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INTRODUCTION

Main objectives

Let X be a smooth projective variety of dimension d defined over a number field F. The height
pairing between cycles is an arithmetic analogue of the intersection product and can be seen as a
linking number. It plays a central role in arithmetic geometry.
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The Arakelov theory and concretely arithmetic intersection theory [19] provide a general frame-
work to define and study the height pairing, exploiting the analogy with the intersection prod-
uct. Let Z and W be disjoint, homologically trivial algebraic cycles on X of codimension p and
g =d+1— p, respectively.

Assume that there is a regular model X of X over O, the ring of integers of F and that the cycles
Z and W can be extended to cycles Z and W on X, whose intersection with any vertical cycle is
zero. Then we can choose liftings Z=(zZ, g7) and W=, gw) of Z and W in the arithmetic
Chow groups C/I\—Ip((\,’ ) and (fl\{q((\’ ), respectively, satisfying the additional condition

dngZ + 5Z = dngW + 5W =0.
In this setting the height pairing is given by
(Z, W = (fgg(f : m

and is independent of the choice of liftings. This height pairing can be written as a sum of com-
ponents

<Z’ W>ht = <Z’ W>fir1 + <Z’ W>Arch ER,

where (Z, W)y, is the finite contribution that is defined using intersection theory on the model
X, while (Z, W) .1, is the archimedean height pairing and is computed using the Green currents
in the complex manifold associated to X:

(Z’W>Arch=/gZ/\5W=/gW/\52'
X X

Note that, even if (Z, W)y, depends only on the rational equivalence class of Z and W, the finite
and archimedean components depend of the actual cycles Z and W'.

In the paper [22], Hain has given a Hodge theoretical interpretation of the archimedean height
pairing. Namely, to the pair of cycles Z and W one can associate a biextension By y, of mixed
Hodge structure. The isomorphism classes of biextension mixed Hodge structures are classified
by a single real invariant and the archimedean height pairing agrees with this invariant. In fact,
not only the archimedean component can be interpreted as the class of an extension but also other
local components of the height pairing can be obtained as extension classes of motivic origin; see,
for instance, [34, 35].

Bloch hasintroduced the higher Chow groups CH? (X, n) in [2] as a concrete example of motivic
cohomology theory. Subsequently, in [11] Feliu and the first author have introduced the higher
arithmetic Chow groups. These groups have been further studied by the first and second authors
in [12]. Moreover, they have introduced a height pairing between higher cycles whose real regu-
lators are zero. Although there are many differences between the case of algebraic cycles and the
case of higher cycles, the height pairing between higher cycles still decomposes as a sum,

(Z, W) =(Z, W)geom +{Z, W) Arch> (0.1)
of an archimedean contribution that will be called the archimedean higher height pairing, and a

geometric contribution that, although is very different in nature to the finite contribution in the
case of ordinary cycles, is also related to an intersection product.
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The archimedean higher height pairing depends only on the complex manifold associated to
X and can be defined for higher cycles on a smooth projective complex variety. The aim of the
present paper is to generalize Hain’s result and give a Hodge theoretical interpretation of the
archimedean higher height pairing between certain higher cycles. More precisely, as we review
below (0.3), CH*(X, %) can be computed as the homology of a complex (Z*(X, %)y, §). The main
result of this paper can be compiled in the following theorem:

Theorem A. Let X be a smooth complex projective variety of dimension d and Z € ZP(X, 1),, and
W € Z1(X, 1), be elements which satisfy the following conditions:

) prg=d+2
(i) 6Z=86W =0;
(iii) Z and W intersect properly; and
(iv) the intersection of Z and W also satisfies Assumption 3.27.

Then, in analogy with Hain’s construction, there is a canonical mixed Hodge structure Bz w attached
to Z and W from which one can extract a Hodge theoretical height pairing (Z, W )yj,qge- Moreover
(see Theorem 4.7), if Z and W both have real regulator zero then

(z, W>Hodge =(Z,W)Arch-

Regarding condition (i), much of our analysis carries through the case where Z € ZP(X, n),,
and W € Z4(X, m),, provided that 2(p + g — d — 1) = m + n. However, condition (iii) allows for
non-trivial intersections of Z and W which contribute to the mixed Hodge structure By y,. In the
case m = n = 1, this intersection is just a finite set of points and is easy to handle provided we
assume some extra technical conditions that are satisfied generically (see Assumption 3.27).

At first glance, the contribution from the intersection of Z and W might appear to be just a
technical issue arising during the construction of B y,. However, on reflection, it is exactly this
new contribution that allows B, to have interesting deformations which satisfy Griffiths hori-
zontality.

The asymptotic behavior of the archimedean component of the height pairing has been exten-
sively studied by the third author in [31] using the Hodge theoretical interpretation. Moreover, in
collaboration with Brosnan, in [5] he has given an explanation of the height jump phenomenon.
The asymptotic behavior of the height and the height jump phenomenon has also been studied
by the first author in collaboration with de Jong and Holmes in [13].

The second objective of this paper is to use the Hodge theoretical interpretation of the
archimedean higher height pairing to start the study of its asymptotic behavior. In Section 5.2, we
study an example in dimension 2 in which n = m = 1 and the cohomology of X is of Hodge-Tate
type, and we observe that the height can be extended continuously to the degenerate situations.
This is in sharp contrast with the usual height pairing that has logarithmic singularities when
approaching degenerate situations. We show that this is a general phenomenon of higher heights
for Hodge-Tate variations of mixed Hodge structures (Theorem 6.1).

Theorem B. Let S be a Zariski open subset of a complex manifold S such thatD = S — S is a normal
crossing divisor. LetV — S be an oriented graded-polarized Hodge-Tate variation with length £(V) >
4. Assume V is admissible with respect to S and has unipotent local monodromy about D. Let p € D.
Then the limit mixed Hodge structure V,, of V at p € D is an oriented Hodge-Tate structure with the
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same weight filtration as V. Moreover,

lim ht(V,) = ht(V,).
s—p

In this result, oriented structure means that the top and the bottom graded pieces are constant
variations of rank one, and ht(V,) denotes the height of the oriented mixed Hodge structure V,
(Definition 2.3). The important hypotheses are, first, the length #(V) > 4, that is, the difference
between the minimal and maximal weight is at least 4 (hence, we are dealing with a higher height),
and second, the whole variation is of Hodge-Tate type. In Example 6.9 we show that this last
hypothesis is necessary.

