124 research outputs found

    Genetic Evidence for Two Species of Elephant in Africa

    Get PDF
    Elephants from the tropical forests of Africa are morphologically distinct from savannah or bush elephants. Dart-biopsy samples from 195 free-ranging African elephants in 21 populations were examined for DNA sequence variation in four nuclear genes (1732 base pairs). Phylogenetic distinctions between African forest elephant and savannah elephant populations corresponded to 58% of the difference in the same genes between elephant genera Loxodonta (African) and Elephas (Asian). Large genetic distance, multiple genetically fixed nucleotide site differences, morphological and habitat distinctions, and extremely limited hybridization of gene flow between forest and savannah elephants support the recognition and conservation management of two African species: Loxodonta africana and Loxodonta cyclotis

    Genetics and Pathogenesis of Feline Infectious Peritonitis Virus

    Get PDF
    Feline coronavirus (FCoV) is endemic in feral cat populations and cat colonies, frequently preceding outbreaks of fatal feline infectious peritonitis (FIP). FCoV exhibits 2 biotypes: the pathogenic disease and a benign infection with feline enteric coronavirus (FECV). Uncertainty remains regarding whether genetically distinctive avirulent and virulent forms coexist or whether an avirulent form mutates in vivo, causing FIP. To resolve these alternative hypotheses, we isolated viral sequences from FCoV-infected clinically healthy and sick cats (8 FIP cases and 48 FECV-asymptomatic animals); 735 sequences from 4 gene segments were generated and subjected to phylogenetic analyses. Viral sequences from healthy cats were distinct from sick cats on the basis of genetic distances observed in the membrane and nonstructural protein 7b genes. These data demonstrate distinctive circulating virulent and avirulent strains in natural populations. In addition, 5 membrane protein amino acid residues with functional potential differentiated healthy cats from cats with FIP. These findings may have potential as diagnostic markers for virulent FIP-associated FCoV

    The Dynamic Proliferation of CanSINEs Mirrors the Complex Evolution of Feliforms

    Get PDF
    Background: Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results: We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions: We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement

    Genomic Organization, Sequence Divergence, and Recombination of Feline Immunodeficiency Virus from Lions in the Wild

    Get PDF
    Background Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5\u27 LTR, gag, pol, vif, orfA, env, rev and 3\u27LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca , Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIV Ple subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species

    Genetic and Phylogenetic Divergence of Feline Immunodeficiency Virus in the Puma (Puma concolor)

    Get PDF
    Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma

    Emerging Viruses in the Felidae: Shifting Paradigms

    Get PDF
    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids

    Phylogenetic Associations of Human and Simian T-Cell Leukemia/Lymphotropic Virus Type I Strains: Evidence for Interspecies Transmission

    Get PDF
    Homologous env sequences from 17 human T-leukemia/lymphotropic virus type I (HTLV-I) strains from throughout the world and from 25 simian T-leukemia/lymphotropic virus type I (STLV-I) strains from 12 simian species in Asia and Africa were analyzed in a phylogenetic context as an approach to resolving the natural history of these related retroviruses. STLV-I exhibited greater overall sequence variation between strains (1 to 18% compared with 0 to 9% for HTLV-I), supporting the simian origin of the modern viruses in all species. Three HTLV-I phylogenetic clusters or clades (cosmopolitan, Zaire, and Melanesia) were resolved with phenetic, parsimony, and likelihood analytical procedures. Seven phylogenetic clusters of STLV-I were resolved with the most primitive (deeply rooted) divergence involving several STLV-I strains from Asian primate species. Combined analysis of HTLV-I and STLV-I revealed that neither STLV-I clusters nor HTLV-I clusters recapitulated host species specificity; rather, multiple clades from the same species were closer to clades from other species than to each other. We interpret these evolutionary associations as support for the occurrence of multiple discrete interspecies transmissions of ancestral viruses between primate species (including human) that led to recognizable phylogenetic clades that persist in modern species. Geographic concordance of divergent host species that harbor closely related viruses reinforces that physical feasibility for hypothesized interspecies virus transmission in the past and in the present

    A Molecular Phylogeny of Living Primates

    Get PDF
    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species

    Can Intra-Y Gene Conversion Oppose the Degeneration of the Human Y Chromosome? A Simulation Study

    Get PDF
    The human Y is a genetically degenerate chromosome, which has lost about 97% of the genes originally present. Most of the remaining human Y genes are in large duplicated segments (ampliconic regions) undergoing intense Y–Y gene conversion. It has been suggested that Y–Y gene conversion may help these genes getting rid of deleterious mutations that would inactivate them otherwise. Here, we tested this idea by simulating the evolution of degenerating Y chromosomes with or without gene conversion using the most up-to-date population genetics parameters for humans. We followed the fate of a variant with Y–Y gene conversion in a population of Y chromosomes where Y–Y gene conversion is originally absent. We found that this variant gets fixed more frequently than the neutral expectation, which supports the idea that gene conversion is beneficial for a degenerating Y chromosome. Interestingly, a very high rate of gene conversion is needed for an effect of gene conversion to be observed. This suggests that high levels of Y-Y gene conversion observed in humans may have been selected to oppose the Y degeneration. We also studied with a similar approach the evolution of ampliconic regions on the Y chromosomes and found that the fixation of many copies at once is unlikely, which suggest these regions probably evolved gradually unless selection for increased dosage favored large-scale duplication events. Exploring the parameter space showed that Y–Y gene conversion may be beneficial in most mammalian species, which is consistent with recent data in chimpanzees and mice

    Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions

    Get PDF
    The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages
    corecore