
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cardiac Repair and Regeneration: The Value of Cell Therapies

Citation for published version:
Lerman, DA, Alotti, N, Levente Ume, K & Peault, B 2016, 'Cardiac Repair and Regeneration: The Value of
Cell Therapies' European Cardiology Review, vol. 11, no. 1. DOI: 10.15420/ecr.2016:8:1

Digital Object Identifier (DOI):
10.15420/ecr.2016:8:1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
European Cardiology Review

Publisher Rights Statement:
Deposit permitted by the publisher

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.15420/ecr.2016:8:1
https://www.research.ed.ac.uk/portal/en/publications/cardiac-repair-and-regeneration-the-value-of-cell-therapies(443b879a-d5cd-44b1-bd2a-98b3f76f5655).html


1©  R A D C L I F F E  C A R D I O L O G Y  2 0 1 6

Cardiac Repair and Regeneration: The Value of Cell Therapies

Acute myocardial infarction (AMI) is still a major public health problem 

worldwide, causing high rates of morbidity and mortality. In the United 

States, nearly one million patients suffer from AMI each year.1 In the UK, 

around 80,000 people died from coronary heart disease (CHD) in 2010.2

The current approach to the treatment of myocardial infarction 

involves early revascularisation with percutaneous coronary 

intervention (PCI) or coronary artery bypass grafting (CABG), followed 

by the medical management of atherosclerotic risk factors, late 

ventricular remodelling and cardiac arrhythmias.

Improvements in the treatment of AMI, especially use of reperfusion 

therapy, have led to larger numbers of survivors. In patients who 

would have survived despite reperfusion therapy, use of this 

treatment should lead to greater myocardial salvage and a reduced 

extent of ventricular injury in many. However, others who might not 

have survived previously may now do so, but with substantial left 

ventricular damage.3,4 The net consequence of these two opposing 

effects on the early and later risk of developing heart failure after AMI 

is uncertain.

Several clinical trials and registries, despite methodological 

differences, tend to agree that heart failure is a common occurrence 

after AMI, and there has been concern that an increasing pool of 

survivors of AMI might fuel an ‘epidemic’ of heart failure.5,6

Patients with chronic heart failure (CHF) have a mortality of 20 % within 

the first year after diagnosis.2 CHF accounts for roughly 70,000 deaths in 

the UK each year, corresponding to an average of 190 deaths per day.2

Despite recent advances in medical and device therapy and 

improvements in care over the past 20 years, the outlook for patients 

with heart failure remains poor, and survival rates are worse than 

those for bowel, breast or prostate cancer.7–9 Therefore, any new 
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treatment modality that benefits heart failure patients has the 

potential to result in a dramatic improvement in health outcomes and 

substantial cost savings for the community.

Ventricular remodelling after AMI involves replacing a significant 

amount of cardiomyocyte cell mass with fibrotic tissue, which results 

in contractile dysfunction. This degenerative process is not always 

irreversible; depending on the extent of damage and age of the subject, 

some spontaneous regeneration of the cardiac muscle may occur, 

which might be of key importance in the next generation of treatment 

modalities for such a severe and frequently deadly condition. The identity 

of the stem cells involved in cardiac repair is, however, still uncertain. 

Several novel treatment strategies are emerging, aiming at each stage 

of the pathological remodelling process, including stem cell treatments, 

paracrine signalling, microRNA-modification of key signalling events and 

tissue engineering. Cardiomyoplasty and stem cell therapy are generating 

great expectation to treat different types of cardiac diseases, including 

AMI, refractory angina and CHF. Effective medical treatments of these 

conditions will produce crucial improvement in overall health outcomes 

and substantial cost savings for the National Health Service (NHS).

Pathophysiology of Myocardial Infarction
Myocardial ischaemia may result from either a rise in metabolic demand or 

a reduction of oxygen and nutrient supply to the myocardium. Myocardial 

infarct occurs if the demand/supply mismatch is enough to trigger 

cellular necrotic and apoptotic mechanisms within cardiomyocytes. 

Several conditions are associated with an increased myocardial metabolic 

demand, such as severe hypertension, severe aortic stenosis, other 

valvular pathologies and low cardiac output syndromes. Not only do 

these conditions increase the metabolic demand, but they also have the 

capability to reduce the coronary perfusion by lowering the mean aortic 

pressure. Infarction can also be caused by other conditions that are 

characterised by thromboembolic or atherosclerotic stenosis/occlusion 

of coronary arteries, leading to ischaemia primarily by decreasing the 

delivery of oxygen and nutrients to the myocardium.10

Myocardial Repair after Myocardial Infarction
There are several cellular changes that occur in the myocardium 

following myocardial infarction. During the first 6–12 hours, a process 

of coagulative necrosis occurs, and the fibres at the periphery of 

the infarct become elongated and narrowed with signs of vacuolar 

degeneration. Concomitantly, oedema and neutrophils are observed 

in the intercellular spaces. This process lasts for 3 to 4 days. Following 

this stage, the necrotic myocytes are removed by macrophages, 

which may be actively phagocytic for 7 to 10 days. Finally, granulation 

tissue with loose collagen fibres and copious capillaries commence 

the healing and repair processes, in which the necrotic cardiac 

muscle cells are replaced by a collagen scar.10

Cardiac Regeneration and Cell Therapy
The heart, which had been considered as a terminally developed organ 

with no potential for regeneration in post-natal life, has recently been 

recognised to possess some intrinsic reparability. Currently, there are 

two complementary theories about the process of intrinsic repair in 

the heart after an ischaemic injury: (1) cardiomyocytes re-enter the cell 

cycle and start the process of proliferation, regeneration and repair of 

the necrotic tissue;11,12 and (2) certain endogenous cardiac stem cells 

undergo growth and differentiation, regulated either by secreted 

inflammatory factors or autocrine regulation.13,14 Both mechanisms 

may be involved in the process of heart regeneration.15 Currently, the 

research focus is on how to translate the preclinical cell-based results 

into effective clinical treatment. In order to repair the human heart, 

it is crucial to identify the appropriate cell type and optimal route to 

deliver it. The selected cells should be able to differentiate into mature 

cardiomyocytes and achieve electrical integration with mechanical 

coupling. They should also have the capability to repair the heart via 

paracrine effects. Importantly, delivery of such cells should be done 

with careful consideration of the risks and benefits to the patient. 

Possible delivery methods include intravenous, intracoronary or 

intramyocardial.16 In selecting appropriate cells, one needs to know 

each cell’s individual potential: its regenerative activity (ESC, iPSC, 

and endogenous cardiac stem cells), paracrine effects (MSC) and 

angiogenesis activity (endothelial precursors).