Background for usual cycles

Before giving a more precise statement of the main results of the paper, we briefly recall the case
of ordinary cycles.

Assuming several conjectures, Beilinson [1] has defined a height pairing between the Chow
group of cycles homologous to zero:

(, Ygr: CHP(X)’ ® CH PH(X) > R,

where CHP(X)? indicates the subgroup of CHP(X) consisting of cycles homologous to zero. This
is the same thing as the kernel of the cycle class map to real Deligne cohomology

CHP(X)? = ker <c1p : CHP(X) — H;p(X, R(p)))-

Up to certain assumptions on X, which are true for certain class of examples such as curves and
abelian varieties, Beilinson’s height pairing can be constructed using Gillet and Soulé’s arithmetic
intersection theory (see [29] for more details). More concretely, writing S = Spec(Oy), we have to
make the following assumptions on X.

A1l There exists a regular scheme X, flat and projective over S, such that X = X’ X Spec(F).

A2 Every cycle x € CHP(X )% can be lifted to a cycle x € CHP(X)g, such that x - Y = 0 for every
cycle Y € Z9+1-P(X)g;,. Here Z9+17P(X)y;, is the group of cycles whose support is contained
in a finite number of fibers of the structural map X — S.

Then, under Assumptions Al and A2 we can construct Beilinson’s height pairing after tensoring
with Q using arithmetic intersection on X'. We give a very succinct description of the pairing below.
Arithmetic Chow groups [19] come equipped with an intersection product

CH (%), ® CH" 7" (x), - CH* " (%),
push-forward maps

A’ (x) - CH'(S) - CH' (Spec(2))
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and an isomorphism
CH' (Spec(2)) ~ R.
Combining the push-forward and the above isomorphism, we obtain an arithmetic degree map
deg: cu™') - R
Composing the intersection product with the arithmetic degree, we obtain a pairing

. o . &
() CHP(X), ® CH P (2), » CHT (1), — R. (0.2)

Now let C/I\—Ip((\,’)0 be the subgroup (fﬁp(/\?), generated by arithmetic cycles (Z, g,) such that
dd°g, + 8, =0and Z-Y =0 for every Y € Z4*17P(X);;,. This implies in particular that the
restriction of Z to the generic fiber X is homologous to zero.

Assumption A2 implies that the map cu’ (X) —» CHP(X) induces a surjective map

CH"(x)%, » CHP(X)).

Finally, for elements x; € CHP(X)2 and x, € CH*"P*!(X)2, Beilinson’s height pairing is defined

~ ~d—
as follows: Lift x; to X; € CHP()C)?Q and x, to X, € CH p+1(2€)% and define

(X1, %) = (%1, %) x-

One can easily show that the right-hand side does not depend on the lifting (see [29, Section 5]).

This height pairing is an important tool, and has a number of conjectural properties which are
linked to the Beilinson’s conjectures (see [1, Section 5] for further details).

Beilinson’s height pairing can be decomposed into a sum of local contributions. One for each
place of Q. The sum of the finite contributions can be grouped together in an intersection theoret-
ical contribution, while the archimedean contribution has a Hodge theoretical interpretation. Let
x; and x, be as before and choose representatives Z € ZP(X) and W € Z4t1-P(X) of x; and x,,
respectively, that intersect properly. By the codimensions of Z and W proper intersection means
in this case that they do not meet. Lift Z and W to cycles Z and W satisfying the condition in
Assumption A2, and choose Green currents g, and gy, whose associated forms are zero. Then

(xl’x2>HT =(Z, W)fin +(Z, W)Arch’
where

(Z, W )tin = deg(Z - W),
(Z, W) aren, = deg(gy * gy) = /X5z Agw €R.

It is important to remark that, while the height pairing (x;, x,) 7 depends only on the classes x;
and x,, the decomposition in finite and archimedean components depends on the choice of cycles
Z and W representing these classes.
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We now discuss Hain’s Hodge theoretic interpretation of (Z, W), (see [22] for details). Let
H be a torsion free integral pure Hodge structure of weight —1. A biextension B associated to H is
a mixed Hodge structure of non-zero weights —2, —1, 0, with the graded pieces satisfying

Gry’ B = z(0),
Gr” B=H,
Gr” B = z(1).

Let B(H) denote the set of isomorphism classes of biextensions as before and B(H ) the isomor-
phism classes of real mixed Hodge structures of the same shape. The following results are proved
in [22, Corollaries 3.1.6, 3.2.2 and 3.2.9].

(1) Exty.o(Z(0), H) and Exty,(H, Z(1)) are dual tori.

(ii) The projection
B(H) — Exty;(Z(0), H) X Exty 16 (H, Z(1))

given by B — (B/W_,, W_;) has the structure of a principal C* bundle.
(i) Exty ps(R(0), Hg) = Ext}R_MHS(HRN, R(1)) = 0.
(iv) There is a canonical bijection Bg(H) — R.

Inparticularif Z € Z{ (X)and W € Z! _(X) are two cycles homologous to zero, intersecting
properly with p + g = d + 1, then the Abel-Jacobi images of Z and W define elements

e, € Exty . (7(0), H),

ey, € Exty . (H, Z(1)),
where H = H?P~1(X, Z(p))/torsion. The extension class e, is defined by a short exact sequence
0—-H—-E, »Z7(0)—0,

E, being a sub-Hodge structure of H*?~'(X \ |Z|, Z(p))/torsion, whereas ey, is given by a short
exact sequence

0-2(1)—Ej, - H -0,

with EI\)’V being a quotient of H>P~1(X, |W|, Z(p))/torsion. Combining both constructions we get
a biextension [22, Proposition 3.3.2]

Bz w — (ez,e;/),
which is a subquotient of the mixed Hodge structure

H*~Y(X \ |Z|,|W|, Z(p))/torsion.
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Ifv: B(H) — Risthe composition of the change of coefficients B(H) — B(H)y with the bijection
above, we have [22, Proposition 3.3.12]

V(Bzw) = —(Z, W) arch-
Since proper intersection means |Z| N |W| = ¢, there is a duality
HP7NX\ |2, W, Q(p)) = (HX'(X \ W], 1Z],Q(q — 1)),

which implies that the above pairing is symmetric.

