283 research outputs found

    Validation of a sectional soot model based on a constant pressure tabulated chemistry approach for PM, PN and PSDF estimation in a GDI research engine

    Get PDF
    Findings from the International Agency for Research on Cancer (IARC) classified particulate matter (PM) as carcinogenic to humans. While being a promising solution to reduce greenhouse gases (GHG) emissions and increase engine fuel economy, Gasoline Direct Injected (GDI) engines produce a number of particles (PN) of fine size higher than Port Fuel Injected (PFI) ones. As a consequence, the EU commission significantly tightened the emission standards for passenger cars, following which all gasoline engines will have to meet the euro-6d regulation coming into force in 2020. Efforts are made by the research community to understand the root causes leading to soot formation and possibly identify technical solutions to lower it. An important piece of the puzzle is the investigation of soot formation via 3D-CFD. To this aim, relevant efforts have been and are still being paid to adapt soot emissions models, originally developed for Diesel combustion, for GDI units. Among the many available models, one of the most advanced is the so-called Sectional Method. So far, studies presented in literature were not able to formulate a methodology to quantitatively match experimental PM, PN and PSDF without a dedicated soot model tuning. In the present work, a Sectional Method-based methodology to quantitatively predict GDI soot is presented and validated against PM, PN and PSDF measurements on a optically accessible GDI research unit. While adapting the model to GDI soot, attention is devoted to the modelling of soot precursor chemistry: a customized version of a pre-existing chemical kinetics mechanism, used to predict the formation of the key PAH (Polycyclic Aromatic Hydrocarbons) species, is presented and validated via 1D numerical simulations on a premixed flat flame burner dataset available in literature. The present work demonstrates that a Sectional Method-based approach can be a powerful tool to quantitatively predict engine-out soot emissions

    Big Data in Critical Infrastructures Security Monitoring: Challenges and Opportunities

    Full text link
    Critical Infrastructures (CIs), such as smart power grids, transport systems, and financial infrastructures, are more and more vulnerable to cyber threats, due to the adoption of commodity computing facilities. Despite the use of several monitoring tools, recent attacks have proven that current defensive mechanisms for CIs are not effective enough against most advanced threats. In this paper we explore the idea of a framework leveraging multiple data sources to improve protection capabilities of CIs. Challenges and opportunities are discussed along three main research directions: i) use of distinct and heterogeneous data sources, ii) monitoring with adaptive granularity, and iii) attack modeling and runtime combination of multiple data analysis techniques.Comment: EDCC-2014, BIG4CIP-201

    Deep-Learning-Driven Techniques for Real-Time Multimodal Health and Physical Data Synthesis

    Get PDF
    With the advent of Artificial Intelligence for healthcare, data synthesis methods present crucial benefits in facilitating the fast development of AI models while protecting data subjects and bypassing the need to engage with the complexity of data sharing and processing agreements. Existing technologies focus on synthesising real-time physiological and physical records based on regular time intervals. Real health data are, however, characterised by irregularities and multimodal variables that are still hard to reproduce, preserving the correlation across time and different dimensions. This paper presents two novel techniques for synthetic data generation of real-time multimodal electronic health and physical records, (a) the Temporally Correlated Multimodal Generative Adversarial Network and (b) the Document Sequence Generator. The paper illustrates the need and use of these techniques through a real use case, the H2020 GATEKEEPER project of AI for healthcare. Furthermore, the paper presents the evaluation for both individual cases and a discussion about the comparability between techniques and their potential applications of synthetic data at the different stages of the software development life-cycle

    A feasibility study for the provision of electronic healthcare tools and services in areas of Greece, Cyprus and Italy

    Get PDF
    Background: Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of thesoutheast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED. Methods: The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate. The proposed system is based on state-of-the-art telemedicine systems and is able to provide the following healthcare services: i) Telecollaboration and teleconsultation services between remotely located healthcare providers, ii) telemedicine services in emergencies, iii) home telecare services for "at risk" citizens such as the elderly and patients with chronic diseases, and iv) eLearning services for the continuous training through seminars of both healthcare personnel (physicians, nurses etc) and persons supporting "at risk" citizens. These systems support data transmission over simple phone lines, internet connections, integrated services digital network/digital subscriber lines, satellite links, mobile networks (GPRS/3G), and wireless local area networks. The data corresponds, among others, to voice, vital biosignals, still medical images, video, and data used by eLearning applications. The proposed platform comprises several systems, each supporting different services. These were integrated using a common data storage and exchange scheme in order to achieve system interoperability in terms of software, language and national characteristics. Results: The platform has been installed and evaluated in different rural and urban sites in Greece, Cyprus and Italy. The evaluation was mainly related to technical issues and user satisfaction. The selected sites are, among others, rural health centers, ambulances, homes of "at-risk" citizens, and a ferry. Conclusions: The results proved the functionality and utilization of the platform in various rural places in Greece, Cyprus and Italy. However, further actions are needed to enable the local healthcare systems and the different population groups to be familiarized with, and use in their everyday lives, mature technological solutions for the provision of healthcare services