Endogenous Cardiac Progenitors
There are three different embryonic cardiac cell precursors: the 

cardiac mesoderm; the neural crest cells; and the pro-epicardial 

territory. Each of the original precursors will turn into different cardiac 

structures, as follows. (1) Cardiac mesoderm becomes endocardial 

cells, atrial myocytes and ventricular myocytes. (2) Cardiac neural 

crest becomes aorta smooth muscle cells and autonomic nervous 

system. (3) Pro-epicardium becomes smooth muscle of coronary 

arteries, fibroblasts, endothelium of coronary arteries.17–19

Recently, multipotent stem cells were identified in each one of the 

layers of human blood vessels. Myogenic endothelial cells (MECs) 

are located in the intima of blood vessels, whereas pericytes and 

adventitial cells (ACs) are located in the media and adventitia, 

respectively. MECs and pericytes have the capability to regenerate 

myofibres in dysfunctional skeletal muscles and to improve cardiac 

contractility following AMI.19

Recently, cardiogenic progenitor cells (CPCs) were detected in the adult 

heart. It is still not completely clear whether CPCs originate from the 

bone marrow, or there are populations of embryonic cells localised in 

the right atrium and right ventricle. Also, there is still ongoing research 

to determine the participation of these cells in the physiological turnover 

of cardiac myocytes and vascular endothelial cells in the absence of 

myocardial injury.20 CPCs represent 1 % of the total cell population in the 

heart and are divided into three groups so far identified (c-Kit+, Sca-1+ 

and ISL-1+ cells) according to the expression of membrane markers.20 

c-Kit+ cardiogenic stem cells express pluripotency, clonogenicity and 

self-renewal capabilities, and differentiate into myogenic, vascular 

endothelial and smooth muscle lines in vitro. These cells can regenerate 

the ischaemic myocardium in animal models.21,22 The group of CPCs 

expressing Sca-1+ interact with a homogeneous cell population in foetal 

and adult human hearts and show self-renewal properties together with 

active participation in cell signalling and cell adhesion.23

It is possible to differentiate Sca-1+ CPCs into cardiomyocytes by 

using 5-azacytidine. 5-Azacytidine is similar to cytidine, a nucleoside 

found in either DNA or RNA. The mechanism of action of this drug is 

through inhibition of the enzyme methyltransferase. 5-Azacytidine is 

incorporated into the structure of DNA and RNA instead of cytidine, 

inhibiting the synthesis of proteins within the cells.24 Additionally, 

the activation of extracellular signal-related kinases (ERK) by 

5-azacytidine seems to trigger the differentiation of human MSCs into 

cardiomyocytes in vitro.25 In vitro differentiation to cardiomyocytes 

appears to involve the receptor for bone morphogenic proteins 

like BMPR1A.26 Differentiated murine Sca-1+ cells can be detected 
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as mature cardiomyocytes after intravenous transfusion following 

myocardial ischaemia and necrosis in rats.26

A group of stem cells is found in the hearts of newborn mice, rats 

and humans. Neonatal mouse hearts have cells that express the 

transcription factor ISL-1 together with two more factors: Nkx2.5 and 

GATA4, which are crucial transcription factors that participate actively in 

the initial stages of cardiogenesis, but don’t express either c-Kit or Sca-

1.26,27 These cells can differentiate into cardiomyocyte phenotypes with 

intact calcium cycling. They produce action potentials when cultured 

together with neonatal myocytes.27,28 These findings allow the study of 

the molecular pathways linked to the differentiation of ISL-1+ cells into 

the different lineages in either postnatal or embryonic hearts. The limited 

capacity of human cardiomyocytes to regenerate in vivo is responsible 

for the development of heart failure after infarction. Understanding the 

molecular mechanisms involved in the differentiation of the embryonic 

heart is of crucial importance in the design of effective regenerative 

stem cell therapies to treat patients with cardiac injury.

Selection of Cell Types
There are two important mechanisms by which stem cells may work. 

(1) Paracrine effect of the cells: SKMs, BMMNCs and MSCs produce 

several cytokines and growth factors that increase angiogenesis, 

reduce apoptosis, decrease fibrosis and induce cardiac regeneration. 

Ischaemic patients can especially benefit from the paracrine effect, 

which enhances perfusion.29–31 (2) Trans-differentiation of the stem 

cells’ phenotypes into cardiomyocytes and replacement of injured 

cells, increasing the contractility of the injured tissue.

Bone marrow MSCs, adipose-tissue-derived stromal cells and 

pericytes are known to produce cardio-protective cytokines that 

could be enhanced by genetic engineering.30–32 These cells also have 

immunosuppressive properties, which allows their usage as potential 

allogenic drugs.33 Additionally, the cell factors can induce regeneration 

from myocardial niches of tissue-resident stem cells. The paracrine 

effect alone would not be enough to relieve severe heart failure 

with extended scars as it would require cardiac regeneration to 

complete the healing process. The cells should be able to contract 

and coordinate each other through Connexin-43, a protein involved in 

the myofibrillar coupling structure, thus avoiding lethal arrhythmias.34

Cardiac-committed stem cells could be extracted from endomyocardial 

biopsies or during CABG, expanded in vitro and reinjected. Current 

clinical human trials, such as Stem Cell Infusion in Patients with 

Ischaemic Cardiomyopathy (SCIPIO: cells harvested from right atrial 

appendage during CABG, which uses c-Kit + CSCs) and Cardiosphere-

derived Autologous SCs to Reverse Ventricular Dysfuntion (CADUCEUS: 

endomyocardial biopsy, which uses CDCs), have been showing 

promising results.35,36 In these trials, the cells expanded in vitro are 

injected into the coronary arteries in the catheterisation laboratory. 

In contrast, the Autologous Human Cardiac-derived Stem Cell to Treat 

Ischaemic Cardiomyopathy (ALCADIA) trial involves the delivery of 

the cells into the myocardium during CABG. Cardiac-derived stem 

cells are extracted from endomyocardial biopsies, expanded and 

then delivered to the heart during CABG surgery by intramyocardial 

injections then a biodegradable gelatin hydrogel sheet containing 

fibroblast growth factor is implanted on the epicardium.37 The ongoing 

problem is to clarify the characterisation of the cell phenotypes, as 

current phenotypic differences could correspond to the same cell in a 

different stage of development.38

The CADUCEUS trial uses a mixed population of stem cells 

denominated by cardiospheres of which mesenchymal stem cells are 

a big proportion.39,40 The SCIPIO trial works with c-Kit cells; whereas 

ALCADIA uses a mixed population extracted from endomyocardial 

biopsies and cultured for a month.

