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Abstract

Mesenchymal progenitor cells are broadly distributed across perivascular niches—an

observation conserved between species. One common histologic zone with a high fre-

quency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia,

the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The

diversity and functions of (re)generative cells present in this outermost perivascular niche

are under intense investigation; we have reviewed herein our current knowledge of

adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of

interest to functionally segregate adventicytes are discussed, including CD10, CD107a,

aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes

(such as CD10+, CD107alow, and CD140a+ cells) have stronger osteogenic potential and

promote bone formation in vivo. Recent bone tissue engineering applications of adventitial

cells are also presented. A better understanding of perivascular progenitor cell subsets

may represent a beneficial advance for future efforts in tissue repair and bioengineering.
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Significance statement

Perivascular cells are a heterogeneous population of mesenchymal progenitors. The outermost

layer of the vessel wall is a niche with high density and diversity of progenitors, also called

adventitial cells. Several antigens including CD10, CD107, CD140a, as well as aldehyde dehy-

drogenase activity have been identified in adventitial cells showing distinct differentiation

potential with implications for bone repair. In particular, adipose tissue holds great promise for

bone tissue engineering due to its high content of mesenchymal progenitors including bone-

forming subsets. This publication highlights the most relevant basic and translational research of

perivascular cell biology with a focus on bone regeneration.
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1 | INTRODUCTION

From her observations of chicken blastoderms within her anatomy

laboratory at Johns Hopkins University, Florence Sabin concluded in

1917 that “Angioblasts and later endothelial cells give rise to red blood

cells.”1 This visionary insight into hematopoietic stem cell (HSC) biology,

more than 40 years before Till &McCulloch's discovery of blood cell pro-

genitors, received dazzling experimental confirmations from the 1970s,2

to result in recent years in the thorough anatomic, molecular, and devel-

opmental characterization of the “hemogenic endothelium.”3 Much later

in life, endothelial cells contribute to scarring in the infarcted myocar-

dium by transdifferentiating into fibroblasts4 in a reversible manner.5

Moreover, the embryonic dorsal aorta and other adult blood vessels host

potent skeletal myogenic progenitors,6 further illustrating the develop-

mental flexibility of some vascular cells. In a teleological perspective,

physical association of progenitor cells with blood vessels should permit

the ubiquitous dissemination of tissue regenerative potentials. Such a

tentative correlation between anatomy and function guided the search

for the native origin of mesenchymal stem cells (MSCs), the culture-

derivedmultilineage mesodermal progenitors that can be extracted from

all vascularized tissues.7 Markers expressed by perivascular cells had

been detected on cells from the human uterus that give rise to MSC like

progenitors.8 Then, some of us observed that pericytes, the mural cells

that ensheath capillaries and microvessels,9 purified by flow cytometry

from all human organs tested produce MSCs in culture,10 establishing a

perivascular distribution for the forerunners of these multipotent cells.

Purified pericytes have been used experimentally to engineer blood

vessels,11 and regenerate lung,12 skeletal muscle,13 cartilage,14 ischemic

limbs,15 tendon,16 and uterus.17 Besides, pericytes naturally contribute

to regenerating Leydig cells in the testis,18 satellite cells and myofibers in

skeletal muscle,19 white adipocytes,20 follicular dendritic cells,21 dental

cells,22 and fibroblasts in multiple tissues.23,24 Mesodermal lineage

potential is also present in the tunica media and tunica adventitia of larger

arteries and veins, where it has been studied in the context of pathologic

vascular remodeling.25,26 In agreement, presumptive MSCs have been

described in the human27 and murine vascular adventitia,28 allowing to

conclude that blood vessels of all sizes are repositories for mesodermal

progenitor cells. Quantitatively, the tunica adventitia represents a sub-

stantial reserve of primitive mesodermal progenitors29 of undisputable

pathophysiologic relevance and possible therapeutic significance. The

diversity and functions of (re)generative cells present in this outermost

perivascular niche are under intense investigation; we have reviewed

herein our current knowledge of adventitial cell potential with respect to

bone formation, in culture and in vivo.