In [31, Theorem 5.19], the Hodge theoretical interpretation of the archimedean height pairing
is used to obtain results about its asymptotic behavior. Let Z,, W, C X be a flat family of cycles
homologous to zero over a smooth curve S. Let z be a local holomorphic coordinate on a small
disk A C S such that, for 0 # z € A, the variety X, is smooth and the cycles Z, and W, intersect
properly and such that the variation of mixed Hodge structures B;_y,_has unipotent monodromy.
Then there is a rational number u that can be read from the monodromy, and such that

(Z;, W) arch = plogz| + n(2),

where 7(z) is real analytic and remains bounded when z goes to zero.

Higher intersection pairing

We recall the construction of the higher height pairing of [12]. Before that we will also have to
recall some terminology.

Let now F be any field and X a smooth projective variety over F. There are two equivalent
descriptions of Bloch’s higher Chow groups, the simplicial and the cubical versions. The simplicial
version is the one originally introduced by Bloch, but the cubical version is the one more well
suited for the product structure. In this paper we will use the cubical description.

In the cubical version, in order to compute the right homology, one is forced to normalize the
complex in order to get rid of degenerate elements. There are two versions of the normalization.
In fact, there are two quasi-isomorphic complexes

ZP(X, %)g9 C ZP(X, %), (0.3)

whose homologies compute the cubical version of higher Chow groups. We will use the complex
ZP(X, %)y, because its cycles are easier to link with relative cohomology.

Let [] = P!\ {1} denote a copy of the affine line where the role of o is played by the point 1
and let []" denote the nth cartesian product. Recall that there are coface maps 55. S I o LN
i=1,..,n,j=0,1,given by

Sty e s byo1) = (E1s s 61,0, Ly e By 1),
01ty s by1) = (E1s s b1, 00, by e s By ).

For any scheme X, we denote also by 55. the induced maps X x [1*~! — X x []". Any intersection
of images of the maps & ; is called a face.
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Let ZP(X, n) denote the group of algebraic cycles on X x []" that intersect properly all the faces.
Then

n n
ZP(X,n)go = [ ] ker(8))* n () ker(8})"
i=1 i=2

with differential 6 : ZP(X,n)y, - ZP(X,n — 1)y, given by § = —(5(1))*. An element of ZP(X, n)y,
will be called a pre-cycle, while an element of Z € ZP(X, n),, with 6Z = 0 is called a cycle. The
higher Chow groups of X are the homology of the complex (ZP(X, )y, 6):

CHP(X,n) = H,(ZP(X,%)yp,8), n=0, p>0.

There is a graded commutative product in CH* (X, *) given by the intersection product.

Two pre-cycles Z € ZP(X,n),, and W € Z9(X, m),, are said to intersect properly if 711‘12 and
Ty W intersect properly among them and with all the faces of X X []**". Here 7r; : X X [J"*"" —
X x["and 7, : X Xx[J*"™ — X x [J™ are the two projections. If Z and W intersect properly,
then the intersection product Z - W is a well-defined pre-cycle of ZPT4(X, n + m).

Let « € CHP(X,n) and 8 € CHI(X, m). Then there exist representatives Z € ZP(X, n),, and
W e Z9(X, m),, of a and 3, respectively, that intersect properly. The product « - § is represented
byZ -W.

Let now F be anumber field and X the set of complex immersions of F. To the smooth projective
variety X over F we associate a complex variety

Xy =][xx%.c

ogEX

This complex manifold has an antilinear involution F, and we denote X = (X5, F,,) the corre-
sponding real variety.

There are regulator mapsp : CH?(X,n) — H;”_”(X r> R(p)), where Hg denotes Deligne coho-
mology.

In the papers [11, 12], the higher arithmetic Chow groups CH (X, , Drw) of X are introduced
and studied. These groups depend on the choice of a particular complex Dy that computes
Deligne cohomology (see Section 1.8). These groups satisfy many properties similar to the ones
of classical arithmetic Chow groups. We summarize the properties needed in the definition of the
height pairing.

(i) The elements of C/il\{p(X ,n, Dry) are represented by pairs (Z, g,) with Z € ZP(X, n),, with
g a Green form for Z in the appropriate sense (Definition 1.33).

(ii) To each Green form g,, there is an associated canonical differential form w(g,) €
Q),zrl\; "(X, p) that represents the class of the regulator p(Z) € H;P_H(XR, R(p)).

(iii) There is a *-product of Green forms.

(iv) The groups CH (X, =, Drw) form a graded commutative algebra, where the product is
induced by the intersection product of cycles meeting properly and the star product of Green
forms.

(v) If f : X - Y is a smooth morphism of relative dimension e, there are morphisms

fo: CH (X, n,Dpy) » CH (Y, n, D), np>0.
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(vi) Writing X, = Spec(F), there is a short exact sequence

HY (X5, R(p))

/\p
CH (X-»,2p—2,9 CHP(Xp,2p—2 0. 04
Tmage(p) - (Xp,2p ™) = (Xp,2p ) — (0.4)

In the above X[, ; is the real variety associated to X. So H, %(X rr»R(p)) is a real vector space of
dimensionr, + r, if pis odd and r, if p is even, where r, is the number of real immersions of F and
2r, is the number of non-real complex immersions. Moreover, p agrees with Borel’s regulator up to
anormalization factor [10]. Hence, Image(p) is a lattice in H, é) (Xp > R(p)). Also CHP (X, 2p — 2)
is torsion. Thus CHY (X, 2p — 2, D1y ) is an extension of a torsion group by a real torus.

Let now a € CH?(X,n) and 8 € CH?(X, m) be two classes satisfying

2(p+g—d—-1)=n+m (0.5)

and p(a) = p(B) = 0. We can find representatives Z € ZP(X, n),, and W € Z9(X, m),, intersect-
ing properly. Much like the usual cycle scenario, we can choose Green forms g, and gy, for Z
and W satisfying the attached differential forms w(g,) = w(gy,) = 0. Using the properties of the
arithmetic Chow groups we obtain an element

~~p+q—d
7.((Z, 97) - (W, gy)) € CH (X, n + m, Dry).

