely
within 24–72 h after percutaneous coronary intervention (PCI) (baseline), 1 month and
6 months post-AMI. Samples were centrifuged and aliquoted plasma was stored at −80 ◦C
prior to assay for N-terminal pro brain natriuretic peptide (NT-proBNP), high-sensitivity
troponin T (hsTnT), high-sensitivity troponin I (hsTnI) and underwent isolation of LDL-EVs.
Patients underwent transthoracic echocardiography for assessment of cardiac structure and
function at baseline and 6 months. Based on the change in LV end-systolic volume (LVESV)
over 6 months [5,6], we selected two groups of patients: adverse LV remodeling (n = 98)
included those with more than 15% increase in LVESV, and reverse LV remodeling (n = 100)
included those with more than 15% decrease in LVESV. Patients were followed up for
major adverse cardiac and cerebrovascular events (MACCEs), i.e., cardiovascular death, HF,
recurrent MI and ischemic stroke, for up to 2 years. The diagnosis of HF was adjudicated
according to the European Society of Cardiology criteria by two clinicians (an emergency
department specialist and a cardiologist) [1]. All participants provided written informed
consent. The study was approved by the National University of Singapore Institutional
Research Board (NHG DSRB Ref: 2015/01156) and was conducted in accordance with the
principles of the Declaration of Helsinki.

2.2. Isolation of LDL-EVs

Plasma LDL-EVs were isolated as described previously [23]. Briefly, 6.5% (w/v) dextran
sulphate (DS) and 2 M Manganese (II) chloride (MnCl2) (Sigma-Aldrich, St. Louis, MO,
USA) stock solutions were prepared. Sequentially, DS stock (1:125, v/v) and MnCl2 (1:40,
v/v) were added into 125 µL plasma. The samples were mixed and centrifuged at 4800 g for
10 min at 4 ◦C. The pellets (LDL-EV fractions) were either resuspended for characterization,
or lysed in 125 µL lysis buffer (Roche #04719956001, Basel, Switzerland) for protein analysis.
Samples were stored at −80 ◦C until analysis.



Int. J. Mol. Sci. 2023, 24, 327 4 of 16

2.3. Characterization of LDL-EVs

LDL-EVs were resuspended in filtered phosphate-buffered saline (PBS) and size and
concentration measured by nanoparticle tracking analysis (NTA) using NanoSight NS300TM

(Malvern Instruments, Malvern, UK). All acquisitions were carried out at a camera level
setting of 11, 13 or 14, and five videos of 60 s duration were recorded for each sample
at 25 ◦C. The captured NTA videos were analyzed with a detection threshold of 5–7. To
determine the surface charge of LDL-EVs, zeta potential was measured in duplicates at
25 ◦C using Litesizer 500 (Anton-Paar, Graz, Austria).

For transmission electron microscopy (TEM), 20 µL of isolated LDL-EVs were fixed
with 2.5% glutaraldehyde for 1 h at 4 ◦C and then mounted on a Formvar Film 200 mesh, CU,
FF200-Cu grid for 30 min. After 1 min staining with 5% of gadolinium triacetate, images
were taken at room temperature using the FEI Tecnai G2 Spirit transmission electron
microscope (FEI Company, Hillsboro, OR, USA).