Within the pool of pluripotent stem cells, human ESCs could be 

committed toward cardiac lineage in vitro. These cells were obtained 

from disposed embryos in the context of assisted fertilisation. Results 

show good engraftment of differentiated cardiomyocytes, although the 

risk for teratomas and immune rejection needs further investigation.41–43

Another source of potential cells could be the pool of iPSCs that 

are selected from the patient’s somatic cells and reprogrammed to 

embryonic pluripotent status. Because of their oncogenic potential, 

they still need larger animal trials before they can be introduced to the 

market.44 MSCs and fibroblasts could be manipulated in vitro towards 

enhanced cardiopoiesis, thus increasing the intrinsic therapeutic 

benefit of the treated cells.45–47

Perivascular/Mesenchymal Stem Cells
The pericyte is the second most common cardiac cell type and its 

participation in cardiac pathophysiology and regenerative medicine 

is crucial.48 Pericytes are perivascular cells with contractile capability 

similar to those of the smooth muscle cells that wrap around blood 

vessels. These cells carry out several functions, including active 

participation in the development of vessels and their structural 

maintenance. Additionally, they can communicate with surrounding 

cells during the angiogenic process, either by direct contact or 

paracrine signalling.49 New insights into the use of pericyte transfusion 

as a potential new treatment for AMI showed that there was a 

significant improvement in the infarcted heart in a mouse model. The 

effect was achieved through lowering the threshold and the activation 

of an angiogenic program in the recipient model.50

The identification of pericytes in tissue is a complex process because 

there is no single reliable marker. Currently, several markers, such 

as NG2 (neuron-glial antigen 2), α-SMA (alpha smooth muscle actin) 

and PDGFR-β (beta-type platelet-derived growth factor receptor), are 

used, each staining a subset of pericytes. Additionally, CD146 stains 

pericytes and a subset of endothelial cells; CD34 stains endothelial and 

progenitor cells; and CD31 and CD144 stain mature endothelial cells. 

Histologically, pericytes are identified as cells positive for CD146 but 

negative for endothelial markers such as CD34, CD31 or CD144. The 

NG2 marker is a chondroitin sulphate proteoglycan that can be found on 

the surface of pericytes and a small subset of glial and endothelial cells 

and is expressed by SMA-negative pericytes, either in micro-vessels 

or in the intimal layer of large vessels.51 α-SMA is present in vascular 

smooth muscle cells and in pericytes. This marker was identified in the 

microfilament bundles responsible for pericyte contractile functions.52 

PDGFR-β is a useful abundant pericyte marker.53 Pericytes from mice that 

have abnormal PDGFR-β receptors exhibit micro-vascular abnormalities 

leading to lethal micro-haemorrhages and oedema.54 CD146, also 

known as Mel-CAM, MUC18, A32 antigen and S-Endo-1, is a specific 

membrane glycoprotein that can function as a Ca2+ independent cell 

adhesion molecule with participation in heterophilic activity between 

cells. CD146 is part of the immunoglobulin gene superfamily.55 CD34 is a 

trans-membrane protein expressed in either haematopoietic progenitor 

cells or vascular endothelial cells. In addition, CD34 takes an active part 

in the regulation of cell migration and differentiation.56



Cardiac Repair and Regeneration: The Value of Cell Therapies

E U R O P E A N  C A R D I O L O G Y  R E V I E W4

Pericytes have been identified in several human organs, including 

skeletal muscle, pancreas, adipose tissue and placenta, using 

markers such as CD146, NG2, and PDGFR-β and absence of 

haematopoietic, endothelial and myogenic cell markers.57 Recent 

research demonstrated that human pericytes that are located 

around capillaries and micro-vessels can produce MSCs while in 

culture. Additionally, during the process of vascular regeneration and 

under the effect of growth factors, adventitial cells can undergo a 

phenotypic trans-differentiation into pericyte-like cells (see Figure 1).58  

Furthermore, there is clear evidence that pericytes contribute to 

cardiac repair by down-regulating immune cells via interaction with 

immunomodulatory cytokines and growth factors, following pericyte 

injection into ischaemic tissues.59

Clinical Applications
Current treatment protocols for AMI focus on reducing myocardial 

necrosis and irreversible damage by improving perfusion to the ischaemic 

area via medical or mechanical treatment such as CABG or PCI.60–62

The new potential cell-based treatments to deal with AMI derive from 

animal research in which mononuclear cells from bone marrow or 

peripheral blood were used in cardiac repair.63–68 Ongoing research in 

cardiac developmental and stem cell biology, as well as recent results 

from clinical trials SCIPIO and CADUCEUS using resident cardiac stem 

cells, have improved our understanding of in situ heart stem progenitor 

cells.69,70 The first non-randomised trials in humans showed that there 

was an improvement in cardiac function after the infusion of bone 

marrow stem cells and progenitor stem cells into the myocardium 

affected by the infarction.71–75 The stem cell types involved in the 

repair of cardiac tissue were first characterised by Stamm’s group in 

2003, when the infusion of CD133+ progenitor cells extracted from 

haematopoietic tissues were applied into the ischaemic cardiac 

myocardium. The result of this treatment was an improvement in the 

general revascularisation process.76 The first randomised multicentre 

trial in 2009 studied patients with severe left ventricular dysfunction as 

a consequence of AMI. The patients, who were infused with selected 

CD34+ and CXCR4+ cells and non-selected mononuclear cells into the 

lumen of their coronary tree, saw significant improvement in their left 

ventricular ejection fractionafter 6 months.77 The mechanism of action 

of such treatment seems to be either an increase in the angiogenesis 

activity and/or trans-differentiation of the cells into myocytes.78 The 

paracrine secretion of cytokines and other factors also increases 

vascular growth, favours cardiac repair and reduces local fibrosis.79 

Latest evidence from trials shows that adult bone marrow stem cell 

treatment significantly improves cardiac function in post MI patients 

and there is no evidence of any increase in morbidity or mortality in 

this treated group of patients.80 Research into more effective stem cell 

treatments allowed the isolation of neonatal and ischaemic myocardial 

cells expressing the c-Kit, MRD-1, ISL-1 or Sca-1 stem cell markers but 

no haematopoietic cell markers.26,81 The number of these cells increased 

after an AMI, suggesting an active role of these cells in cardiac repair.82

Application in Acute Myocardial Infarction with 
Concurrent CABG
Intra-myocardial injection of BMMNCs during CABG is shown to have 

improved outcomes compared with those of CABG alone.83 The aim of 

treating patients with stem cells after or during CABG following an episode 

of acute MI is to reduce later remodelling, which is known to have a 

negative impact on long-term outcomes.83 Such treatment is carried out 

by the interventional cardiologist and consists of delivering BMMNCs into 

the new coronary bypass graft. Unfortunately, there is still a need for more 

randomised trials to assess the potential benefits currently observed.83–85 

Patients with poor left ventricular function undergoing CABG seem 

to be better at 6 months post-operative if trans-epicardial injection of 

CD133+ cells was performed intraoperatively.84,85 These observations likely 

result from the angiogenic potential of cells rather than cardiomyocyte 

regeneration, since the CD133+ marker is expressed in the membrane of 

the endothelial cells. The PRECISE (Percutaneous Robotically-enhanced 

Coronary Intervention) trials use adipose-tissue-derived cells collected 

with lipo-aspiration from patients at the time of surgery. These cells are 

subsequently reinfused into the endocardium of the left ventricle. The 

final results of this technique are still pending.86

Application in Refractory Angina
A second treatment indication under investigation is for refractory 

