55 research outputs found

    0383 : In vitro 3D model of in vitro angiogenesis using human endothelial cells and pericytes

    Get PDF
    Human tissue is three-dimensional, and requires convective transport of nutrients and waste through capillary networks to meet metabolic demands Angiogenesis is the formation of new blood vessels from the existing vasculature. It is a multi-step process that include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, branching, lumen formation, anastomosis, and formation of a new basement membrane. The literatture in 3D in vitro models using endothelial cells is wide, using various types of EC (essentially Human Umbilical Vein Endothelial Cells), but blood vessels are composed of two interacting cells types: endothelial cells form the inner of the vessel wall, and mural cells that wrap the first ones. Pericytes are the mural cells of microvessels. They serve as scaffolding, and they communicate with endothelial cells by direct physical contacts and paracrine signaling pathways. Presently, there are no three-dimensional in vitro models of 3D Matrices which contain human pericyte-coated capillaries. Therefore, we aim at including pericytes in a 3D vascular morphogenesis assay in order to create a 3D in vitro model more close to physiologic conditions. We’ll show and discuss our first analyzes and results, the goal of which is to provide new in vitro tools in order to better understand vascular biology, for later studies of endothelial cells-pericytes interactions, extracellular matrix-pericytes interactions, and eventually, further elucidate the role of pericytes in the microvasculature

    Cardiac Repair and Regeneration: The Value of Cell Therapies

    Get PDF
    Ischaemic heart disease is the predominant contributor to cardiovascular morbidity and mortality; one million myocardial infarctions occur per year in the USA, while more than five million patients suffer from chronic heart failure. Recently, heart failure has been singled out as an epidemic and is a staggering clinical and public health problem associated with significant mortality, morbidity and healthcare expenditures, particularly among those aged ≥65 years. Death rates have improved dramatically over the last four decades, but new approaches are nevertheless urgently needed for those patients who go on to develop ventricular dysfunction and chronic heart failure. Over the past decade, stem cell transplantation has emerged as a promising therapeutic strategy for acute or chronic ischaemic cardiomyopathy. Multiple candidate cell types have been used in preclinical animal models and in humans to repair or regenerate the injured heart, either directly or indirectly (through paracrine effects), including: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), neonatal cardiomyocytes, skeletal myoblasts (SKMs), endothelial progenitor cells, bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (MSCs) and, most recently, cardiac stem cells (CSCs). Although no consensus has emerged yet, the ideal cell type for the treatment of heart disease should: (a) improve heart function; (b) create healthy and functional cardiac muscle and vasculature, integrated into the host tissue; (c) be amenable to delivery by minimally invasive clinical methods; (d) be available ‘off the shelf’ as a standardised reagent; (e) be tolerated by the immune system; (f) be safe oncologically, i.e. not create tumours; and (g) circumvent societal ethical concerns. At present, it is not clear whether such a ‘perfect’ stem cell exists; what is apparent, however, is that some cell types are more promising than others. In this brief review, we provide ongoing data on agreement and controversy arising from clinical trials and touch upon the future directions of cell therapy for heart disease

    Human Blood-Vessel-Derived Stem Cells for Tissue Repair and Regeneration

    Get PDF
    Multipotent stem/progenitor cells with similar developmental potentials have been independently identified from diverse human tissue/organ cultures. The increasing recognition of the vascular/perivascular origin of mesenchymal precursors suggested blood vessels being a systemic source of adult stem/progenitor cells. Our group and other laboratories recently isolated multiple stem/progenitor cell subsets from blood vessels of adult human tissues. Each of the three structural layers of blood vessels: intima, media, and adventitia has been found to include at least one precursor population, that is, myogenic endothelial cells (MECs), pericytes, and adventitial cells (ACs), respectively. MECs and pericytes efficiently regenerate myofibers in injured and dystrophic skeletal muscles as well as improve cardiac function after myocardial infarction. The applications of ACs in vascular remodeling and angiogenesis/vasculogenesis have been examined. Our recent finding that MECs and pericytes can be purified from cryogenically banked human primary muscle cell culture further indicates their potential applications in personalized regenerative medicine

    Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells

    Get PDF
    : Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC

    Bone-forming perivascular cells: Cellular heterogeneity and use for tissue repair

    Get PDF
    : Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering

    High Harvest Yield, High Expansion, and Phenotype Stability of CD146 Mesenchymal Stromal Cells from Whole Primitive Human Umbilical Cord Tissue

    Get PDF
    Human umbilical cord blood is an excellent primitive source of noncontroversial stem cells for treatment of hematologic disorders; meanwhile, new stem cell candidates in the umbilical cord (UC) tissue could provide therapeutic cells for nonhematologic disorders. We show novel in situ characterization to identify and localize a panel of some markers expressed by mesenchymal stromal cells (MSCs; CD44, CD105, CD73, CD90) and CD146 in the UC. We describe enzymatic isolation and purification methods of different UC cell populations that do not require manual separation of the vessels and stroma of the coiled, helical-like UC tissue. Unique quantitation of in situ cell frequency and stromal cell counts upon harvest illustrate the potential to obtain high numerical yields with these methods. UC stromal cells can differentiate to the osteogenic and chondrogenic lineages and, under specific culturing conditions, they exhibit high expandability with unique long-term stability of their phenotype. The remarkable stability of the phenotype represents a novel finding for human MSCs, from any source, and supports the use of these cells as highly accessible stromal cells for both basic studies and potentially therapeutic applications such as allogeneic clinical use for musculoskeletal disorders

    Extracellular Matrix Degradation Products and Low-Oxygen Conditions Enhance the Regenerative Potential of Perivascular Stem Cells

    Get PDF
    Tissue and organ injury results in alterations of the local microenvironment, including the reduction in oxygen concentration and degradation of the extracellular matrix (ECM). The response of perivascular stem cells to these microenvironment changes are of particular interest because of their wide distribution throughout the body and their potential involvement in tissue and organ response to injury. The chemotactic, mitogenic, and phenotypic responses of this stem cell population were evaluated in response to a combination of decreased oxygen concentration and the presence of ECM degradation products. Culture in low-oxygen conditions resulted in increased proliferation and migration of the cells and increased activation of the ERK signaling pathway and associated integrins without a change in cell surface marker phenotype. The addition of ECM degradation products were additive to these processes. Reactive oxygen species within the cells were increased in association with the mitogenic and chemotactic responses. The increased proliferation and chemotactic properties of this stem cell population without any changes in phenotype and differentiation potential has important implications for both in vitro cell expansion and for in vivo behavior of these cells at the site of injury
    corecore