2.4. Quantitative Protein Assay

Protein concentrations were determined using a beads-based multiplex-immunoassay as
previously described [23]. Briefly, the beads (Luminex MagPlex-C Microspheres, MC100-xx,
Austin, TX, USA) were coupled with selected antibodies to form a bead-capture antibody
complex. Samples were incubated with the antibody complex and the corresponding bi-
otinylated detection antibodies. Streptavidin-phycoerythrin (SA-PE, BD Bioscience #554061,
San Jose, CA, USA) was added for quantification of captured proteins. Standard dilution
curves for homologous recombinant proteins were prepared for calculation of protein
concentration. Measurement and data analysis were performed using the Bio-Plex® 200
Systems (Bio-Rad #171-000201, Hercules, CA, USA). The antibodies and recombinant pro-
teins were as follows: for detection of VWF we used recombinant human VWF protein
(Factor VIII free, Fitzgerald #30C-CP4003U, Fitzgerald Industries International, Acton, MA,
USA), anti-human VWF (Fitzgerald #70R-10589, Fitzgerald Industries International, Acton,
MA, USA), and biotinylated anti-human VWF (Fitzgerald #60R-1019, Fitzgerald Industries
International, Acton, MA, USA); for detection of SerpinC1, anti-thrombin III antibody
(NOVUS Biologicals #NBP1-05149, Littleton, CO, USA), human SerpinC1 biotinylated affin-
ity purified antibody (R&D Systems #BAF1267, Minneapolis, MN, USA) and recombinant
human SerpinC1 (R&D Systems #1267-PI-010, Minneapolis, MN, USA); for detection of
plasminogen, anti-human plasminogen (NOVUS Biologicals NB120-10176, Littleton, CO,
USA), biotinylated anti-human plasminogen (NOVUS Biologicals, NB120-10177, Littleton,
CO, USA), and recombinant human plasminogen (R&D system,1939-SE-200, Minneapolis,
MN, USA); and for detection of SerpinF2, anti-human SerpinF2 (R&D Systems #MAB1470,
Minneapolis, MN, USA), biotinylated anti-human SerpinF2 (R&D Systems #BAF1470,
Minneapolis, MN, USA) and recombinant human SerpinF2 (R&D Systems #1470-PI-010,
Minneapolis, MN, USA).

2.5. Statistical Analysis

The data are presented as means ± standard deviation (SD), median ± interquartile
range (IQR) or percentage, depending on their nature. Exploratory analyses were per-
formed with Student’s t-test or Mann–Whitney U test. The differences between baseline
and follow-up measurements were ascertained with the Wilcoxon signed-ranked test. Con-
firmatory analysis was performed with the multilevel structural equation models (ML-SEM)
and ANCOVA to ascertain if there was a significant difference in LDL-EVs protein levels be-
tween patients with adverse and reverse LV remodeling while adjusting for baseline factors
including age, gender, ethnicity, diabetes, hypertension, dyslipidemia, lipid profiles and
medications. This model was proposed in view of the longitudinal design and the nature of
research questions. Receiver operating characteristic (ROC) curve analysis was employed
to investigate the utility of each LDL-EV protein ratio and their combination with cardiac
markers and clinical variables for diagnosis of reverse LV remodeling. Kaplan–Meier sur-
vival curves and Mantel–Cox log-rank test were used to visually assess LV remodeling
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differences in time to rehospitalization for HF. All statistical tests were conducted at 5%
level of significance, with SPSS 25.0 (IBM Corp., Armonk, NY, USA) and Stata MP 16.0
(Stata Corp., College Station, TX, USA).

3. Results
3.1. Study Population

Baseline characteristics of the study population are summarized in Table 1. The 198 pa-
tients comprised 98 patients with adverse LV remodeling and 100 patients with reverse LV
remodeling defined by ±15% change in LVESV over the first 6 months post-AMI (Figure 1).
There was no significant difference in age, sex and ethnicity between the two groups of
patients. The two groups of patients also had similar medical history, diagnoses, cur-
rent medications, and baseline levels of plasma lipids. More patients with adverse LV
remodeling were using warfarin (11.2% vs. 2.0%; p = 0.009).

Table 1. Baseline Characteristics of the Study Population.

Post-AMI
Adverse LV
Remodeling

Reverse LV
Remodeling p-Value

n = 98 n = 100
Demographic

Mean age (years) 55 (48–60) 54 (49–62) 0.963
Male (%) 93 (94.9) 93 (93.0) 0.576

Chinese (%) 54 (55.1) 56 (56.0) 0.130
Malay (%) 26 (26.5) 16 (16.0)
Indian (%) 14 (14.3) 25 (25.0)
Other (%) 4 (4.1) 3 (3.0)

Smoking status
Non-smoker (%) 28 (28.6) 32 (32.0) 0.869

Current smoker (%) 60 (61.2) 58 (58.0)
Ex-smoker (%) 10 (10.2) 10 (10.0)

Medical history
Diabetes (%) 20 (20.4) 20 (20.0) 0.943

Dyslipidemia (%) 43 (43.9) 46 (46.0) 0.764
Hypertension (%) 44 (44.9) 40 (40.0) 0.486