Condition (0.5) assures us that the target group of the element fits in a short exact sequence like
(0.4). After tensoring with Q to get rid of the torsion group on the right of the exact sequence, the
height pairing of a and f is defined as

HL (Xp s R(p + g — )
Tmage(p)

(B 1=7.((Z, 92) - (W, gw)) €
The pairs

(Z, W>geom = (r,(Z-W),0), and (Z, W)Arch = (0, ﬂ*(gZ * gW))

. . o —d .. .
give well-defined elements of caf (Xp,n + m, Dyy)g obtaining the decomposition (0.1).

We note several differences between the higher height pairing and the usual height pairing.

(i) The higher arithmetic Chow groups are defined for the variety X over F and not for a model
X of X. This is due to the fact that the good properties of the higher arithmetic Chow groups
are established only for varieties over a field. At first glance, this may seem a big loss of
information. However, if F is a number field and Oy, is its ring of integers, then for odd i > 1,

K(F)®Q=K(Op) ®Q.
Therefore, for the purpose of defining higher heights, there is no great benefit in considering

an integral model of the variety. Moreover, if we consider this in the classical case, in order
to have a well-defined intersection product on the model one has to tensor with Q.
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(ii) Since we are working over a field, we can define the product without tensoring with Q. Nev-
ertheless , we can tensor with Q to eliminate the torsion group CHP+I-4(x N+ m).

(iii) Even if there is no model over the ring of integers involved, there is still a geometric con-
tribution of the height pairing coming from the intersection of the cycles. By contrast, the
definition of the archimedean higher height pairing is formally identical to the classical case.

(iv) In order for the height pairing to be independent on the choice of the Green forms, we need
the condition that the real regulator is zero. By contrast the Hodge theoretical invariant asso-
ciated to the pair of cycles can be defined even when the regulator of the cycles is non-zero.

(v) The higher height pairing is not a real number but an element of the quotient of
H %(X rr»R(p + g —d)) by the image of the regulator. The main difference with the clas-
sical case is that, for p + g — d > 1 the image of the regulator is a full-rank lattice. Therefore,
we cannot obtain a well-defined real number.

Although the height pairing is an arithmetic invariant of the rational equivalence class of the
higher cycles and is well defined up to the image of the regulator, the archimedean higher height
pairing can be defined purely in the complex case.

Definition A. Let X be a smooth projective variety over C of dimension d and Z € ZP(X, n)y,
and W € Z9(X, m),, be elements which satisfy the following conditions:

G) 2(p+gq—-d-1)=n+m;

(ii) 8Z =W = 0;
(ili) Z and W intersect properly; and
(iv) p(Z) = p(W) = 0.

Let g, and gy, be Green forms for Z and W satisfying w(g,) = w(gy,) = 0. Then the archimedean
height pairing of Z and W is defined as

(Z.W)ren = / 07 * g € HA (Spec(C), R(p + q — ).
X

Mixed Hodge structures associated to higher cycles
From now on we consider a smooth projective variety X over C, and we discuss several mixed
Hodge structures associated to a pair of higher cycles.

Given cycles Z € ZP(X, n)y, W € Z9(X, m),,, With p, g, n, m satisfying

2(p+gq—-d-1)=n+m (0.6)

and intersecting properly. Let 7, : X X (P1)* x (P1)" - X x (P)*and 7, : X X (P1)" x (P1)" —
X x (P1)™ be the two projections and

S=='(Z)n= (W)

be the intersection of the pullbacks of supports of Z and W. Note that unlike the usual algebraic
cycle scenario, proper intersection of Z and W no longer means that S is empty.
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We first construct a mixed Hodge structure E, for Z, fitting in the short exact sequence
0 — H*™"(X; p) — E; — Q(0) — 0,
and hence defining an element in
Extheps (Q(0), H¥P"7(X; p)) = HZ (X, Q(p)).

This element agrees with the regulator of Z. Next for W we consider the dual E‘j, extension, fitting
in the short exact sequence

0 — @(0) — Ey, — H*72™mH(X;d — q) — 0.

We stress the fact that, in giving a geometric interpretation of E;, we face the technical problem
that the duality in Lemma 1.11 requires the hypothesis of local product situation. We will address
this problem latter in the main body when we give more details on the construction of the mixed
Hodge structures.

Note that condition (0.5) implies that

H?*P7"=Y(X; p) = HEA200mH (X d — g + (m + n) /2 + 1).

Hence, after the appropriate twist, the cohomology groups appearing in both extensions agree and
one may hope to glue together E, and E;’V is a biextension. Here the presence of the non-trivial
intersection S makes life more interesting. In fact, under several assumptions aimed to keep the
contribution from S under control, we associate to the pair (Z, W) a mixed Hodge structure By
which fits in Figure 2. In the special case of n = m = 1, and under Assumption 3.27, B, y, is a gen-
eralized biextension (Definition 2.5 and Corollary 3.31), with three non-zero weight graded pieces.

In Section 2.1, we define the height ht(H) € R of an oriented mixed Hodge structure H using
the Deligne splitting (Definition 2.3), in particular we can define ht(B, y; ). For n = m = 1, to com-
pare it with the archimedean height that lives in H, %(Spec(@), R(2)) = C/(27i)’R, we make the
following definition.

Definition B. Let p, : C/(27i)’R — R be the isomorphism given by
p2(v) = Im(v/Qri)?),

where for a complex number z, Im(z) denote its imaginary part. Then the Hodge theoretic height
pairing of Z and W is

(z, W)Hodge = Pz_l(ht(BZ,W))-

We give a little bit more details on the construction of the above mixed Hodge structures. On
(P1)" we have two divisors

A={{ty,...t,) | 30,6 =1},

B ={(ty,...t,) | 3i,t; € {0, co}}.
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Then A U B is a simple normal crossing divisor. Moreover, since [] := P! \ {1 : 1}, we have
EHY'\NA =", (PY*\B=(C*)"and Bn[]" =d[]".
Further for Ay :=X X A, By := X X B, we get isomorphisms of Hodge structures

H'(X x (PY)"\ Ay, By) = H (X)), 0.7)

H'(X x (P1)" \ By, Ay) = H(X; —n). (0.8)

Since Ay and By are in local product situation (Definition 1.9), the above isomorphisms are com-
patible with duality

H'(X x (P)"\ Ay, By, Q(p)) & (H*27 (X x (P1)" \ By, Ay, Q(d +n — p))) "

Since Z € ZP(X, n)y, belongs to the refined normalized complex, the restriction Z|p, \ 4 is zero.
Therefore, the cycle Z defines a unique class (Proposition 3.3)

2p 1 )
[Z1€ Hj, o (XX (P \ Ax, By \ Ax; D).
By Lemma 3.5 its image in H?P(X X (P1)" \ Ay, By \ Ay; p)g is zero. Pulling back the 3.7 of mixed

Hodge structures, by the class [Z] and using the isomorphism (0.7) we obtain the extension E,.
We remark that the mixed Hodge structure E, is a sub Hodge structure of

H*P7L(X x (PY)" \ Ay U |Z|,By; p).