2 | DIFFERENT CELL TYPES

2.1 | The osteoblastogenic potential of
perivascular adventitial cells

Adventitial cells (a.k.a. adventicytes), so-named as they lie in the tunica

adventitia of blood vessels, have a nondescript fibroblastic

morphology and at times appear to be in continuity with fascial con-

nective tissue. Defined as a CD34+CD146�Lin� cell population, we

and others have described their multipotency.27,28 The osteoblastic

potential of adventitial cells has been summarized in several recent

reviews.30,31 Perivascular adventitial cells participate directly in bone

formation and repair32,33 as well as indirectly induce bone repair via

interaction with native skeletal cells.34,35 Implanted perivascular cells

regenerate bone indirectly via pleiotropic mechanisms, including for

example release of extracellular vesicles (EV)34 as well as nonvesicular

paracrine effectors, such as bone morphogenetic proteins.36 For

example, human perivascular EVs induce osteoprogenitor cell prolifer-

ation, migration, and osteogenic differentiation to induce bone

repair.34 In contrast, human perivascular cells inhibit osteoclast forma-

tion and prevent bone graft resorption via nonvesicular paracrine

mechanisms.36 Negative regulators of osteoclast differentiation were

enriched within perivascular stem cells, including the decoy receptor

for RANKL osteoprotegerin (TNRSF11B), the Wnt and RANKL inhibi-

tor secreted frizzled-related protein-1 (SFRP1), anti-osteoclastic/axo-

nal guidance molecules such as semaphorin 3A (SEMA3A), and slit

guidance ligand 3 (SLIT3). The relative roles of human adventitial cells

and pericytes in bone repair were described recently by our group.37

Here, CD34+ adventitial cells have a more prominent synthetic role in

the formation of bone matrix, whereas CD146+ pericytes play a sup-

portive role in the induction of blood vessel ingrowth.37 Other

markers that typify adventitial cells have been described in mouse

models, including stem cell antigen-1 (Sca-1),38 Gli1,28 and platelet-

derived growth factor receptor (PDGFR) α.32 The expression of

PDGFRα on most adventitial cells brings to the fore the possible over-

lap in terminology between fibro-adipoprogenitor cells (FAPs) and

adventitial cells. Certainly soft tissue resident FAPs, like adventitial

cells, have been described to ossify under appropriate contexts.39,40

Although adventitial cells have been clearly identified as an osteo-

genic precursor, the heterogeneity within this cell population has been

increasingly documented.

3 | ROLES IN PATHOPHYSIOLOGIC
PROCESSES

3.1 | Cellular heterogeneity within the tunica
adventitia of mice

The functional study of subsets of adventitial cells has been possible

by the generation of different mouse models that helped track the ori-

gin and contribution of these cells during injury and disease as well as

tissue homeostasis. Indeed, different groups have identified subsets

of adventitial cells involved in fibrosis, calcification, and regeneration.

Earlier studies implicated Sca-1- and PDGFRβ-expressing adventitial

cells enriched for sonic hedgehog (Shh) signaling activity as cells with

a stem-like identity.41 For instance, Gli1+ adventitial cells are

myofibroblast progenitors and contribute to fibrosis in different

organs.42,43 Moreover, this same population of adventitial cells

expressing Gli1 can migrate to the intima, become osteoblast-like

1428 CELLULAR HETEROGENEITY OF PERIVASCULAR CELLS
D

ow
nloaded from

 https://academ
ic.oup.com

/stm
cls/article/39/11/1427/6514515 by U

niversity of Verona user on 19 April 2022



cells and contribute to vessel calcification during chronic kidney dis-

ease (CKD).28 In the bone marrow Gli1+ mesenchymal cells contribute

to bone marrow fibrosis and dysregulation of HSCs.43 In this context,

Gli1 appears to be a pan-marker of fibrotic cells in different organs

making it a potential therapeutic target. Nonetheless, the adventitia

shows high heterogeneity and other markers have been described.