Lipid levels at baseline
Total cholesterol (mg/dL) 5.43 (1.4) 5.43 (1.3) 1.000
HDL cholesterol (mg/dL) 1.03 (0.9–1.3) 1.10 (0.9–1.3) 0.647
LDL cholesterol (mg/dL) 3.54 (1.2) 3.50 (1.3) 0.820

Triglycerides (mg/dL) 1.56 (1.2–2.4) 1.64 (1.1–2.4) 0.691
Diagnoses
STEMI (%) 82 (83.7) 78 (78.0) 0.311

NSTEMI (%) 16 (16.3) 22 (22.0)
Medications
Aspirin (%) 95 (96.9) 98 (98.0) 0.634

P2Y12 inhibitor (%) 95 (96.9) 99 (99.0) 0.303
Statin (%) 96 (98.0) 98 (98.0) 0.984

Warfarin (%) 11 (11.2) 2 (2.0) 0.009
Echocardiographic changes after 6 months

Change in LVEDV (%) 29.88 (18.3) −12.26 (13.5) <0.001
Change in LVESV (%) 29.43 (20.7–40.1) −25.59 (−32.03–20.19) <0.001

Change in EF (%) −2.85 (−10.1–2.9) 16.43 (6.8–28.4) <0.001
Footnotes for Table 1: Continuous data are presented as mean ± SD or median ± IQR, and statistical analysis of
continuous data was performed using unpaired Student’s t-test or Mann–Whitney U test. Categorical variables
are presented as %, with differences between the groups tested with χ2. Abbreviations: AMI, acute myocardial
infarction; LV, left ventricular; HDL, high density lipoprotein; LDL, low density lipoprotein; STEMI, ST-elevation
myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction; LVEDV, left ventricular end diastolic
volume; LVESV, left ventricular end systolic volume; EF, ejection fraction.



Int. J. Mol. Sci. 2023, 24, 327 6 of 16

3.2. Plasma Levels of Standard Cardiac Markers

Plasma levels of NT-proBNP, hsTnT and hsTnI decreased over 6 months after AMI in
both groups (Table 2). Compared to patients with reverse LV remodeling, patients with
adverse LV remodeling had higher plasma levels of hsTnT and hsTnI at baseline, and
higher plasma levels of NT-proBNP and hsTnT at 1 month and 6 months.

Table 2. Plasma levels of standard cardiac markers in study population.

Cardiac
Markers

Post-AMI

Adverse LV Remodeling Reverse LV Remodeling
n = 98 n = 100

Baseline 1 Month 6 Months Baseline 1 Month 6 Months

NT-proBNP 818.65
(397.50–1815.00)

614.00
(225.00–1285.00)

**

205.85
(64.53–468.50)

***

789.95
(367.30–1202.00)

383.60
(143.25–697.50)

90.73
(38.78–192.30)

hsTnT
2807.00

(979.50–4406.00)
***

15.68
(9.79–23.09) **

10.37
(7.25–15.73) **

1578.50
(605.75–2632.00)

12.04
(7.83–16.62)

8.79
(5.99–12.55)

hsTnI
23219.40

(7359.60–43056.90)
***

12.70
(6.90–20.10)

7.45
(4.3–13.60)

9782.45
(3285.80–21938.75)

10.65
(5.90–19.35)

5.70
(3.25–10.55)

Footnotes for Table 2: Data are presented as median ± IQR. Significant differences between adverse and reverse
remodeled groups at individual time-points are indicated as ** p ≤ 0.01; *** p ≤ 0.001. Abbreviation: AMI,
acute myocardial infarction; LV, left ventricular; NT-proBNP, N-terminal pro-brain natriuretic peptide; hsTnT,
high-sensitivity troponin T; hsTnI, high-sensitivity troponin I.

3.3. Characteristics of Plasma LDL-EVs

To investigate the association of plasma EVs with post-AMI LV remodeling, we firstly
characterized the LDL-EVs isolated from plasma at baseline by TEM, NTA and a Litesizer
500. As shown in Supplementary Materials Figure S1, LDL-EVs from patients with adverse
and reverse LV remodeling showed similar size, surface charge and plasma concentrations.

