503 research outputs found
Jumps in the Archimedean height
We introduce a pairing on local intersection cohomology groups of variations of pure Hodge structure, which we call the asymptotic height pairing. Our original application of this pairing was to answer a question on the Ceresa cycle posed by R. Hain and D. Reed. (This question has since been answered independently by Hain.) Here we show that a certain analytic line bundle, called the biextension line bundle, and defined in terms of normal functions, always extends to any smooth partial compactification of the base. We then show that the asymptotic height pairing on intersection cohomology governs the extension of the natural metric on this line bundle studied by Hain and Reed (as well as, more recently, by several other authors). We also prove a positivity property of the asymptotic height pairing, which generalizes the results of a recent preprint of J. Burgos Gil, D. Holmes and R. de Jong, along with a continuity property of the pairing in the normal function case. Moreover, we show that the asymptotic height pairing arises in a natural way from certain Mumford–Grothendieck biextensions associated to normal functions
Recommended from our members
Maladaptive behavior and affect regulation: A functionalist perspective.
Clinical science has benefited tremendously from taking seriously the proposition that putatively maladaptive behaviors serve psychological functions, prominently among these affect regulation (AR). These functionalist accounts have not only advanced basic clinical science, but also formed the bedrock for the development of effective treatments. Drawing heavily on reinforcement learning theory, we aim to elucidate functional relationships between maladaptive behavior and AR. Specifically, we take the view that maladaptive behaviors are frequently motivated and reinforced by hedonic AR functions (i.e., decreasing negative affect and increasing positive affect) but are also susceptible to becoming stimulus-bound habits. We review empirical evidence related to one such behavior, nonsuicidal self-injury. We close with a brief reflection on future directions. (PsycINFO Database Record (c) 2020 APA, all rights reserved)
Height Pairing on Higher Cycles and Mixed Hodge Structures
For a smooth, projective complex variety, we introduce several mixed Hodge
structures associated to higher algebraic cycles. Most notably, we introduce a
mixed Hodge structure for a pair of higher cycles which are in the refined
normalized complex and intersect properly. In a special case, this mixed Hodge
structure is an oriented biextension, and its height agrees with the higher
archimedean height pairing introduced in a previous paper by the first two
authors. We also compute a non-trivial example of this height given by
Bloch-Wigner dilogarithm function. Finally we study the variation of mixed
Hodge structures of Hodge-Tate type, and show that the height extends
continuously to degenerate situations
Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization
A new predictive computer simulation tool targeting the development of the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics of edge localized modes (ELMs) is presented in this report. This tool brings together, in a coordinated and effective manner, several first-principles physics simulation codes, stability analysis packages, and data processing and visualization tools. A Kepler workflow is used in order to carry out an edge plasma simulation that loosely couples the kinetic code, XGC0, with an ideal MHD linear stability analysis code, ELITE, and an extended MHD initial value code such as M3D or NIMROD. XGC0 includes the neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near the separatrix. The Kepler workflow processes the XGC0 simulation results into simple images that can be selected and displayed via the Dashboard, a monitoring tool implemented in AJAX allowing the scientist to track computational resources, examine running and archived jobs, and view key physics data, all within a standard Web browser. The XGC0 simulation is monitored for the conditions needed to trigger an ELM crash by periodically assessing the edge plasma pressure and current density profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow launches the M3D code on a moderate-size Opteron cluster to simulate the nonlinear ELM crash and to compute the relaxation of plasma profiles after the crash. This process is monitored through periodic outputs of plasma fluid quantities that are automatically visualized with AVS/Express and may be displayed on the Dashboard. Finally, the Kepler workflow archives all data outputs and processed images using HPSS, as well as provenance information about the software and hardware used to create the simulation. The complete process of preparing, executing and monitoring a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle using the Kepler scientific workflow system is described in this paper
The influence of age on the female/male ratio of treated incidence rates in depression
BACKGROUND: Poor data exist on the influence of psychosocial variables on the female/male ratio of depression because of the small number of cases and the resulting limited numbers of variables available for investigation. For this investigation a large number of first admitted depressed patients (N = 2599) was available which offered the unique opportunity to calculate age specific sex ratios for different marital and employment status categories. METHODS: Age and sex specific population based depression rates were calculated for first ever admissions for single year intervals. Moving averages with interpolated corrections for marginal values in the age distribution were employed. RESULTS: For the total group the female/male ratio of depression showed an inverted U-shape over the life-cycle. This pattern was influenced by the group of married persons, which showed a sex-ratio of 3:1 between the age of 30–50, but ratios of around 1:1 at younger and older ages. For not married persons the female/male ratio was already around 2:1 at the age of 18 and rose to 2.5:1 in mid-life and declined to 1 at around 55. The almost parallel decline of depression rates in employed men and women resulted in a female/male ratio of about 2:1 from age 18 to age 50 and became 1 after the age of 60. The female/male ratio among the not employed was about 1, in mid-life it became negative. CONCLUSIONS: Our analyses show that the gender-gap in first admitted depressed patients is age dependent and that psychosocial factors modify the sex ratio
Evolution of breeding plumages in birds: A multiple-step pathway to seasonal dichromatism in New World warblers (Aves: Parulidae)
Ecology and Evolution published by John Wiley & Sons Ltd Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life-history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life-history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life-history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life-history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two-step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life-history strategies and a birds\u27 environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration
Linear dichroism and circular dichroism in photosynthesis research
The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear- and circular-dichroism (LD and CD) studies have contributed significantly to our knowledge of the molecular organization of pigment systems at different levels of complexity, in pigment–protein complexes, supercomplexes, and their macroassemblies, as well as in entire membranes and membrane systems. Many examples show that LD and CD data are in good agreement with structural data; hence, these spectroscopic tools serve as the basis for linking the structure of photosynthetic pigment–protein complexes to steady-state and time-resolved spectroscopy. They are also indispensable for identifying conformations and interactions in native environments, and for monitoring reorganizations during photosynthetic functions, and are important in characterizing reconstituted and artificially constructed systems. This educational review explains, in simple terms, the basic physical principles, and theory and practice of LD and CD spectroscopies and of some related quantities in the areas of differential polarization spectroscopy and microscopy
Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies
The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states
- …