angina (angina caused by coronary insufficiency in the presence of 

coronary artery disease that cannot be controlled by a combination 

of medical therapy, angioplasty and coronary bypass surgery), which 

would involve stem cell treatment alone or complemented with 

surgery. The aim in this subset of patients would be to use the different 

cell types as carriers of multiple cytokines and growth factors in order 

to induce angiogenesis in the affected territory and thus relieve 

ischaemic symptoms.87,88 Patients with refractory angina are currently 

under investigation in randomised trials to assess the apparent 

efficacy of catheter-based endoventricular injection of CD34+ cell 

progenitors following treatment with granulocyte colony stimulating 

factor for 5 days in order to induce autologous cell mobilisation.89 

Another randomised trial in the population of patients with refractory 

angina used trans-cathether endomyocardial injections of bone 

marrow unfractionated derived cells (MNC), which seem to have some 

efficacy in improving clinical parameters but more data is needed to 

find significant differences between the study arms.90

Application in Chronic Heart Failure 
A third application under research is the treatment of chronic heart 

failure patients in whom the aim is to regenerate areas of non-contractile 

myocardial fibrosis to achieve physiological and functional contractility.88 

Patients with chronic heart failure were included in the randomised, 

double-blinded placebo-controlled Myoblast Autologous Grafting trial. 

In addition to CABG, patients with severe left ventricular function 

underwent trans-epicardial injections of either autologous SKMs from 

a skeletal muscle biopsy or placebo injected in and around the scar.91 

Figure 1: Origin of Potential Stem Cells. Modified from an 
Original Drawing by Mirko Corselli58
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The preliminary results showed that there was no improvement in the 

ejection fraction at 6 months, but patients injected with 800 million 

cells presented a reduction in left ventricular volumes.91 The effects 

of such treatment on early post-operative rhythm abnormalities and 

left ventricular remodelling require further investigation. Intracoronary 

injection of bone-marrow-derived cells with and without CABG was 

tested in trials, but the results remain inconclusive.92,93 Regarding 

complications related to the type of cells, ventricular arrhythmia with 

myoblast implantation is the most worrisome. 

Future Prospects
The future of cardiac repair may rely on understanding the intrinsic 

mechanisms that regulate endogenous mobilisation and or delivery 

of these cells. Additionally, further studies are needed to develop 

a deeper understanding of the properties of pericytes and their 

potential to migrate to different tissues away from their perivascular 

location and to play an active role in cardiac repair after ischaemia.49 

This would involve a more modern interpretation of the pericyte’s 

role as a cell type involved in reducing the threshold for the activation 

of an angiogenic program in cardiac repair.50 It has been shown 

that exogenous administration of MSCs could stimulate cardiac 

precursors to proliferate and differentiate either by stimulation of the 

endogenous c-Kit+ CSCs or by improving cardiomyocyte cell cycling.94

Despite advancements in the field of cardiac regenerative biology, 

the perivascular cell compartment within the myocardium and its 

regenerative capability have not yet been studied in-depth. Pericytes 

and perivascular cells have a crucial role in physiological functions, as 

well as in the development of pathological conditions.95–98 Additionally, 

the participation of perivascular cells in post-injury tissue fibrosis 

has been shown in recent studies. The cardiac pericyte is the 

second most common cardiac cell type, and has started to attract 

attention in cardiac pathophysiology and regenerative medicine.99 

There is ongoing research on the role of pericytes in the activation of 

endogenous cardiac progenitors during cardiac repair.

Recently, there has been increasing interest in the study of transcription 

factors and signalling pathways involved in cardiac regeneration. This has 

triggered the investigation of thymosin β4, which is a protein that can 

reactivate the cells’ embryonic developmental potential and stimulate 

epicardial cell trans-differentiation to vascular regeneration.100–103

Conclusions 
Autologous cardiac cellular therapies appear to be safe and effective. 

The future of cardiac repair may rely on understanding the intrinsic 

mechanisms that regulate endogenous mobilisation and/or delivery of 

these cells. However, a considerable amount of work is to be performed 

before cardiomyoplasty (cell therapy of the heart) can be proposed as 

a routine treatment. The first question is which cells to use, as a variety 

of embryonic stem cells, reprogrammed adult stem cells, natural adult 

multi-lineage stem cells and lineage-committed stem cells are presently 

available. Arguably, the latter endogenous cardiomyogenic stem cells 

might be the best choice for cardiac repair. Ideally, these cells should be 

directly stimulated in situ, avoiding extraction, purification, culture and 

reinjection. It is therefore of uttermost importance to understand the 

identity and function of the cells that constitute the natural environment 

of cardiac progenitors and support their quiescence, self-renewal and 

activation. Additionally, further studies are needed to develop a deeper 

understanding about the properties of pericytes, as these cells have the 

potential to migrate to different tissues away from their perivascular 

location and play an active role in the activation of cardiac repair after 

ischaemia.49 This would involve a modern interpretation of the pericyte’s 

role as a cell type involved in reducing the threshold for the activation of 

an angiogenic program in cardiac repair.50 ■

1.	 Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease 
and stroke statistics – 2009 Update: A Report from the 
American Heart Association Statistics Committee and Stroke 
Statistics Subcommittee. Circulation 2009;119:e21–e181.  
DOI: 10.1161/CIRCULATIONAHA.108.191259; PMID: 19171871

2.	 Townsend N, Williams J, Bhatnagar P, et al. Cardiovascular 
disease statistics, 2014. British Heart Foundation: London.

3.	 Guidry UC, Evans JC, Larson MG, et al. Temporal trends  
in event rates after Q-wave myocardial infarction: the 
Framingham Heart Study. Circulation 1999;100:2054–9. DOI: 
10.1161/01.CIR.100.20.2054; PMID: 10562260

4.	 Steg PG, Dabbous OH, Feldman LJ, et al. Global Registry 
of Acute Coronary Events Investigators. Determinants 
and prognostic impact of heart failure complicating 
acute coronary syndromes: observations from the Global 
Registry of Acute Coronary Events (GRACE). Circulation 
2004;109:494–9. DOI: 10.1161/01.CIR.0000109691.16944.DA; 
PMID: 14744970

5.	 Jhund PS, McMurray JJ. Heart failure after acute 
myocardial infarction: a lost battle in the war on heart 
failure? Circulation 2008;118:2019–21. DOI: 10.1161/
CIRCULATIONAHA.108.813493; PMID: 19001032

6.	 Hellermann JP, Jacobsen SJ, Redfield MM, et al. Heart  
failure after myocardial infarction: clinical presentation and 
survival. Eur J Heart Fail 2005;7:119–25. DOI: 10.1016/ 
j.ejheart.2004.04.011; PMID: 15642543