3.4. Temporal Changes of Hemostatic Protein Levels in LDL-EVs in Post-AMI LV Remodeling

We next evaluated the temporal changes of three LDL-EV-related hemostatic proteins
(Figure 2A), including VWF, SerpinC1 and plasminogen, and their associations with post-
AMI LV remodeling. VWF levels declined progressively over 6 months in patients with
adverse LV remodeling but only declined within the first month post-AMI in patients
with reverse LV remodeling (Figure 2B). SerpinC1 levels declined within the first month
and remained lower at 6 months post-AMI in patients with adverse LV remodeling but
did not change in patients with reverse LV remodeling (Figure 2C). Plasminogen levels
increased within the first month and remained higher at 6 months post-AMI in patients
with adverse LV remodeling, then decreased within the first month and remained lower at
6 months post-AMI in patients with reverse LV remodeling (Figure 2D). When analyzed at
individual timepoints, in comparison to patients with reverse LV remodeling, VWF levels
at 6 months and SerpinC1 levels at both 1 month and 6 months post-AMI were lower and
plasminogen levels at both 1 month and 6 months post-AMI were higher in patients with
adverse LV remodeling.

Given the alteration in the balance between coagulation-related (VWF and SerpinC1)
and fibrinolysis-related (plasminogen) proteins in post-AMI LV remodeling, we further
evaluated the change of the ratios between coagulation proteins and plasminogen in post-
AMI patients. VWF:Plasminogen ratio declined progressively over 6 months in patients
with adverse LV remodeling but remained unchanged in patients with reverse LV remodel-
ing (Figure 2E). SerpinC1:Plasminogen ratio declined within the first month and remained
lower at 6 months post-AMI than at baseline in patients with adverse LV remodeling
(Figure 2F). In contrast, the SerpinC1:Plasminogen ratio increased within the first month
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and remained significantly higher at 6 months post-AMI than that at baseline in patients
with reverse LV remodeling. Compared to that in patients with reverse LV remodeling,
both VWF:Plasminogen and SerpinC1:Plasminogen ratio were markedly lower at both
1 month and 6 months post-AMI in patients with adverse LV remodeling.
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Figure 2. Temporal changes in LDL-EV hemostatic protein composition in post-AMI patients with
adverse and reverse LV remodeling. Coagulation proteins (VWF, SerpinC1) and fibrinolytic protein
(plasminogen) levels and their ratios (VWF:Plasminogen, SerpinC1:Plasmingen) in LDL-EVs of 198
post-AMI patients at baseline and after 1 and 6 month follow-up. (A) A diagram illustrating the
studied hemostatic proteins in LDL-EVs. (B–F) Differences between baseline and follow-up measure-
ments were established by Wilcoxon signed-ranked test (horizontal statistical bar). Differences in the
three protein levels and the protein ratios between patients with adverse LV remodeling and reverse
LV remodeling were established by Mann–Whitney U test (vertical statistical bar). Data are presented
as mean ± SEM.
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3.5. ML-SEM Modeling of LDL-EV Protein Ratios and Post-AMI LV Remodeling

To evaluate whether LDL-EV protein ratios have predictive value for LV remodeling
independent of baseline differences, we performed statistical analysis with ML-SEM mod-
eling that allows potential interactions between variables to be assessed (Table 3). Overall,
patients with reverse LV remodeling had markedly higher ratios of VWF:Plasminogen
and SerpinC1:Plasminogen than patients with adverse LV remodeling during the 6 month
follow-up. The differences in these two ratios of LDL-EV proteins between patients with
reverse versus adverse LV remodeling remained significant after adjusting for age, gender,
ethnicity, medications, lipid profile and other cardiovascular disease risk factors.

Table 3. ML-SEM modeling for LDL-EV proteins.

Ratios of Coagulation Proteins and Fibrinolytic Protein in LDL-EVs
VWF:Plasminogen SerpinC1:Plasminogen