Understanding of the mechanisms by which perivascular cells

contribute during the regeneration process is crucial to develop new

strategies to treat diseases such as fibrosis. In specific, the identifica-

tion of functional subsets is important to either inhibit or promote a

given cell fate and improve tissue regeneration. For example, Rafael

Kramann's group has recently reported a cell atlas of both human and

mouse kidney in which they identified subpopulations of mesenchy-

mal cells including perivascular cells as likely contributors to kidney

fibrosis and furthermore described Naked Cuticle Homolog 2 (Nkd2)

as a specific myofibroblast target.44

PDGFRα and PDGFRβ play key roles in mesenchymal biology.

Both of these receptors are involved in cellular proliferation, migra-

tion, and differentiation.45 Moreover, subsets of cells expressing

PDGFRα, PDGFRβ, or both have divergent functions in regeneration.

For example, PDGFRα+PDGFRβ+ perivascular cells within skeletal

muscle have been observed to have fibroadipogenic properties,

whereas PDGFRβ+PDGFRα� perivascular cells have regenerative/

myogenic features.32 In skeletal muscle and cardiac tissue, αv integrins

on PDGFRβ+ perivascular cells promote the formation of fibrotic tis-

sue.24 In adipose tissue, PDGFRα/PDGFRβ regulate cell differentia-

tion into white or brown adipocytes as well as transition into

myofibroblasts.46,47

The use of PDGFRα reporter activity within mouse white adipose

tissue to differentiate subsets of adventitial cells has been recently

described32 (Figure 1). PDGFRα reporter cells are located predominantly

in the inner layer of the adventitia, while the cell surface marker CD34

highlights the majority of this layer.32 Using fluorescence-activated cell

sorting (FACS) isolation of adventitial cell subsets, PDGFRα and CD34

coexpressing adventicytes showed greater osteogenic potential than

PDGFRα+ only or CD34+PDGFRα� cells.32 Indeed PDGFRα+ peri-

vascular cells demonstrated more stem cell features than other cell frac-

tions. In addition to higher proliferation rate, PDGFRα+ cells repopulated

the tunica adventitia more effectively than PDGFRα� perivascular cells

upon isolation and retransplantation. However, the stem-like identity of

PDGFRα-expressing adventitial cells was restricted to bone and adipose

lineages. For example, long-term lineage tracing failed to reveal any con-

tribution of PDGFRα-expressing adventicytes to the smooth muscle

medial layer in homeostatic conditions.32 When implanted with bone

graft material, PDGFRα+ cells participated in osteoblastogenesis to a

greater degree than PDGFRα� perivascular cells. Finally, upon stimula-

tion with BMP2, endogenous PDGFRα+ reporter cells and their cellular

descendants became osteoblasts, adipocytes, and new perivascular cells

within new-formed ossicles.32 These results parallel experimental studies

in skeletal muscle where a large portion of PDGFRα-expressing cells give

rise to dystrophic calcification and ossification during heterotopic bone

formation (Table 1).41

3.2 | Cellular heterogeneity of the human
adventitia

Less is known about the mechanism regulating vascular stem cells in the

human adventitia, and whether the subsets described in mice have anal-

ogous counterparts in the human vasculature. In vitro studies of FACS

sorted perivascular cells, transcriptomic analysis, and immunohistochem-

istry on tissue samples from healthy and diseased individuals can help us

understand the mechanisms by which these cells contribute to regenera-

tion and link findings from mouse models to human pathobiology. For

example, Kramann et al extended their findings on vascular calcification

during mouse CKD by performing Gli1 immunohistochemistry on human

arteries obtained from dialysis-dependent and non-CKD subjects.

Expression of Gli1 in non-CKD patients was mainly found in the

F IGURE 1 PDGFRα marks a
population of cells within the
tunica adventitia. A,
PDGFRαmT/mG reporter mice
contain green PDGFRα+ cells
within the tunica adventitia in the
inguinal fat pad. All other cells are
red. Nuclear counterstain appears
in blue. B, High magnification of
the tunica adventitia
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adventitial layer, whereas in dialysis-dependent patients Gli1 expression

was present in the calcified media and atherosclerotic plaque.28 This sug-

gests that Gli1 has similar functions in human and mouse arteries, making

it a possible therapeutic target in vascular calcification. We have identi-

fied cell subsets in the human adventitia expressing CD10 or CD107a,

and distinct differentiation potentials.33,48 Transcriptomic analysis of

human adventitial cells also revealed that high aldehyde dehydrogenase

(ALDH) activity marks stem cell-like cells.29 In this section, we will discuss

in detail these novel markers of the human adventitia (Table 1).