7.	 Brenner H, Bouvier AM, Foschi R, et al. Progress in 
colorectal cancer survival in Europe from the late 1980s to 
the early 21st century: the EUROCARE study. Int J Cancer 
2012;131:1649–58. DOI: 10.1002/ijc.26192; PMID: 21607946

8.	 Coleman MP, Formn D, Bryant H, et al. Cancer survival in 
Australia, Canada, Denmark, Norway, Sweden, and the 
UK, 1995–2007 (the International Cancer Benchmarking 
Partnership): an analysis of population-based cancer  
registry data. Lancet 2011;377:127–38. DOI: 10.1016/ 
S0140-6736(10)62231-3; PMID: 21183212

9.	 Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and 
survivorship statistics, 2012. CA Cancer J Clin 2012;62: 
220–41. DOI: 10.3322/caac.21149; PMID: 22700443

10.	 Cotran RS, Kumar V, Robbins SL (eds). Robbins Pathologic Basis 
of Disease. 5th ed. Philadelphia, PA: WB Saunders, 1994.

11.	 Bersell K, Arab S, Haring B, et al. Neuregulin1/ErbB4 signaling 
induced cardiomyocyte proliferation and repair of heart 

injury. Cell 2009;138:257–70. DOI: 10.1016/j.cell.2009.04.060; 
PMID: 19632177

12.	 Kühn B, Del Monte F, Hajjar RJ, et al. Periostin induces 
proliferation of differentiated cardiomyocytes and promotes 
cardiac repair. Nat Med 2007;13:962–9. DOI: 10.1038/
nm1619; PMID: 17632525

13.	 Gnecchi M, He H, Noiseux N, et al. Evidence supporting 
paracrine hypothesis for Akt-modified mesenchymal 
stem cell-mediated cardiac protection and functional 
improvement. FASEB J 2006;20:661–9. DOI: 10.1096/ 
fj.05-5211com; PMID: 16581974

14.	 Ventura C, Cantoni S, Bianchi F, et al. Hyaluronan mixed 
esters of butyric and retinoic acid drive cardiac and 
endothelial fate in term placenta human mesenchymal stem 
cells and enhance cardiac repair in infarcted rat hearts. J Biol 
Chem 2007;282:14243–52. DOI: 10.1074/jbc.M609350200; 
PMID: 17363374

15.	 Ventura C. Cardiomyocyte proliferation: paving the way 
for cardiac regenerative medicine without stem cell 
transplantation. Cardiovasc Res 2010;85:643–4. DOI:  
10.1093/cvr/cvp422; PMID: 20051386

16.	 Bartunek J, Dimmeler S, Drexler H, et al. The consensus of the 
task force of the European Society of Cardiology concerning 
the clinical investigation of the use of autologous adult stem 
cells for repair of the heart. Eur Heart J 2006;27:1338–40. DOI: 
10.1093/eurheartj/ehi793; PMID: 16543252

17.	 Harvey RP. Patterning the vertebrate heart. Nat Rev Genet 
2002;3:544–56. DOI: 10.1038/nrg843; PMID: 12094232

18.	 Brand T. Heart development: molecular insights into cardiac 
specification and early morphogenesis. Dev Biol 2003;258: 
1–19. DOI: 10.1016/S0012-1606(03)00112-X; PMID: 12781678

19.	 Chen CW, Corselli M, Péault B, et al. Human blood-vessel- 
derived stem cells for tissue repair and regeneration.  
J Biomed Biotechnol 2012;2012:597439. DOI: 10.1155/2012/ 
597439; PMID: 22500099

20.	 Henning RJ, Haley JA. Stem cells in cardiac repair. Future Cardiol 
2011;7:99–117. DOI: 10.2217/fca.10.109; PMID: 21174514

21.	 Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. 
Proc Natl Acad Sci U S A 2007;104:14066–73. DOI: 10.1073/
pnas.0706760104; PMID: 17709737

22.	 Beltrami A, Barlucchi I, Torella D, et al. Adult cardiac stem 
cells are multipotent and support myocardial regeneration. 
Cell 2003;114:763–76. DOI: 10.1016/S0092-8674(03)00687-1; 

PMID: 14505575
23.	 Van Vliet P, Roccio M, Smits AM, et al. Progenitor cells 

isolated from the human heart: a potential cell source 
for regenerative therapy. Neth Heart J 2008;16:163–9. 
PMID: 18566670

24.	 Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as 
inhibitors of DNA methylation: mechanistic studies and their 
implications for cancer therapy. Oncogene 2002;21:5483–95. 
DOI: 10.1038/sj.onc.1205699; PMID: 12154409

25.	 Qian Q, Qian H, Zhang X, et al. 5-Azacytidine induces cardiac 
differentiation of human umbilical cord-derived mesenchymal 
stem cells by activating extracellular regulated kinase. Stem  
Cells Dev 2012;21:67–75. DOI: 10.1089/scd.2010.0519; 
PMID: 21476855

26.	 Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells 
from adult myocardium: homing, differentiation, and fusion 
after infarction. Proc Natl Acad Sci U S A 2003;100:12313–8. 
DOI: 10.1073/pnas.2132126100; PMID: 14530411

27.	 Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ 
cardioblasts enter fully differentiated cardiomyocyte lineages. 
Nature 2005;433:647–53. DOI: 10.1038/nature03215; 
PMID: 15703750

28.	 Moretti A, Caron L, Nakano A, et al. Multipotent embryonic 
isl1+ progenitor cells lead to cardiac, smooth muscle, and 
endothelial cell diversification. Cell 2006;127:1151–65. DOI: 
10.1016/j.cell.2006.10.029; PMID: 17123592

29.	 Perez-Ilzarbe M, Agbulut O, Pelacho B, et al. Characterization 
of the paracrine effects of human skeletal myoblasts 
transplanted in infarcted myocardium. Eur J Heart Fail 
2008;10:1065–72. DOI: 10.1016/j.ejheart.2008.08.002; 
PMID: 18805052

30.	 Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived 
stromal cells express genes encoding a broad spectrum of 
arteriogenesis cytokines and promote in vitro and in vivo 
arteriogenesis through paracrine mechanisms. Circ Res 
2004;94:678–85. DOI: 10.1161/01.RES.0000118601.37875.AC; 
PMID: 14739163

31.	 Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic 
and atiapoptotic factors by hunman adipose stromal 
cells. Circulation 2004;109:1292–8. DOI: 10.1161/01.
CIR.0000121425.42966.F1; PMID: 14993122

32.	 Scherschel JA, Soonpaa MH, Srour EF, et al. Adult bone 
marrow-derived cells do not acquire functional attributes 

http://dx.doi.org/10.1093/eurheartj/ehi793
http://dx.doi.org/10.1016/S0012-1606(03)00112-X
http://dx.doi.org/10.1016/S0092-8674(03)00687-1
http://dx.doi.org/10.1016/j.cell.2006.10.029