Coefficient p-Value 95% Cl Coefficient p-Value 95% Cl
Demographic
Mean age 0.054 <0.001 (0.025–0.083) −0.104 0.778 (−0.829–0.620)
Female 0.535 0.314 (−0.507–1.576) 26.449 0.047 (0.340–52.558)
Chinese Ref Ref Ref Ref Ref Ref
Malay −0.171 0.582 (−0.779–0.437) −16.436 0.048 (−31.780–−1.093)
Indian 0.017 0.957 (−0.602–0.635) −13.950 0.092 (−29.302–1.402)
Other 0.342 0.645 (−1.112–1.80) −25.197 0.179 (−61.956–11.563)
Smoking status
Non-smoker Ref Ref Ref Ref Ref Ref
Current smoker 0.320 0.264 (−0.241–0.882) 10.312 0.148 (−3.652–24.277)
Ex-smoker −0.126 0.780 (−1.008–0.757) 16.523 0.142 (−5.557–38.602)
Medical history
Diabetes −0.445 0.196 (−1.120–0.230) 1.367 0.875 (−15.632–18.365)
Dyslipidemia 0.445 0.115 (−0.109–1.000) 8.560 0.277 (−5.332–22.453)
Hypertension −0.089 0.755 (−0.652–0.473) 2.808 0.694 (−11.192–16.809)
Lipid levels at baseline
Total cholesterol −0.457 0.061 (−0.935–0.022) −2.235 0.715 (−14.228–9.759)
HDL cholesterol 0.119 0.816 (−0.882–1.120) 14.953 0.240 (−9.974–39.880)
LDL cholesterol 0.565 0.035 (0.038–1.092) −1.813 0.788 (−15.041–11.415)
Triglycerides 0.061 0.319 (−0.059–0.181) −0.527 0.731 (−3.531–2.477)
Medication
Aspirin −2.397 0.004 (−4.008–−0.786) −4.483 0.828 (−44.926–35.959)
P2Y12 inhibitor −1.970 0.054 (−3.977–0.037) −15.068 0.560 (−65.690–35.553)
Statin −2.889 0.002 (−4.737–−1.040) 29.643 0.213 (−17.047–76.332)
Warfarin −0.774 0.172 (−1.886–0.338) −12.604 0.378 (−40.601–15.393)
Changes in protein levels
Baseline 0.416 <0.001 (0.344–0.488) 0.647 <0.001 (0.537–0.757)
6 months vs. 1 month (ref) −0.164 0.478 (−0.616–0.288) −0.472 0.935 (−11.780–10.854)
Types of LV remodeling
Adverse Ref Ref Ref Ref Ref Ref
Reverse a 1.093 <0.001 (0.613–1.573) 41.448 <0.001 (30.363–52.533)
Reverse b 1.122 <0.001 (0.640–1.604) 40.698 <0.001 (28.786–52.611)

Footnotes for Table 3: a Corrected for changes in protein levels; b Corrected for changes in protein levels, age,
gender, race, medical history, lipid levels at baseline and medication. Bolded values are those with p-value < 0.05.

Post hoc analysis with ANCOVA indicated the significant difference in ratios of
VWF:Plasminogen and SerpinC1:Plasminogen between patients with reverse and adverse
LV remodeling was apparent at 1 month, and remained significant at 6 months post-AMI.
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3.6. Clinical Correlations of LDL-EV Proteins

ML-SEM with backward elimination was performed to identify clinical correlations
of LDL-EV protein ratios in patients with adverse and reverse LV remodeling. A total
of 14 clinical variables, including age, gender, ethnicity, comorbidity, cardiovascular dis-
ease risk factors and medications were examined (Table 3). VWF:Plasminogen ratio was
significantly associated with age, LDL cholesterol, aspirin and statin treatment, whereas
SerpinC1:Plasminogen ratio was associated with gender and Malay race. More impor-
tantly, both ratios of VWF:Plasminogen and SerpinC1:Plasminogen were associated with
reverse LV remodeling in post-AMI patients, independent of other cardiovascular disease
risk factors.