ALDH activity has been used as a marker of stem cells:

hematopoietic and neural stem and progenitor cells exhibit high

ALDH activity,49 also reported in adipose tissue50 and myogenic

progenitors.51 On the other hand, high ALDH activity has been

linked, in various cancers,52 to stem cell features such as tumor initi-

ation, clonogenic growth, self-renewal, and drug resistance.53,54

Hardy et al analyzed gene expression in single human pericytes and

adventitial cells further separated according to ALDH activity and

revealed the existence of a developmental hierarchy of human peri-

vascular cells, ranging from ALDH high adventicytes (most primitive)

to ALDH low pericytes (least primitive). Adventitial cells show a dis-

tribution of cells ranging from low to high ALDH activity, whereas

pericytes exhibit mostly low ALDH activity, suggesting that adventi-

tial cells contain more stem cell-like cells than pericytes

do. Therefore, the tunica adventitia and more specifically adventitial

cells with high ALDH activity may contain cells with stem cell prop-

erties.29 The stem cell properties of this subset of adventitial cells

may be related to the involvement of ALDH isoforms in the retinoic

acid (RA) pathway. For instance, the ALDH1 family of enzymes regu-

lates cell proliferation and differentiation by converting oxidase ret-

inaldehyde (retinal) to RA, which subsequently interacts with nuclear

receptors to promote gene transcription.28,55 Lastly, unpublished

data from our group indicate the existence of a specific isoform from

the ALDH1 family expressed in adventitial cells (Gomez-Salazar

et al, in preparation).

CD10, also known as neprilysin, or membrane metalloendopeptidase,

is a zinc-dependent metalloendoprotease involved in peptide signaling.

CD10 regulates the extracellular concentration of various peptides, chang-

ing the availability for receptor binding and therefore regulating biological

processes.48 Expression of CD10 plays key roles in the regulation of stem

cells by cleaving peptides which are then either activated or inhibited to

continue or stop the signaling cascade.56 For example, CD10 regulates cell

migration and angiogenesis through Akt, Rho, and FGF signaling.57,58

CD10 is also highly expressed in leukemia and in solid childhood tumors

including nephroblastoma and neuroblastoma,59 and is used as a marker

of good prognosis in certain types of leukemia.60 On the other hand,

CD10 expression also identifies normal stem cells in different tissues

including hematopoietic (lymphoid) progenitors, aswell as other organ sys-

tems.61,62 In the context of vascular biology, our group identified a novel

CD10+ adventitial progenitor cell type with higher proliferation rate and

osteogenic differentiation potential compared with the negative popula-

tion, suggesting pathological functions during vessel remodeling.48 Ding

et al showed that expression of CD10 by adventitial cells is regulated

through SHH/Gli1, which is interesting since Gli1 is involved in vessel cal-

cification. CD10+ adventitial cells express genes related to stem cell poten-

tial, such as SRY-box transcription factor 2 (SOX2) and NANOG, as well as

the cell proliferation-related gene cell cycle G1/S-specific cyclin D2

(CCND2). Moreover, CD10+ adventitial cells strongly express neural epi-

dermal growth factor-like 1 (NELL1), which is a promoter of bone develop-

ment.Whether bone regeneration or vascular calcification directly involve

CD10, or whether this is a mere marker of a functional cell subset within

the adventitia, is not known yet.