Cardiac Repair and Regeneration: The Value of Cell Therapies

E U R O P E A N  C A R D I O L O G Y  R E V I E W6

of cardiomyocytes when transplanted into peri-infarct 
myocardium. Mol Ther 2008;16:1129–37. DOI: 10.1038/
mt.2008.64; PMID: 18431364

33.	 Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal 
stem cells suppress lymphocyte proliferation in vitro and 
prolong skin graft survival in vivo. Exp Hematol 202;30:42–8. 
DOI: 10.1016/S0301-472X(01)00769-X; PMID: 11823036

34.	 Song H, Hwang HJ, Chang W, et al. Cardiomyocytes from 
phorbol myristate acetate-activated mesenchymal stem cells 
restore electromechanical function in infarcted rat hearts. 
Proc Natl Acad Sci U S A 2011;108:296–301. DOI: 10.1073/
pnas.1015873107; PMID: 21173226

35.	 Narazaki G, Uosaki H, Teranishi M, et al. Directed and 
systematic differentiation of cardiovascular cells from mouse 
induced pluripotent stem cells. Circulation 2008;118: 
498–506. DOI: 10.1161/CIRCULATIONAHA.108.769562; 
PMID: 18625891

36.	 Zhang J, Wilson GF, Soerens AG, et al. Functional 
cardiomyocytes derived from human induced pluripotent 
stem cells. Circ Res 2009;104:e30–41. DOI: 10.1161/
CIRCRESAHA.108.192237; PMID: 19213953

37.	 Yacoub MH, Terrovitis J. CADUCEUS, SCIPIO, ALCADIA: Cell 
therapy trials using cardiac-derived cells for patients with 
post myocardial infarction LV dysfunction, still evolving. Glob 
Cardiol Sci Pract 2013;2013:5–8. DOI: 10.5339/gcsp.2013.3; 
PMID: 24688997

38.	 Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: 
at the heart of regeneration. J Mol Cell Cardiol 2011;50: 
296–303. DOI: 10.1016/j.yjmcc.2010.07.006; PMID: 20643135

39.	 Davis DR, Kizana E, Terrovitis J, et al. Isolation and expansion 
of functionally competent cardiac progenitor cells directly 
from heart biopsies. J Mol Cell Cardiol 2010;49:312–21.  
DOI: 10.1016/j.yjmcc.2010.02.019; PMID: 20211627

40.	 Mishra R, Vijayan K, Colletti EJ, et al. Characterization 
and functionality of cardiac progenitor cells in congenital 
heart patients. Circulation 2011;123:364–73. DOI: 10.1161/
CIRCULATIONAHA.110.971622; PMID: 21242485

41.	 Li Z, Lee A, Huang M, et al. Imaging survival and function of 
transplanted cardiac resident stem cells. J Am Coll Cardiol 
2009;53:1229–40. DOI: 10.1016/j.jacc.2008.12.036;  
PMID: 19341866

42.	 Caspi O, Huber I, Kehat I, et al. Transplantation of human 
embryonic stem cell-derived cardiomyocytes improves 
myocardial performance in infarcted rat hearts. J Am Coll 
Cardiol 2007;50:1884–93. PMID: 17980256

43.	 Blin G, Nury D, Stefanovic S, et al. A purified population of 
multipotent cardiovascular progenitors derived from primate 
pluripotent stem cells engrafts in postmyocardial infarcted 
nonhuman primates. J Clin Invest 2010;120:1125–39.  
DOI: 10.1172/JCI40120; PMID: 20335662

44.	 Pera MF. Stem cells: the dark side of induced pluripotency. 
Nature 2011;471:46–7. DOI: 10.1038/471046a; PMID: 21368819

45.	 Behfar A, Yamada S, Crespo-Diaz R, et al. Guided 
cardiopoiesis enhances therapeutic benefit of bone marrow 
human mesenchymal stem cells in chronic myocardial 
infarction. J Am Coll Cardiol 2010;56:721–34. DOI: 10.1016/ 
j.jacc.2010.03.066; PMID: 20723802

46.	 Hahn JY, Cho HJ, Kang HJ, et al. Pre-treatment of 
mesenchymal stem cells with a combination of growth 
factors enhances gap junction formation, cytoprotective 
effect on cardiomyocytes, and therapeutic efficacy for 
myocardial infarction. J Am Coll Cardiol 2008;51:933–43. 
DOI: 10.1016/j.jacc.2007.11.040; PMID: 18308163

47.	 Ieda, M, Fu JD, Delgado-Olquin P, et al. Direct reprogramming 
of fibroblasts into functional cardiomyocytes by  
defined factors. Cell 2010;142:375–86. DOI: 10.1016/ 
j.cell.2010.07.002; PMID: 20691899

48.	 Nees S, Weiss D, Juchem G. Focus on cardiac pericytes. 
Pflugers Arch 2013;465:779–87. DOI: 10.1007/s00424- 
013-1240-1; PMID: 23443852

49.	 Bergers G, Song S. The role of pericytes in blood vessel 
formation and maintenance. Neuro Oncol 2005;7:452–64. 
DOI: 10.1215/S1152851705000232; PMID: 16212810

50.	 Katare R, Riu F, Mitchel K, et al. Transplantation of human 
pericyte progenitor cells Improves the repair of Infarcted 
Heart through activation of an angiogenic program Involving 
Micro-RNA-132. Circ Res 2011;109:894–906. DOI: 10.1161/
CIRCRESAHA.111.251546; PMID: 21868695

51.	 Ozerdem U, Grako KA, Dahlin-Huppe K, et al. NG2 
proteoglycan is expressed exclusively by mural cells during 
vascular morphogenesis. Dev Dyn 2001;222:218–27. 
DOI: 10.1002/dvdy.1200; PMID: 11668599

52.	 Skalli O, Pelte MF, Peclet MC, et al. Alpha-smooth 
muscle actin, a differentiation marker of smooth 
muscle cells, is present in microfilamentous bundles 
of pericytes. J Histochem Cytochem 1989;37:315–21. 
DOI: 10.1177/37.3.2918221; PMID: 2918221

53.	 Winkler EA, Bell RD, Zlokovic BV. Pericyte-specific expression 
of PDGF beta receptor in mouse models with normal and 
deficient PDGF beta receptor signalling. Mol Neurodegener 
2010;5:32. DOI: 10.1186/1750-1326-5-32; PMID: 20738866

54.	 Abramsson A, Lindblom P, Betsholtz C. Endothelial and 
nonendothelial sources of PDGF-B regulate pericyte 
recruitment and influence vascular pattern formation in 
tumors. J Clin Invest 2003;112:1142–51. PMID: 14561699