We now consider the dual construction for W. As mentioned before, in order to dualize this
construction we face the problem that, in general, Ay U |[W| and By are not in local product sit-
uation. Therefore, to dualize we need first to blow-up |W| n By until a local product situation is
obtained. Let X, be such a blow-up with Ay, By and W being the strict transforms of Ay, By and
|W|. Let D be the exceptional divisor. Naively, one would expect the mixed Hodge structure to be
a quotient of

H2A2m=2a4 (0 % (P1)™ \ By, Ax U [Wid +m — q)
= g¥+2m=2at(x, \ By UD, Ay UW;d +m — q),
but in fact E}}, is a quotient of
H2d+2m—2q+1(XW \B\X’A\X uWu D;d+m—q).

Note that the exceptional divisor is in a different position; see Section 3.6 for more details.
Finally, for the construction of B, we refer to Sections 3.7 and 3.8. We just remark that in

this construction we have to deal, not only with the duality problem mentioned above but also

with the contribution of the intersection S of Z and W. Although the methods of this paper can
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be extended to much more general situations, for the moment we have only made the complete
study in the case n = m = 1 and Assumption 3.27. One of the main reasons is that we want By y,
to be a generalized biextension (Definition 2.5), so there is a clean definition of the height of B y,
that we can compare with the height pairing of Z and W. This forces us to keep S under control
to avoid many spurious components in B, y,. For instance, even if S is a point, if it is contained
in the singular locus of |Z| and |W|, the cohomology with support on S can be very complicated
and mask the classes of Z and W.

Nevertheless, using the Deligne splitting one can define a more general height attached to an
oriented mixed Hodge structure (Definition 2.3). One would expect that the main result of this
paper can be extended to a more general situation using this generalization of the height of a
mixed Hodge structure.

Examples

We compute two examples of the higher height pairing. The first one is in dimension 0 with p =
q = n = m = 1. In this case we find that the higher height pairing is always zero.

The second more interesting example in in dimension 2, withX = P>, p=g=2andn=m =
1. A method of constructing higher cycles in P? is to consider three sections, s, s; and s, of O(1).
They determine a triangle in P? and a higher cycle as explained in Definition 5.1. For two such
higher cycles Z and W in general position we compute their higher height pairing. It turns out to
be given by a linear combination of values of the Bloch-Wigner dilogarithm function. A remark-
able feature of this example is that, in the space of parameters of such pair of divisors, the height
function can be extended continuously to the degenerate situations. A second observation from
the example is that, when both triangles are defined over R the higher height pairing vanishes.
Both phenomenons turn out to hold in more general situations. With respect to the second one,
we show in Proposition 5.10 that the higher height pairing between cycles defined over R should
be zero as long as (n + m)/2 is odd.

With respect to the continuity of the height function, this is the starting point of the study of the
asymptotic behavior. As mentioned previously, we show that the higher height of an admissible
variation V of oriented Hodge-Tate mixed Hodge structures extends continuously to the bound-
ary. It is important to note that this is no longer true if the variation is not of Hodge-Tate type
(Example 6.9) or if (V) = 2.

Layout of the paper

Our paper is organized as follows. Sections 1 and 2 are preliminary in nature where we set up
notations and collect all the necessary results and definitions needed for the rest of the sections.
In Section 3 we study the mixed Hodge structure associated to higher cycles, the key among them
is a mixed Hodge structure associated to a pair of higher cycles satisfying a numerical condition. In
Section 4 we compute the invariants associated to these mixed Hodge structures in a special case
scenario. A key result in this section is the equality of higher archimedean height pairing and the
height of the biextension, in case the higher cycles have trivial real regulators. Section 5 is devoted
toward computing these invariants in specific examples arising from non-degenerate triangles in
P2. We see that the height of the biextension in this case is given by a sum of Bloch-Wigner Dilog-
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arithm functions. Finally in Section 6 we study the asymptotic behavior of variations of oriented
mixed Hodge structures of Hodge-Tate type and as well as arbitrary admissible variations.

1 | PRELIMINARIES

In this section we gather all the conventions, notations and known results that will be used
throughout the paper. All through the section, X will denote a smooth complex variety of dimen-
sion d. To avoid cumbersome notation, we will not distinguish notationally between a complex
algebraic variety and its associated complex space. That is, the symbol X will also denote the
associated analytic manifold with the classical topology. It will always be clear from the context
whether X denotes the algebraic variety or the complex manifold.

1.1 | Mixed Hodge structures
A Q-mixed Hodge structure is a triple
H = ((H@9 W)! (HC5 WsF)i a)’

where (Hg, W) is a Q-vector space with an increasing filtration W, while (H, W, F) is a complex
vector space with an increasing filtration W and a decreasing filtration F, and that o : (Hg, W) ®
C = (Hg, W) is a filtered isomorphism. These data are subjected to several axioms; see for
instance [32, Definition 3.13]. The vector space Hy, is called the Betti component and H the de
Rham component, while « is the comparison isomorphism. The rank of a mixed Hodge structure
H is the complex dimension of H¢ that agrees with the dimension of H, over Q.

One can also consider real mixed Hodge structures, where instead of a Q-vector space Hg one
has a real vector space Hy. In fact, given a mixed Q-Hodge structure H we will denote Hy =
Hgy ® R obtaining an R-mixed Hodge structure. Usually one identifies Hy and Hy with its image
in H¢ through a.