CD107a, also known as lysosome-associated membrane protein-1

(LAMP1), is a type 1 membrane protein highly expressed in lysosomes

and other intracellular vesicles.63 While CD107a is ubiquitously

expressed intracellularly, only a fraction of mammalian cells display

detectable surface CD107a. Our group recently identified surface

CD107a as a marker to segregate functionally relevant cells within the

human adventitial cell niche.33 CD107a immunoreactivity is found

most frequently within the outermost layers of blood vessels, and more

common in the outer tunica adventitia. FACS-derived CD107alow and

CD107ahigh stromal cells from human white adipose tissue have oppo-

site differentiation potentials. The CD107alow stromal component con-

tains a precursor cell population with high osteoblastogenic potential,

while CD107ahigh cells represent an adipocyte precursor cell. Trans-

criptomic analysis demonstrates that genes associated with adipogenic

differentiation, such as FABP4 (fatty acid binding protein 4), LPL (lipo-

protein lipase), PPARGC1A (PPARG coactivator 1 α), and CEBPA

(CCAAT enhancer binding protein α), are highly expressed among

CD107ahigh stromal cells. Conversely, negative regulators of

adipogenesis, such as KLF2 (Krüppel-like Factor 2), KLF3, SIRT1 (sirtuin

1), and DDIT3 (DNA damage inducible transcript 3), are increased

among CD107alow stromal cells. In addition, CD107alow stromal cells

are enriched for signaling pathways associated with bone formation

and cellular respiration and metabolism, including Wnt/β-catenin sig-

naling, oxidative phosphorylation, and glutathione metabolism.

CD107alow cells also drive higher osteogenic differentiation in vivo.

Xenotransplantation confirmed significant quantitative differences in

bone generation among CD107a cellular subsets. Briefly, an accumula-

tion of new bone at 8 weeks was observed after intramuscular implan-

tation in NOD-SCID mice of CD107alow rather than CD107ahigh sorted

TABLE 1 Phenotypes and
functionalities of arterial adventitial cells
in man and mice

Markers Organisms Function Reference

ALDHhigh Human Osteogenic and adipogenic potential (predicted) Hardy et al29

PDGFRα+ Mice Osteogenic and adipogenic potential Wang et al32

CD107ahigh Human Adipogenic potential Xu et al33

CD10+ Human Osteogenic potential Ding et al48
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cells. Human CD107alow cells also increased posterolateral lumbar

spine fusion in athymic rats. Analyses performed after 8 weeks demon-

strated 62.5% spine fusion among CD107alow cell-treated animals,

whereas CD107ahigh cell-transplanted animals only showed 37.5%

fusion. In summary, these studies pointed to CD107alow mesenchymal

cells as a cell subset with higher osteogenic potential. Interestingly, and

as expected from functional differences, zones of expression of CD10

and CD107a within the tunica adventitia of vessels are distinct

(Figure 2).