55.	 Shih IM. The role of CD146 (Mel-CAM) in biology and 
pathology. J Pathol 1999;189:4–11. PMID: 10451481

56.	 Ling G, Finger E, Gutierrez-Ramos JC. Expression of CD34 
in endothelial cells, hematopoietic progenitors and nervous 

cells in fetal and adult mouse tissues. Eur J Immunol 
1995;25:1508–16. PMID: 7542195

57.	 Crisan M, Yap S, Casteilla L, et al. A perivascular origin for 
mesenchymal stem cells in multiple human organs. Cell Stem  
Cell 2008;3:229–30. DOI: 10.1016/j.stem.2008.07.003; 
PMID: 18786417

58.	 Corselli M, Chen CW, Sun B, et al. The tunica adventitia 
of human arteries and veins as a source of mesenchymal 
stem cells. Stem Cells Dev 2012;21:1299–308. DOI: 10.1089/
scd.2011.0200; PMID: 21861688

59.	 Kovac A, Erickson MA, Banks WA. Brain microvascular 
pericytes are immunoactive in culture: cytokine, chemokine, 
nitric oxide, and LRP-1 expression in response to  
lipopolysaccharide. J Neuroinflammation 2011;8:139. 
DOI: 10.1186/1742-2094-8-139; PMID: 21995440

60.	 Rathore SS, Gersh BJ, Weinfurt KP, et al. The role of 
reperfusion therapy in paced patients with acute myocardial 
infarction. Am Heart J 2001;142:516–9. DOI: 10.1067/
mhj.2001.117602; PMID: 11526367

61.	 Ryan TJ. Percutaneous coronary intervention in st-elevation 
myocardial infarction. Curr Cardiol Rep 2001;3:273–9. 
PMID: 11406084

62.	 Siddiqui MA, Tandon N, Mosley L, et al. Interventional 
therapy for acute myocardial infarction. J La State Med Soc 
2001;153:292–9. PMID: 11480379

63.	 Deb A, Wang S, Skelding KA, et al. Bone marrow-derived 
cardiomyocytes are present in adult human heart: A study 
of gender-mismatched bone marrow transplantation 
patients. Circulation 2003;107:1247–9. DOI: 10.1161/01.
CIR.0000061910.39145.F0; PMID: 12628942

64.	 Jackson KA, Majka SM, Wang H, et al. Regeneration of 
ischemic cardiac muscle and vascular endothelium by adult 
stem cells. Journal of Clinical Investigation 2001;107:1395–402.  
PMID: 11390421

65.	 Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells 
regenerate infarcted myocardium. Nature 2001;410:701–5. 
DOI: 10.1038/35070587; PMID: 11287958

66.	 Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow  
cells repair the infarcted heart, improving function and  
survival. Proc Natl Acad Sci U S A 2001;98:10344–9. 
DOI: 10.1073/pnas.181177898; PMID: 11504914

67.	 Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal 
stem cells differentiate to a cardiomyocyte phenotype in the 
adult murine heart. Circulation 2002;105:93–8. DOI: 10.1161/
hc0102.101442; PMID: 11772882

68.	 Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel 
multipotent stem cells from human bone marrow regenerate 
myocardium after myocardial infarction. J Clin Invest 
2005;115:326–38. PMID: 15690083

69.	 Chien KR, Domian IJ, Parker KK. Cardiogenesis and the 
complex biology of regenerative cardiovascular medicine. 
Science 2008;322:1494–7. DOI: 10.1126/science.1163267; 
PMID: 19056974

70.	 Makkar RR, Smith RR, Cheng K, et al. Intracoronary 
cardiosphere-derived cells for heart regeneration after 
myocardial infarction (CADUCEUS): a prospective, 
randomised phase 1 trial. Lancet 2012;379:895–904.  
DOI: 10.1016/S0140-6736(12)60195-0; PMID: 22336189

71.	 Assmus B, Schachinger V, Teupe C, et al. Transplantation 
of progenitor cells and regeneration enhancement in 
acute myocardial infarction (TOPCARE-AMI). Circulation 
2002;106:3009–17. DOI: 10.1161/01.CIR.0000043246.74879.CD;  
PMID: 12473544

72.	 Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. 
Experimental and clinical regenerative capability of human 
bone marrow cells after myocardial infarction. Circulation 
2004;95:742–8. DOI: 10.1161/01.RES.0000144798.54040.ed; 
PMID: 15358665

73.	 Meyer GP, Wollert KC, Drexler H. Stem cell therapy: a 
new perspective in the treatment of patients with acute 
myocardial infarction. Eur J Med Res 2006;11:439–46. 
PMID: 17107878

74.	 Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted 
myocardium by autologous intracoronary mononuclear 
bone marrow cell transplantation in humans. Circulation 
2002;106:1913–8. DOI: 10.1161/01.CIR.0000034046.87607.1C; 
PMID: 12370212

75.	 Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic 
myocardium by intramyocardial autologous bone marrow 
mononuclear cell implantation. Lancet 2003;361:47–9.  
DOI: 10.1016/S0140-6736(03)12111-3; PMID: 12517468

76.	 Stamm C, Westphal B, Kleine HD, et al. Autologous 
bone-marrow stem-cell transplantation for myocardial 
regeneration. Lancet 2003;361:45–6. DOI: 10.1016/S0140-
6736(03)12110-1; PMID: 12517467

77.	 Tendera M, Wojakowski W, Ruzylllo W, et al. Intracoronary 
infusion of bone marrow-derived selected CD34+CXCR4+ 
cells and non-selected mononuclear cells in patients with 
acute STEMI and reduced left ventricular ejection fraction: 
results of randomized, multicentre Myocardial Regeneration 
Infarction (REGENT) Trial. Eur Heart J 2009;30:1313–21.  
DOI: 10.1093/eurheartj/ehp073; PMID: 19208649

78.	 Leri A, Kajstura J, Anversa P, et al. Myocardial regeneration 
and stem cell repair. Curr Probl Cardiol 2009;33:91–153.  
DOI: 10.1016/j.cpcardiol.2007.11.002; PMID: 18243902

79.	 Bartunek J, Vanderheyden M, Hill J, et al. Cells as biologics for 
cardiac repair in ischaemic heart failure. Heart 2010;96:792–
800. DOI: 10.1136/hrt.2007.139394; PMID: 20448133

80.	 Clifford DM, Fisher SA, Brunskill SJ, et al. Stem cell treatment 

for acute myocardial infarction. Cochrane Database Syst Rev 
2012;2:CD006536. DOI: 10.1002/14651858.CD006536.pub3; 
PMID; 22336818

81.	 Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration 
by activation of multipotent cardiac stem cells in ischemic 
heart failure. Proc Natl Acad Sci U S A 2005;102:8692–7.  
DOI: 10.1073/pnas.0500169102; PMID: 15932947