When studying variations of mixed Hodge structures it is convenient to fix the underlying vector
space and move the filtrations F and W. Thus if we fix an (R or Q) vector space V, then a pair of
filtrations (F, W) on V ® C and V, respectively, is called a mixed Hodge structure if the triple

(V,W),(V & C,W,F),Idygc)

is a mixed Hodge structure.
For a € 7, the Tate mixed Hodge structure Q(a) is the mixed Hodge structure given by the
following data

Q(a)@ = Q7 W—Za—lQ(a)@ = 0, W_za@(a)@ = @
Q@) =C, FQa)e=C, FQa)e=0

a(l) = 27i)* e C.

Note that on Q(a). = C we have two possible complex conjugations. The usual conjugation of C
and the one induced by the isomorphism «a. The first one will be called the de Rham conjugation



76 | BURGOS GIL ET AL.

and denoted z — z°* and the second will be called the Betti conjugation and denoted z z.

These two conjugations are related by
Z8 = (~1)7z}.

In the sequel, we will mainly use the Betti conjugation and write z = Z". Moreover, the mixed
Hodge structure Q(a) comes equipped with the choice of two generators:

T(a)g =1€Q=0Q(a)y
1(a)e =1 € C = Qa).

These generators are called the Betti and the de Rham generators. They satisfy

1(a)g = Wa)g, 1(a@)c = (D1 (a)c, 1(a)g = 2mi)*1(a)g.

Remark 1.1. Note that, although the isomorphisms class of @(a) does not depend on the choice of
a square root of —1, i = 1/—1, when a is odd, the ratio of the chosen generators 1(a),/1(a)c does.

Remark 1.2. Let H be a Q-mixed Hodge structure of rank one. Then H is necessarily pure of even
weight, say 2a. It follows that it is isomorphic to Q(—a). The choice of an isomorphism H — Q(a)
is equivalent to the choice of a generator e of Hy.

If Z C X is a closed subvariety and r € Z, then the cohomology groups
H'(X;Q), H'(X,Z;Q)and H;(X; Q) =HX,X\Z;Q)
are all the Betti part of Q-mixed Hodge structures that we denote as
H'(X), H'(X,Z)andH,(X)=H'(X,X\ Z),
respectively. We will use the shorthand
H'(X; p) = H'(X) ® Q(p).

Then H"(X; p)g, H (X; p)r and H'(X; p) will denote the rational and real Betti and complex de
Rham components, respectively.

Frequently, in the sequel we will use complexes that compute relative cohomology of a complex
projective variety, but they only have information about the real structure and the Hodge filtra-
tion, and not about the weight filtration. To work with these at ease we introduce the following
notation.

Definition 1.3. A weak R-Hodge complexis a complex (A*, d) of C-vector spaces together with an
anti-linear involution w — w commuting with d and a decreasing filtration F (called the Hodge
filtration) compatible with d. If A* is a weak R-Hodge complex, we denote by Aj; the subcomplex
of elements fixed by the involution.
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Given a weak R-Hodge complex A*, the Tate twisted weak R-Hodge complex is defined as
A*(a) = A* @ Q(a)c. Using the identification Q(a): = C, the complex A*(a) is given by the fol-
lowing data:

A@=4% V=12, FPA%(a) = FitAn

The superindexes new and old are written here for clarity but will not be used in the sequel. Due to
the identification A*(a) = A* @ Q(a)c = A* @ C = A* there is a potential ambiguity in the use
of the symbol w, as it depends on whether we consider w as an element of A* or of A*(a). In some
rare cases, for clarity, an element w € A*(a) will be written as w ® 1(a)¢.

Remark 1.4. Any Dolbeault complex as in [9, Definition 2.2] defines a weak R-Hodge complex.

Recall that the shifted complex A*[r] is defined by A"[r] = A"*" with differential (—1)"d.

1.2 | Conventions on differential forms and currents

When dealing with differential forms, currents and cohomology classes, one can use the topolo-
gist’s convention, where the emphasis is put on having real or integral valued classes in singular
cohomology. For instance, in this convention the first Chern class of a line bundle will have inte-
gral coefficients. In algebraic geometry, the fact that rational de Rham classes are not rational in
singular cohomology, the ubiquitous appearance of the period 27i, and the fact that the choice of
a particular square root of —1 is non-canonical, makes it useful to use a different convention.

This algebro-geometric convention aims to control the obvious powers of 27i and to be inde-
pendent of the choice of the imaginary uniti = \/—_1

Of course using one convention or the other is a matter of taste and one can go easily from one to
the other by a normalization factor. In this paper we will follow the algebro-geometric convention.
Therefore, it is useful to incorporate different powers of 27i in the standard operations regarding
forms and currents as in [14, Section 5.4]. We summarize here the conventions used because they
differ from commonly used notations.

We will denote by E, the differential graded algebra of complex valued differential forms on X,
by E} , the subalgebra of real valued forms and by E}  and E} , . the subalgebras of differential
forms with compact support. The complexes of currents are defined as the topological duals of the
latter ones. Namely E;;” and E)’(_ﬂ are the topological dual of E)’é,e and E;’R,C, respectively, with
differential given by

dT(n) = (=1)""'T(dn).
Recall that X is smooth of dimension d. We write

D*

= B [—2d](—d).

This implies that

Dy . ={T € D} |V € E32", T(n) € (27i) “R}.

Hence, one can see D;,R(p) as the topological dual of E)Z(‘,iug "(d - p).
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We now consider the current /X given by

COI—)/CO.
X

Then [, € E} 2* = DY _(d). This suggest to define
1
8y 1= [x @ 1(=d)y = W/X ® 1(=d)c € Dy .

Remark 1.5. The current §y has two advantages over the current /. The first one is that 8y is
independent of the choice of square root of —1 while the current /x is not. Indeed, If z1, ..., z,4
are local complex coordinates with z; = x; +iy;, then the standard orientation is given by the
volume form

Vol =dx; Ady; A= Adxg Adyy.

If we change the choice of the square root of —1 from i to —i then Vol is sent to (—1)d Vol, which
is the same change of sign suffered by (277i)¢. Of course this explains the presence of i¢ but not the
presence of (277)%. The second advantage of 8y is that, if X is defined over @ and w is a differential
form representing a rational class in H égr(X , Q;‘(@), then 8y (w) € Q.

