828 research outputs found

    How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics

    Full text link
    Multivariate analyses play an important role in high energy physics. Such analyses often involve performing an unbinned maximum likelihood fit of a probability density function (p.d.f.) to the data. This paper explores a variety of unbinned methods for determining the goodness of fit of the p.d.f. to the data. The application and performance of each method is discussed in the context of a real-life high energy physics analysis (a Dalitz-plot analysis). Several of the methods presented in this paper can also be used for the non-parametric determination of whether two samples originate from the same parent p.d.f. This can be used, e.g., to determine the quality of a detector Monte Carlo simulation without the need for a parametric expression of the efficiency.Comment: 32 pages, 12 figure

    Spectral high resolution feature selection for retrieval of combustion temperature profiles

    Get PDF
    Proceeding of: 7th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2006 (Burgos, Spain, September 20-23, 2006)The use of high spectral resolution measurements to obtain a retrieval of certain physical properties related with the radiative transfer of energy leads a priori to a better accuracy. But this improvement in accuracy is not easy to achieve due to the great amount of data which makes difficult any treatment over it and it's redundancies. To solve this problem, a pick selection based on principal component analysis has been adopted in order to make the mandatory feature selection over the different channels. In this paper, the capability to retrieve the temperature profile in a combustion environment using neural networks jointly with this spectral high resolution feature selection method is studied.Publicad

    Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns

    Get PDF
    Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expectedlatitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming. © 2011 by the Ecological Society of America.Peer Reviewe

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Australian Enterococcal Sepsis Outcome Progamme, 2011

    Get PDF
    From 1 January to 31 December 2011, 29 institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aim of AESOP 2011 was to determine the proportion of enterococcal bacteraemia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterise the molecular epidemiology of the Enterococcus faecalis and E. faecium isolates. Of the 1,079 unique episodes of bacteraemia investigated, 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). Ampicillin resistance was detected in 90.4% of E. faecium but not detected in E. faecalis. Using Clinical and Laboratory Standards Institute breakpoints (CLSI), vancomycin non-susceptibility was reported in 0.6% and 31.4% of E. faecalis and E. faecium respectively and was predominately due to the acquisition of the vanB operon. Approximately 1 in 6 vanB E. faecium isolates however, had an minimum inhibitory concentration at or below the CLSI vancomycin susceptible breakpoint of ≤ 4 mg/L. Overall, 37% of E. faecium harboured vanA or vanB genes. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis (PFGE) pulsotypes, more than 50% belonged to 2 pulsotypes that were isolated across Australia. E. faecium consisted of 73 PFGE pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium were identified as clonal complex 17 clones, of which approximately half were characterised as sequence type 203, which was isolated Australia-wide. In conclusion, the AESOP 2011 has shown that although polyclonal, enterococcal bacteraemias in Australia are frequently caused by ampicillin-resistant vanB E. faecium

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Latitudinal gradient of nestedness and its potential drivers in stream detritivores

    Get PDF
    Understanding what mechanisms shape the diversity and composition of biological assemblages across broad-scale gradients is central to ecology. Litter-consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α-diversity increasing towards high latitudes but no trend in γ -diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species-poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species-rich and non-nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter-consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α-diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function-based rather than taxon-based analyses of assemblages may help elucidate the mechanisms behind diversity gradients

    The genome of the seagrass <i>Zostera marina</i> reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants
    • …
    corecore