82.	 Beltrami AP, Urbanek K, Kajstura J, et al. Evidence 
that human cardiac myocytes divide after myocardial 
infarction. N Engl J Med 2001;344:1750–7. DOI: 10.1056/
NEJM200106073442303; PMID: 11396441

83.	 Janssens S. Stem cells in the treatment of heart disease. 
Annu Rev Med 2010;61:287–8. DOI: 10.1146/annurev.
med.051508.215152; PMID: 20059339

84.	 Zhao Q, Sun Y, Xia L, et al. Randomized study of 
mononuclear bone marrow cell transplantation in patients 
with coronary surgery. Ann Thorac Surg 2008;86:1833–40. 
DOI: 10.1016/j.athoracsur.2008.08.068; PMID:19021989

85.	 Akar AR, Durdu S, Arat M, et al. Five years follow up after 
transepicardial implantation of autologous bone marrow 
mononuclear cells to ungraftable coronary territories for patients 
with ischaemic cardiomyopathy. Eur J Cardiothoracic Surg 
2009;36:633–43. DOI: 10.1016/j.ejcts.2009.04.045; PMID: 19524451

86.	 Sridhar P, Hedrick M, Baker T, et al. Adipose-derived 
regenerative cells for the treatment of patients with non-
revascularisable ischaemic cardiomyopathy – The PRECISE 
Trial. Intervent Cardiol Rev 2012;7:77–80. DOI: 10.15420/
icr.2012.7.2.77

87.	 Wollert KC, Drexler H. Cell therapy for the treatment of coronary 
heart disease: a critical appraisal. Nat Rev Cardiol 2010;7: 
204–15. DOI: 10.1038/nrcardio.2010.1; PMID: 20177405

88.	 Vrijsen KR, Chamuleau SA, Noort WA, et al. Stem cell therapy 
for end-stage heart failure: indispensable role for the cell? 
Curr Opin Organ Transplant 2009;14:560–5. DOI: 10.1097/
MOT.0b013e328330389e; PMID: 19623073

89.	 Losordo DW, Schatz RA, White CJ, et al. Intramyocardial 
transplantation of autologous CD34+ stem cells for 
intractable angina: a phase I/IIa double blind, randomized 
controlled trial.Circulation.2007;115:3165–72. DOI: 10.1161/
CIRCULATIONAHA.106.687376; PMID: 17562958

90.	 Van Ramshorst J, Bax JJ, Beeres SL, et al. Intramyocardial 
bone marrow cell injection for chronic myocardial ischaemia: 
a randomized controlled trial. JAMA 2009;301:1997–2004. 
DOI: 10.1001/jama.2009.685; PMID: 19454638

91.	 Menache P, Alfieri O,Janssens S, et al. The myoblast 
autologus grafting in ischaemic cardiomyopathy (magic) 
trial. First randomized placebo-controlled study of myoblast 
transplantation. Circulation 2008;117:1189–200. DOI: 
10.1161/CIRCULATIONAHA.107.734103; PMID: 18285565

92.	 Strauer BE, Brehm M, Zeus T, et al. Regeneration of  
human infarcted heart muscle by intracoronary autologous 
bone marrow cell transplantation in chronic coronary artery 
disease: the IACS Study. J Am Coll Cardiol 2005;46:1651–8. 
DOI: 10.1016/j.jacc.2005.01.069; PMID: 16256864

93.	 Fischer-Rasokat U, Assmus B, Seeger FH, et al. A pilot trial 
to assess potential effects of selective intracoronary bone 
marrow-derived progenitor cell infusion in patients with 
nonischaemic dilated cardiomyopathy: final 1-year results of 
the TOPCARE-DCM trial. Circ Heart Fail 2009;2:417–23. DOI: 
10.1161/CIRCHEARTFAILURE.109.855023; PMID: 19808371

94.	 Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone 
marrow mesenchymal stem cells stimulate cardiac stem cell 
proliferation and differentiation. Circ Res 2010;107:913–22. 
DOI: 10.1161/CIRCRESAHA.110.222703; PMID: 20671238

95.	 Dellavalle A, Maroli G, Covarello D, et al. Pericytes resident  
in postnatal skeletal muscle differentiate into muscle fibers  
and generate satellite cells. Nat Commun 2011;2:499.  
DOI: 10.1038/ncomms1508; PMID: 21988915

96.	 Tang W, Zeve D, Suh JM, et al. White fat progenitor cells 
reside in the adipose vasculature. Science 2008;322:583–6. 
DOI: 10.1126/science.1156232; PMID: 18801968

97.	 Armulik A, Genové G, Mäe M, et al. Pericytes regulate the 
blood–brain barrier. Nature 2010;468:557–61. DOI: 10.1038/
nature09522; PMID: 20944627

98.	 Tang Z, Wang A, Yuan F, et al. Differentiation of multipotent 
vascular stem cells contributes to vascular diseases. Nat 
Commun 2012;3:875. DOI: 10.1038/ncomms1867; PMID: 
22673902

99.	 Nees S, Weiss DR, Juchem G. Focus on cardiac pericytes. 
Pflugers Archiv 2013;465:779–87. DOI: 10.1007/s00424-013-
1240-1; PMID: 23443852

100.	Bollini Sl, Vieira JM, Howard S, et al. Re-activated adult 
epicardial progenitor cells are a heterogeneous population 
molecularly distinct from their embryonic counterparts. Stem 
Cells Dev 2014;23:1719–30. DOI: 10.1089/scd.2014.0019; 
PMID: 24702282

101.	Crockford D, Turjman N, Allan C, et al. Thymosin beta4: 
structure, function, and biological properties supporting 
current and future clinical applications. Ann N Y Acad Sci 
2010;1194:179–89. DOI: 10.1111/j.1749-6632.2010.05492.x; 
PMID: 20536467

102.	Gomez-Marquez J, Dosil M, Segade F, et al. Thymosin-beta 4 
gene. Preliminary characterization and expression in tissues, 
thymic cells, and lymphocytes. J Immunol 1989;143:2740–4. 
PMID: 2677145

103.	Rui Ll, Yu N, Hong L, et al. Extending the time window of 
mammalian heart regeneration by thymosin beta 4. J Cell 
Mol Med 2014;18:2417–24. DOI: 10.1111/jcmm.12421; 
PMID: 25284727 

http://dx.doi.org/10.1016/S0301-472X(01)00769-X
http://dx.doi.org/10.1067/mhj.2001.117602
http://dx.doi.org/10.1067/mhj.2001.117602
http://dx.doi.org/10.1016/S0140-6736(03)12111-3
http://dx.doi.org/10.1016/S0140-6736(03)12110-1
http://dx.doi.org/10.1016/S0140-6736(03)12110-1
http://dx.doi.org/10.1016/j.jacc.2005.01.069
http://www.ncbi.nlm.nih.gov/pubmed/?term=Genov%C3%A9%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20944627
http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%A4e%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20944627