    A MATLAB app to assess, compare and validate new methods against their benchmarks

    Get PDF
    Emerging technologies for physiological signals and data collection enable the monitoring of patient health and well-being in real-life settings. This requires novel methods and tools to compare the validity of this kind of information with that acquired in controlled environments using more costly and sophisticated technologies. In this paper, we describe a method and a MATLAB tool that relies on a standard sequence of statistical tests to compare features obtained using novel techniques with those acquired by means of benchmark procedures. After introducing the key steps of the proposed statistical analysis method, this paper describes its implementation in a MATLAB app, developed to support researchers in testing the extent to which a set of features, captured with a new methodology, can be considered a valid surrogate of that acquired employing gold standard techniques. An example of the application of the tool is provided in order to validate the method and illustrate the graphical user interface (GUI). The app development in MATLAB aims to improve its accessibility, foster its rapid adoption among the scientific community and its scalability into wider MATLAB tools

    Resonant electron heating and molecular phonon cooling in single C60_{60} junctions

    Full text link
    We study heating and heat dissipation of a single \c60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation.Comment: Accepted in Phys. Rev. Let

    Heart rate variability and target organ damage in hypertensive patients

    Get PDF
    Background: We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD). Methods: A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index. Results: Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors. Conclusions: Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD

    Analytical solution of electronic transport through a benzene molecule using lattice Green's functions

    Get PDF
    Using a Green's function formalism we derive analytical expressions for the electronic transmittance through a benzene ring. To motivate the approach we first solve the resonant level system and then extend the method to the benzene case. These results can be used to validate numerical methods

    (210)Po poisoning as possible cause of death: forensic investigations and toxicological analysis of the remains of Yasser Arafat.

    Get PDF
    The late president of the Palestinian Authority, Yasser Arafat, died in November 2004 in Percy Hospital, one month after having experienced a sudden onset of symptoms that included severe nausea, vomiting, diarrhoea and abdominal pain and which were followed by multiple organ failure. In spite of numerous investigations performed in France, the pathophysiological mechanisms at the origin of the symptoms could not be identified. In 2011, we found abnormal levels of polonium-210 ((210)Po) in some of Arafat's belongings that were worn during his final hospital stay and which were stained with biological fluids. This finding led to the exhumation of Arafat's remains in 2012. Significantly higher (up to 20 times) activities of (210)Po and lead-210 ((210)Pb) were found in the ribs, iliac crest and sternum specimens compared to reference samples from the literature (p-value &lt;1%). In all specimens from the tomb, (210)Po activity was supported by a similar activity of (210)Pb. Biokinetic calculations demonstrated that a (210)Pb impurity, as identified in a commercial source of 3MBq of (210)Po, may be responsible for the activities measured in Arafat's belongings and remains 8 years after his death. The absence of myelosuppression and hair loss in Mr Arafat's case compared to Mr Litvinenko's, the only known case of malicious poisoning with (210)Po, could be explained by differences in the time delivery-scheme of intake. In conclusion, statistical Bayesian analysis combining all the evidence gathered in our forensic expert report moderately supports the proposition that Mr Arafat was poisoned by (210)Po

    Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions

    Full text link
    We consider the electron transport properties through fully interacting nanoscale junctions beyond the linear-response regime. We calculate the current flowing through an interacting region connected to two interacting leads, with interaction crossing at the left and right contacts, by using a non-equilibrium Green's functions (NEGF) technique. The total current at one interface (the left one for example) is made of several terms which can be regrouped into two sets. The first set corresponds to a very generalised Landauer-like current formula with physical quantities defined only in the interacting central region and with renormalised lead self-energies. The second set characterises inelastic scattering events occurring in the left lead. We show how this term can be negligible or even vanish due to the pseudo-equilibrium statistical properties of the lead in the thermodynamic limit. The expressions for the different Green's functions needed for practical calculations of the current are also provided. We determine the constraints imposed by the physical condition of current conservation. The corresponding equation imposed on the different self-energy quantities arising from the current conservation is derived. We discuss in detail its physical interpretation and its relation with previously derived expressions. Finally several important key features are discussed in relation to the implementation of our formalism for calculations of quantum transport in realistic systems
    corecore