3.7. LDL-EV Protein Levels as a Predictor for Post-AMI LV Remodeling and Heart Failure

To test the prognostic value of the two coagulation/fibrinolysis protein ratios for
predicting post-AMI LV remodeling, we compared their AUCs with the AUCs of three
standard cardiac injury markers at 1 month post-AMI (Table 4 and Figure 3A). As expected,
the low AUCs of NT-proBNP (0.384), hsTnI (0.467) and hsTnT (0.389) showed the poor
power of standard cardiac injury markers to distinguish reverse LV remodeling from
adverse LV remodeling. Interestingly, VWF:Plasminogen and SerpinC1:Plasminogen ratios
displayed reasonably good prognostic power to predict reverse LV remodeling after AMI,
with AUCs of 0.674 and 0.712, respectively. As analyzed by Delong’s method [26], the AUC
of VWF:Plasminogen ratio was markedly higher than the AUCs of NT-proBNP (Z = 5.281,
p < 0.001), hsTnI (Z = 3.604, p < 0.001) and hsTnT (Z = 5.215, p < 0.001). Similarly, the
AUC of SerpinC1:Plasminogen ration was higher than the AUCs of NT-proBNP (Z = 6.130,
p < 0.001), hsTnI (Z = 4.350, p < 0.001) and hsTnT (Z = 5.668, p < 0.001). These results suggest
that the two ratios between coagulation and fibrinolysis proteins outperform the standard
cardiac injury markers for predicting post-AMI LV remodeling.
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Figure 3. Receiver operating characteristic (ROC) analysis for identifying post-AMI patients with
reverse LV remodeling at 1 month post-AMI. (A) ROC analysis for individual cardiac injury markers
and coagulation/fibrinolysis protein ratios at 1 month post-AMI. (B) ROC analysis for combination
of the LDL-EV protein ratios and three cardiac injury markers at 1 month post-AMI.
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Table 4. Area under the receiver-operating curve (AUC) of different candidate markers predicting
reverse LV remodeling.

Biomarker
Predicting Reverse LV Remodeling

AUC 95% CI p-Value

NT-proBNP 0.384 0.305–0.463 0.005
hsTnI 0.467 0.386–0.548 0.419
hsTnT 0.389 0.311–0.467 0.007

VWF:Plasminogen 0.674 0.599–0.748 <0.001
SerpinC1:Plasminogen 0.712 0.639–0.786 <0.001

NT-proBNP + hsTnI + hsTnT 0.628 0.550–0.706 0.002
VWF:Plasminogen + SerpinC1:Plasminogen 0.717 0.645–0.790 <0.001

All 5 biomarkers 0.763 0.697–0.829 <0.001

Next, we assessed the performance of the combination of the LDL-EV protein ratios
and three cardiac injury markers for prediction of post-AMI LV remodeling (Table 4 and
Figure 3B). The receiver-operator characteristic (ROC) curves were compared among the
3 candidate prognostic biomarkers: (1) cardiac injury panel (NT-proBNP + hsTnI + hsTnT);
(2) LDL-EV ratios (VWF:Plasminogen + SerpinC1:Plasminogen); and (3) the LDL-EV pro-
tein ratios combined with the cardiac injury panel. There was no statistically significant
difference between the AUC of LDL-EV ratios (0.717) and the AUC of cardiac injury panel
(0.628). However, the AUC of the combination model (0.763) was significantly higher than
the AUC of cardiac injury panel (Z = 3.152, p = 0.002). Furthermore, during a median
follow-up of 2 years (interquartile range 1.9–2 years), 11 out of 98 patients with adverse
LV remodeling (11.3%) vs. 3 out of 100 patients with reverse LV remodeling (3.0%) were
diagnosed with HF (p = 0.025; Figure 4).
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Figure 4. Incidence of heart failure during follow-up. Kaplan–Meier analysis for rehospitalization
due to heart failure stratified by post-AMI LV remodeling.

4. Discussion

Plasma EVs released from the injured heart may reflect a “snapshot” of the pathophys-
iology of the myocardium and can potentially be used as surrogate biomarkers predictive
of LV remodeling. The highly regulated coagulation and fibrinolytic systems are important
mediators of inflammation and play an important role in tissue remodeling. We report
the temporal changes of coagulation (VWF and SerpinC1) and fibrinolytic (plasminogen)
protein levels as well as their ratios (VWF:Plasminogen and SerpinC1:Plasminogen) in
plasma LDL-EVs obtained from post-AMI patients with adverse or reverse LV remodeling.
We found that higher levels of coagulation proteins and lower levels of fibrinolytic protein
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in LDL-EVs were independently associated with reverse LV remodeling. Moreover, we
demonstrate that temporal changes in the ratios between coagulation and fibrinolysis path-
way proteins in LDL-EVs outperform current standard plasma biomarkers (NT-proBNP +
hsTnI + hsTnT) in prediction of post-AMI reverse LV remodeling. To our knowledge, this
is the first study that shows an association between hemostatic protein levels in EVs and
post-AMI LV remodeling. The nature of our study means that the exact pathophysiological
mechanisms and pathways underpinning this association cannot be defined from our exist-
ing data. We postulate that inflammation and coagulation play key roles in LV remodeling
after AMI.