To be consistent with the previous choice we also need to adjust the definition of the current
associated to a locally integrable form and to an algebraic cycle. Given a locally integrable differ-
ential form w of degree n, there is a current

m—2d _
/Xco/\-eEX” = Dy(d).

we will denote by [w] € DY the current defined by

[a)]:/xco/\-@]](—d)@:@/}(mA-@H(—d)CED)’}. (1.1)

In other words [w] = §x A w. With this convention, the morphism of complexes [-] : E§, — D5
respects the structure of weak Hodge complexes on both sides.

If f: X - Y is a proper map of smooth complex varieties, of dimensions d,d’ and relative
dimension e = d — d’, then the push-forward of currents f, : E;(* - E;’ is defined, for T € Dy,
andn € Elz,‘i_” by

[T =T(f*n).

It induces a map f, : Di, — Dj[—2e](—e).
Finally, let Z C X be a codimension p irreducible subvariety of X. Let ¢ : Z — X be a resolution
of singularities of Z. Then the current integration along Z is defined as

8, =1,(87) € Dl (p)

Remark 1.6. Since Z is irreducible, H;p (X, p) = @(0) and the class of §, is at the same time the
Betti and the de Rham generator of Q(0).
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Given any cycle § € ZP(X) we define &, by linearity. Following Remark 1.5, the symbols [«]
and dy do not depend on a particular choice of v/—1.

Example 1.7. To see how this conventions, together with the convention in Definition 1.3 work
in practice, we review the classical example of the logarithm. Consider X = P! with absolute coor-
dinate ¢, so div(t) = [0] — [o0], and let U = X \ {0, co}. Write

log(tf) € E% (1), %, % € Ej(1).

Note that, if we want to stress the fact that these elements belong to the twisted complex we will
denote them like log(¢f) ® 1(1)c. These elements satisfy

[logtf] € DY, (1), [%] [% Dy, (D).
Moreover,
log(1F) = — log(t7)
de _ _drf
t P
d[%] Y S N I 12)
d[de] =84, =0, — &,

dd[logtt] = =45y = 6o — S

Note how, in the above formulae all the (27i) factors are now implicit.
Recall also the potential ambiguity on the sign of the conjugation mentioned at the end of
Definition 1.3. The typical example to keep in mind would be the form

1(/dt dt 1
==-=-=)eE.Q

that represents a generator of H'(U;1). Since 7 is an element of E}J(l) then 77 = 7. Hence, 1 €
E},(1)g. By contrast, if 7, € E/, is the differential form with the same values as 7, but this time
belonging to Ellj, then 7, = —7,. Thus 7, is purely imaginary.

1.3 | Local product situation and duality

Assume in this subsection that X is projective in order to have Poincaré duality. Let A C X be a

Zariski closed subset and a, 7 € Z. Then Lefschetz duality tells us that there is an isomorphism of
mixed Hodge structures

H'(X\ A;a) @ H@"(X,A;d — a)".
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If B is a second Zariski closed subset one may ask if there is a refined duality
H'(X\ A,B;a) = H¥ (X \ B,A;d — a)"? 1.3)
In general the answer is no as the following example shows.

Example 1.8. In this example we put X = P2. Let ¢, #; and #, be three different lines passing
through the same point p and write A = £, U ¢; and B = ¢,. Then

HY'(X\ A,B)=Q(-1), H*X\A,B)=0,
HY(X \ B,A) = Q(0),H*(X \ B,A) = 0.
Thus, the answer to question (1.3) is negative.

Nevertheless, if we add some hypothesis to the sets A and B we can have a positive answer.
Definition 1.9. Let A and B be closed subvarieties of X. We say that A and B are in a local product
situation if, for any point x € X there is a neighborhood U of x, a decomposition U = U, X Up,
where U, and Uy are open disks of smaller dimension, and analytic subvarieties A’ C U, and
B’ C Uy such that

ANU = A" x Uy, BNnU=U,xB.
Remark 1.10. The sets A and B of Example 1.8 are not in a local product situation. By contrast, if
A and B are divisors without common components such that A N B is a normal crossing divisor,
then A and B are in local product situation.

The following result is proved in [3, Lemma 6.1.1].

Lemma 1.11. Let A and B be closed subvarieties of X in local product situation. Then, for every
a,r € Z, there is an isomorphism of mixed Hodge structures

H'(X \ A,B;a) — H* (X \ B,A;d — a)".

In the next section we will explain how to realize this isomorphism explicitly, after tensoring
with R, using differential forms.
We give now two applications of duality.

Lemma 1.12. Let Z C X be a closed subvariety and let m : X — X be a blow-up with center con-
tained in Z such that X is smooth. Write Z = 7~ Y(Z). Then, forall a,r € Z, the maps

H'(X\ Z:a) 2 H'(R\ Z: a) (14)

H'(X,Z;a) ~— H'(X,7:a) (1.5)

are isomorphisms.
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Proof. The fact that (1.4) is an isomorphism is obvious because X \ Z = X \ Z. By the functoriality
of duality, the morphism (1.5) is the composition

114

( *)V ~ ~ = ~ o~
H'(X,Z;a) = H¥ (X \ Z;d — a)¥ —2 H*¥"(X\ Z;d — a))¥ = H'(X,Z; a).

Since the map 7, in the middle is also an isomorphism by the same reason as before, we conclude
that (1.5) is an isomorphism. O

The next result tell us the surprising fact that, under some conditions, we can shift, in the iso-
morphism of Lemma 1.11, part of the closed subset A to the closed subset B.

Lemma 1.13. Let A, B be two divisors without common components such that A U B is a normal
crossing divisor. Let 7w : X — X be a blow-up with center contained in A N B such that X is smooth

and 7~ 1(A U B) is a normal crossing divisor. Let A and B be the strict transforms of A and B, respec-
tively, and C the exceptional divisor of 7. Then, for all a,r € Z there are isomorphism

H'(X\ A,B;a) — H'(X\ AuC,B;a), 1.6)

H'(X\ A,B;a) — H'(X \ A4,BUC;a). 1.7
Proof. The fact that 77* is an isomorphism is a consequence of the equalities
X\A=X\(AuC), B\A=B\(AuO0)
The isomorphism (1.7) is the composition of the isomorphisms
H'(X \ A, B;a) — H*"(X \ B, A;d — a)"
= HM TR \BuC,Ad—a)
= H'( \E,B\U C;a),
where the existence of the first and third isomorphisms is a consequence of Lemma 1.11 and the
second isomorphism agrees with the isomorphism (1.6) applied with A and B interchanged. []
1.4 | Differential forms with zeros and logarithmic poles

Let Y C X be a closed subvariety, Y a resolution of singularities of Y and ¢ : ¥ — X the induced
map. We denote

SyEy ={w €Ey | "o = 0}.

