12 research outputs found

    Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A Consensus Statement Based on Available Clinical Trials.

    Get PDF
    Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients

    Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations–State-of-the-Art.

    Get PDF
    Cancer and COVID-19 are both well-established risk factors predisposing to thrombosis. Both disease entities are correlated with increased incidence of venous thrombotic events through multifaceted pathogenic mechanisms involving the interaction of cancer cells or SARS-CoV2 on the one hand and the coagulation system and endothelial cells on the other hand. Thromboprophylaxis is recommended for hospitalized patients with active cancer and high-risk outpatients with cancer receiving anticancer treatment. Universal thromboprophylaxis with a high prophylactic dose of low molecular weight heparins (LMWH) or therapeutic dose in select patients, is currentlyindicated for hospitalized patients with COVID-19. Also, prophylactic anticoagulation is recommended for outpatients with COVID-19 at high risk for thrombosis or disease worsening. However, whether there is an additive risk of thrombosis when a patient with cancer is infected with SARS-CoV2 remains unclear In the current review, we summarize and critically discuss the literature regarding the epidemiology of thrombotic events in patients with cancer and concomitant COVID-19, the thrombotic risk assessment, and the recommendations on thromboprophylaxis for this subgroup of patients. Current data do not support an additive thrombotic risk for patients with cancer and COVID-19. Of note, patients with cancer have less access to intensive care unit care, a setting associated with high thrombotic risk. Based on current evidence, patients with cancer and COVID-19 should be assessed with well-established risk assessment models for medically ill patients and receive thromboprophylaxis, preferentially with LMWH, according to existing recommendations. Prospective trials on well-characterized populations do not exist

    The Post-thrombotic Syndrome-Prevention and Treatment: VAS-European Independent Foundation in Angiology/Vascular Medicine Position Paper

    No full text
    Importance: The post-thrombotic syndrome (PTS) is the most common long-term complication of deep vein thrombosis (DVT), occurring in up to 40-50% of cases. There are limited evidence-based approaches for PTS clinical management. Objective: To provide an expert consensus for PTS diagnosis, prevention, and treatment. Evidence-review: MEDLINE, Cochrane Database review, and GOOGLE SCHOLAR were searched with the terms "post-thrombotic syndrome" and "post-phlebitic syndrome" used in titles and abstracts up to September 2020. Filters were: English, Controlled Clinical Trial / Systematic Review / Meta-Analysis / Guideline. The relevant literature regarding PTS diagnosis, prevention and treatment was reviewed and summarized by the evidence synthesis team. On the basis of this review, a panel of 15 practicing angiology/vascular medicine specialists assessed the appropriateness of several items regarding PTS management on a Likert-9 point scale, according to the RAND/UCLA method, with a two-round modified Delphi method. Findings: The panelists rated the following as appropriate for diagnosis: 1-the Villalta scale; 2- pre-existing venous insufficiency evaluation; 3-assessment 3-6 months after diagnosis of iliofemoral or femoro-popliteal DVT, and afterwards periodically, according to a personalized schedule depending on the presence or absence of clinically relevant PTS. The items rated as appropriate for symptom relief and prevention were: 1- graduated compression stockings (GCS) or elastic bandages for symptomatic relief in acute DVT, either iliofemoral, popliteal or calf; 2-thigh-length GCS (30-40 mmHg at the ankle) after ilio-femoral DVT; 3- knee-length GCS (30-40 mmHg at the ankle) after popliteal DVT; 4-GCS for different length of times according to the severity of periodically assessed PTS; 5-catheter-directed thrombolysis, with or without mechanical thrombectomy, in patients with iliofemoral obstruction, severe symptoms, and low risk of bleeding. The items rated as appropriate for treatment were: 1- thigh-length GCS (30-40 mmHg at the ankle) after iliofemoral DVT; 2-compression therapy for ulcer treatment; 3- exercise training. The role of endovascular treatment (angioplasty and/or stenting) was rated as uncertain, but it could be considered for severe PTS only in case of stenosis or occlusion above the inguinal ligament, followed by oral anticoagulation. Conclusions and relevance: This position paper can help practicing clinicians in PTS management.</p

    The COVID-19 Pandemic and the Need for an Integrated and Equitable Approach: An International Expert Consensus Paper

    Get PDF
    International audienceBackground One year after the declaration of the coronavirus disease 2019 (COVID-19) pandemic by the World Health Organization (WHO) and despite the implementation of mandatory physical barriers and social distancing, humanity remains challenged by a long-lasting and devastating public health crisis. Management Non-pharmacological interventions (NPIs) are efficient mitigation strategies. The success of these NPIs is dependent on the approval and commitment of the population. The launch of a mass vaccination program in many countries in late December 2020 with mRNA vaccines, adenovirus-based vaccines, and inactivated virus vaccines has generated hope for the end of the pandemic. Current Issues The continuous appearance of new pathogenic viral strains and the ability of vaccines to prevent infection and transmission raise important concerns as we try to achieve community immunity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and its variants. The need of a second and even third generation of vaccines has already been acknowledged by the WHO and governments. Perspectives There is a critical and urgent need for a balanced and integrated strategy for the management of the COVID-19 outbreaks organized on three axes: (1) Prevention of the SARS-CoV-2 infection, (2) Detection and early diagnosis of patients at risk of disease worsening, and (3) Anticipation of medical care (PDA). Conclusion The “PDA strategy” integrated into state policy for the support and expansion of health systems and introduction of digital organizations (i.e., telemedicine, e-Health, artificial intelligence, and machine-learning technology) is of major importance for the preservation of citizens' health and life world-wide

    The COVID-19 Pandemic and the Need for an Integrated and Equitable Approach: An International Expert Consensus Paper

    No full text
    Background One year after the declaration of the coronavirus disease 2019 (COVID-19) pandemic by the World Health Organization (WHO) and despite the implementation of mandatory physical barriers and social distancing, humanity remains challenged by a long-lasting and devastating public health crisis. Management Non-pharmacological interventions (NPIs) are efficient mitigation strategies. The success of these NPIs is dependent on the approval and commitment of the population. The launch of a mass vaccination program in many countries in late December 2020 with mRNA vaccines, adenovirus-based vaccines, and inactivated virus vaccines has generated hope for the end of the pandemic. Current Issues The continuous appearance of new pathogenic viral strains and the ability of vaccines to prevent infection and transmission raise important concerns as we try to achieve community immunity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and its variants. The need of a second and even third generation of vaccines has already been acknowledged by the WHO and governments. Perspectives There is a critical and urgent need for a balanced and integrated strategy for the management of the COVID-19 outbreaks organized on three axes: (1) P revention of the SARS-CoV-2 infection, (2) Detection and early diagnosis of patients at risk of disease worsening, and (3) Anticipation of medical care (PDA). Conclusion The “PDA strategy” integrated into state policy for the support and expansion of health systems and introduction of digital organizations (i.e., telemedicine, e-Health, artificial intelligence, and machine-learning technology) is of major importance for the preservation of citizens’ health and life world-wide
    corecore