Cardiac remodeling results from several pathophysiological changes in response
to cardiac injury. The higher baseline levels of plasma TnT in patients with post-AMI
adverse LV remodeling (Table 2) suggest that more severe cardiac injury occurred in
those patients, which might contribute to the adverse remodeling of LV thereafter [27].
Apart from cardiac injury, maladaptive mechanisms, including altered energy-related
metabolic processes (excessive glucose oxidation but lowered free fatty acid oxidation),
extracellular matrix, genetic expression, neurohumoral regulation, and cellular changes
involving cardiomyocyte loss are observed as the heart remodels [27]. Cardiac remodeling
was initially believed to be an irreversible process associated with decreased survival and
worse outcomes [28]. However, in recent years, numerous therapeutic interventions have
shown to slow adverse remodeling and/or to promote reverse remodeling [27]. Notably,
LV assist device (LVAD) support has been associated with reverse ventricular remodeling
through mechanical unloading, evidenced by improvements in blood pressure, cardiac
output, and neurohormonal levels [29,30]. However, it is unclear if the perturbation of
cardiac energy metabolism is restored in LV reverse remodeling. In addition, although
different patterns of microRNA and long non-coding RNAs expression have been observed
after LVAD support and might be useful in assessing the severity of HF [31–33], their
potential as biomarkers of myocardial remodeling has yet to be elucidated. In this study,
by analyzing the composition of hemostatic proteins in plasma LDL-EVs, we revealed
that temporal changes in the ratios between coagulation and fibrinolysis pathway proteins
were able to predict reverse LV remodeling as early as 1 month post-AMI. Compared to
the categorization of adverse versus reverse LV remodeling based on echocardiography
at 6 months post-AMI, our findings may help detect LV remodeling changes earlier, and
early incorporation of targeted medical therapy and devices into the management plan can
increase myocardial protection [34].

VWF, a pivotal coagulation protein that promotes thrombus formation via platelet
adhesion and aggregation at the site of injury and acts as a carrier protein for coagulation
factor VIII [35,36], is fundamentally involved in the pathologic mechanism responsible for
AMI. Plasma VWF levels follow a typical time course during acute coronary syndrome,
where they are elevated at 24 h and peak at 48 to 72 h [37]. In agreement with other
studies, we observed the highest levels of VWF in LDL-EVs at 3 days post-AMI with
VWF levels decreasing thereafter by 1 month in both patient groups. Interestingly, by
6 months, the adverse LV remodeling group displayed significantly lower VWF levels in
LDL-EVs compared to the reverse LV remodeling group. This is seemingly counterintuitive
since VWF is recognized as a mediator of inflammatory responses through promotion
of leukocyte recruitment [38,39]. Although the mechanisms underlying our observation
remain uncertain, we postulate that LDL-EVs carry sequestered VWF. As plasma VWF
contributes to pro-inflammatory responses, it is plausible that the diminished VWF levels in
LDL-EVs are caused by the homeostatic response in LV remodeling. SerpinC1, also known
as antithrombin III, inhibits thrombin and other serine proteases, including Ixa, Xa, Xia
and XIIa [40]. In addition, SerpinC1 inhibits inflammation via a coagulation-dependent or
-independent pathway [41,42]. In our study, the higher levels of SerpinC1 in LDL-EVs from
post-AMI patients with reverse LV remodeling may reflect its anti-inflammatory activity
during cardiac repair. The counterpart of coagulation is fibrinolysis, a process that is highly
regulated by multiple fibrinolytic proteases including plasminogen. Plasmin, the active
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form of plasminogen, is a key mediator of fibrinolysis activated by tissue-type plasminogen
activator (tPA) and urokinase-type plasminogen activator (uPA) [43,44]. In our study, the
elevated LDL-EV plasminogen levels in patients with adverse LV remodeling may increase
the formation of toll-like receptor-4 (TLR-4), activating fibrin degradation products or
activation of matrix metalloproteinases, which subsequently results in the release of matrix-
bound growth factors [45,46]. Along with activation of PAR-1 by plasmin [47], these
pro-inflammatory and pro-remodeling actions could possibly contribute to adverse LV
remodeling in post-AMI patients.