4 | CLINICAL APPLICATION AND
PERSPECTIVES

Despite the high number of preclinical studies showing positive

results with the use of mesenchymal progenitor cells, their use in the

clinical setting is limited.64 Among the factors affecting efficiency is

the use of total cell preparations containing subsets that may hinder

the efficacy of regeneration, resulting in inconsistent clinical out-

comes. Moreover, clonal selection within total cell preparations may

further reduce numbers of highly regenerative progenitor cells. Our

group specially focused on elucidating functional heterogeneity of

perivascular cells that may contribute to standardizing cell prepara-

tions and improving clinical outcomes. For instance, we have shown

that CD10+ cell preparations have increased osteogenic potential,

which will likely enhance regeneration in skeletal injuries. Tailoring of

cell therapies for specific pathologies may represent a step forward in

realizing the potential of multipotent progenitor cells for tissue

engineering.7

Not discussed here, the vehicle or scaffold for cell deployment is

also vitally important for efforts in skeletal tissue regeneration. Pro-

genitor cells are highly influenced by their microenvironment, and the

physical and molecular characteristics of a given scaffold will result in

shifts in cell phenotype and functional outcomes in terms of tissue

formed. One such example using human perivascular cells was

recently reported, where tunable supramolecular hydrogels along with

different stiffnesses exert changes in pericyte differentiation toward

osteogenic and chondrogenic lineages.65

5 | CONCLUSION

Despite its relatively unremarkable histologic appearance, the tunica

adventitia houses a wealth of cell types—some of which have mesen-

chymal progenitor cell attributes. This brief review covered only some

of the established and emerging markers in mouse and human tissues

that resolve functionally relevant subsets of perivascular cells. In addi-

tion to harboring progenitor cells, the adventitial layer is a major site

of accumulation of immune cells including macrophages, lymphocytes,

mast cells, and dendritic cells that carry out important surveillance and

innate immune functions in response to foreign antigens and play a

role in vascular pathologies including atherosclerosis and tissue fibro-

sis.66 Whether a specific subset of mesenchymal progenitor cells in

this perivascular niche is involved in immune regulation and subse-

quent tissue remodeling is yet to be investigated. A critical point is

that many markers used to purify cells within the tunica adventitia are

also present in minor degrees in other cellular locations, such as the

perineural tissues or fascia of white adipose tissue. The fascia is a

F IGURE 2 CD10 and CD107a mark distinct subpopulations within the tunica adventitia. A-E, Immunofluorescent staining for CD107a, CD10,
and CD34 in an artery within human subcutaneous white adipose tissue. A, Whole vessel in cross-section showing CD34 expression in the
endothelial and adventitial layers. CD10 and CD107a expression are seen on different subsets in the inner and outer adventitia. B-E, High
magnification of the tunica adventitia
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framework of connective tissue that envelops and separates organs

and tissues.67 In adipose tissue, the fascia contains preadipocytes with

high differentiation potential.68 Cells in the fascia express markers

shared with perivascular cells such as CD34 and CD44.69 In a similar

manner, perineural cells express markers also found in mesenchymal

cells such as vimentin, CD34, and α-SMA.70,71 Moreover, during

development in zebrafish and mouse, Schwann cell precursors give

rise to mesenchymal progenitors that subsequently differentiate into

chondrocytes and osteocytes, describing a common developmental

origin that may explain why they share similar expression patterns

with adventitial cells.72 All this exemplifies the complexity of purifying

and studying perivascular progenitor cells. Until we have more specific

markers for adventitial cells, purification of perivascular progenitors

will be prone to contain a fraction of other cell types. Importantly, the

inherent regenerative potential of specific subsets of adventitial cells

will further improve efficiency and consistency when used in bioengi-

neering approaches.

This review focused on adipose tissue perivascular cells, but simi-

lar cells within the bone marrow are also well characterized as

multipotent progenitors, termed CXC chemokine ligand (CXCL)

12-abundant reticular (CAR) cells or leptin-receptor-positive (LepR+)

stromal cells. LepR+ cells are the major source of bone and adipocytes

in adult bone marrow.73 Short-term ablation of CAR cells in vivo

impairs osteogenesis from marrow cells.74 Furthermore, CAR cells and

LepR+ stromal cells have been implicated in maintaining the quiescent

HSC pool and appear to be a key component of HSC niches.75,76

Mechanistically, Foxc1, expressed in CAR cells, is essential for HSC

maintenance and promotes CAR cell development by upregulating

CXCL12 and stem cell factor expression.77 In addition, the transcrip-

tion factor early B-cell factor 3 (Ebf3) is preferentially expressed in

CAR/LepR+ cells, required to create HSC niches and maintain spaces

for HSCs.78 In contrast to adipose tissue as discussed above, bone

marrow perivascular cells are primarily housed within microvessels

and have a perivascular position consistent with pericytes. To our

knowledge, adventitial cells have not been isolated or characterized

from skeletal sources.

Several unanswered questions regarding these recent findings are

most notable. For example, distribution of novel markers such as

CD10 and CD107a suggests a microarchitectural spatial organization

of the tunica adventitia within fat tissue that had been previously

under-recognized. Yet, the broader spatial relations between adventi-

tial cells, and whether these are conserved across organ systems

remain unknown. Most obviously, the hunt for a definitive stem cell

within the tunica adventitia—one with self-renewal potential—is a mat-

ter of considerable interest. Certainly, identification of more primi-

tive/progenitor cell types within vessel walls has broad implications

for vascular biology, but also usefulness in the field of tissue engineer-

ing and regenerative medicine.
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