The association of higher VWF and SerpinC1 levels and lower plasminogen levels in
LDL-EVs with reverse LV remodeling were further evaluated with VWF:Plasminogen and
SerpinC1:Plasminogen ratios. ML-SEM modeling of LDL-EV protein ratios and post-AMI
LV remodeling revealed correlations between clinical variables and LDL-EV proteins ratios.
The presence of several metabolic abnormalities, including hyperglycemia, hyperlipidemia,
and hypercholesterolemia, in metabolic syndrome induce endothelial dysfunction by in-
creasing reactive oxygen species and reducing nitric oxide [48]. As a result, biomarkers of
endothelial dysfunction such as plasma VWF are elevated and associated with the pres-
ence of these deranged metabolic profiles [49]. In addition, LDL-EV VWF:Plasminogen
levels were positively correlated with LDL cholesterol levels. We did not observe any
significant difference in LDL-EV VWF in patients with and without hypertension despite
previous studies reporting such associations for plasma VWF levels and hypertension [50].
Although a role for plasma VWF in maintaining hemostatic balance in the vasculature is
well known, exactly what is reflected by the EV levels of VWF remains to be defined. Hence,
the difference in association between levels of VWF with metabolic diseases depending
on whether it is within the plasma or EVs may provide important mechanistic insights
and warrant further discussion and research. Furthermore, we found decreased LDL-EV
VWF:Plasminogen ratio in patients with statin treatment. These results are in line with
our previously published report which shows positive association between rosuvastatin
treatment and LDL-EV VWF and plasminogen levels [51].

LDL-EV SerpinC1:Plasminogen ratio was significantly lower in female than male
patients. This suggests underlying gender-specific differences in pathophysiological mecha-
nisms. Women tend to have less obstructive CAD and have relatively preserved LV function
after MI [52,53]. Despite this, women have increased mortality and poorer prognosis com-
pared to men. These studies suggest that abnormal coronary reactivity, microvascular
dysfunction and distal microembolization are contributing factors to the underlying patho-
physiology of angina and ACS in women [52–54]. This gender-specific difference may in
part be due to the presence of varying reproductive hormone levels, involvement of auto-
nomic nervous system adrenergic pathway, and the increased burden of pro-atherogenic
risk factors in women [55]. These factors, among others may explain the differences in EV
protein expression between men and women as demonstrated in our study.

Limitations

First, for this proof-of-concept study, we selected two groups of patients with clear
clinical phenotypes based on the 6 months post-AMI echocardiography; our findings need
to be confirmed in other independent cohorts. Given the high percentage of male patients in
both groups and the high incidence of MI in males [55,56], it is tempting to test the findings
of this study in female patients. Secondly, LDL-EV protein levels prior to admission and at
the point of AMI could yield additional insights. Unfortunately, plasma samples at those
two time points were not available in this specific cohort. The relationship of free plasma
concentrations of VWF, SerpinC1 and plasminogen to contemporaneous EV concentrations
are not ascertained and may help elucidate the mechanisms underpinning the observed
relationships of EV proteins to LV remodeling. In addition, we only characterized the size,
surface charge and plasma concentrations of LDL-EVs at baseline because limited resources
were available for this study, however, this limitation is unlikely to affect our conclusions,
which are drawn from changes in LDL-EV hemostatic protein composition. Thirdly, the



Int. J. Mol. Sci. 2023, 24, 327 13 of 16

potential diagnostic/prognostic value of myriad other proteins in LDL-EVs in post-AMI
LV remodeling remains to be explored. Finally, further preclinical studies are warranted to
elucidate the pathophysiologic roles of LDL-EV proteins in post-AMI LV remodeling.

5. Conclusions

The ratios between coagulation and fibrinolysis proteins in plasma EVs outperform
current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Tem-
poral changes in LDL-EV hemostatic protein composition and their ratios highlight the
potential of plasma LDL-EVs as a biomarker source for assessment of LV remodeling, which
may be able to provide clinical insight for further investigation of the cellular mechanisms
underlying post-AMI LV remodeling and to guide therapeutic interventions for prevention
of HF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010327/s1, Figure S1: Characterization of LDL-EVs of
post-AMI patients with adverse and reverse LV remodeling; Table S1. Baseline and follow-up
LDL-EVs protein levels in patients.
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