Then Iy E} is an example of a Dolbeault complex. In particular is a weak R-Hodge complex.
Therefore, we can apply to it the notation of Definition 1.3. We begin with a basic observation.
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Proposition 1.14. Let Y C X be a smooth subvariety. Then The complexes Zy E5, and s(Ey — E;)
are quasi-isomorphic.

Proof. For smooth Y the sequence
0—XyEy - Exy - E; =0
is exact, which implies the result. [l

Note that we do not put a weight filtration on Zy E7.. Nevertheless in good conditions the com-
plex Zy EY, allows us to compute part of the mixed Hodge structure of the relative cohomology of
the pair (X,Y).

Proposition 1.15. Assume that X is projective. Let A be a normal crossing divisor of X and let W
be a smooth closed subvariety that intersects transversely all intersections among the components
of A. Write Y = AU W. Assume furthermore that all possible intersections among components of
Y are smooth and irreducible. Then, there is a mixed Hodge complex K that computes the relative
cohomology groups H*(X,Y), a quasi-isomorphism

IyEy p — K
and a compatible filtered quasi-isomorphism
(EYE;(’F) — (KCaF)

Proof. LetY =Y, U--UY, be the decomposition of Y into irreducible components. For I C

{1,...,r} we write Y; = [);; Y;. Then there is an exact sequence

0-32yE; -~ Ex - @PE;, - @Ey, - (1.8)
[I]=1 [I]=2

Moreover, this sequence remains exact after taking the FP subcomplex at each degree. Since the
total complex of the sequence

D, ~ i, - B, -

IT|=1 [1]=2 1=k
is the de Rham part of a mixed Hodge complex that computes H*(Y), the result follows. O

Let A C X be a normal crossing divisor and Ey (log A) the complex of differential forms on X
with logarithmic singularities along A introduced in [7]. This is also a Dolbeault complex, so it
has a real structure and a Hodge filtration. Although in this case it also has a weight filtration. We
will use the shorthand

Ey(log A;a) := Ex(log A)(a).

The following result is proved in [7].
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Proposition 1.16. Assume again that X is projective and that A C X is a normal crossing divi-
sor. Then, (Ex (log A)g, W), (Ex(log A), W, F)) is a mixed Hodge complex computing the real mixed
Hodge structure H*(X \ A).

Proposition 1.16 can be applied to general subvarieties of X using resolution of singularities. In
order to get a complex that does not depend on the choice of a particular resolution one can take
a limit with respect to all possible resolutions. In the sequel we will have a mixed situation where
there is already present a normal crossing divisor A that we want to preserve as much as possible
and an arbitrary subvariety Z that meets A properly. In this case we use the following notation:

E;(logAuZ) = @E}(logA’), 1.9)
X

where the limit runs over all proper modifications 77 : X — X such that A’ = 771(A U Z) is a nor-
mal crossing divisor and that the restriction 77| g\ ;-1 : X\ 774(2Z) —» X \ Z is an isomorphism.
In other words, we are allowed only to make blow-ups supported on Z. The complex E5 (log A U Z)
inherits a real structure, a Hodge filtration and a weight filtration. Proposition 1.16 easily implies
the next result.

Corollary 1.17. Assume that X is projective, that A C X is a normal crossing divisor and that Z C X
is a closed subvariety. Then,

(Ex(log AU Z)p, W), (Ex(log AU Z), W, F))

is a mixed Hodge complex computing the real mixed Hodge structure H*(X \ AU Z).
We can now combine Proposition 1.15 and Corollary 1.17.
Definition 1.18. Let A be a normal crossing divisor of X .NI:et Z,W C X be closed subvarieties such
that no component of W is contained in AU Z. Lett: W — X be a resolution of singularities of
W\ AU Z. Then we write
TyEy(logAuUZ) ={w € Ey(logAUZ) | "w =0} C Eyx(logAU Z).

We again use the shorthand, for a € 7,

TwEx(logAUZ;a) ;= ZyEy(log AU Z)(a).

The complex Xy, E(log AU Z) has a real structure and a Hodge filtration but not a weight
filtration.

Theorem 1.19. Assume that X is projective and that A, B are divisors without common compo-
nents such that A U B is a normal crossing divisor. Let W be a smooth subvariety intersecting trans-
versely all intersections of components of A U B and such that all intersections between components
of AU B U W are smooth and irreducible. Let Z be a closed subvariety. Then, there is a mixed Hodge
complex K that computes the relative conomology groups H*(X \ (BU Z),(AUW)\ (BUZ)), a
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quasi-isomorphism
2 uwEx(logBU Z)y — K
and a compatible filtered quasi-isomorphism
(ZauwEx(logBU Z)¢,F) — (K¢, F).

Proof. The proof is essentially the same as the proof of Proposition 1.15 using Corollary 1.17 on
each intersection among components of A U W. O

Corollary 1.20. With the hypothesis of Theorem 1.19. For each a,r € Z there is a canonical isomor-
phism

112

H"(Z ,wEx(logBUZ,a)) — H' (X \ (BUZ),(AUW)\ (BUZ);a)c
compatible with the Hodge filtration and the real structure. Moreover, the spectral sequence associ-
ated to the Hodge filtration F degenerates at the term E;. Therefore, the differential d in the complex

Iy E} is strict with respect to the filtration F.

Proof. The first statement is a direct consequence of Theorem 1.19. The second statement is also
consequence of Theorem 1.19 and standard properties of mixed Hodge complexes. [

Finally, we explain how to use differential forms with zeros and poles to make effective the
duality of Lemma 1.11 in the normal crossing case.

Proposition 1.21. Assume that X is projective. Let A and B be two divisors of X without com-

mon components such that AU B is a normal crossing divisor. For n € Z4E{(logB) and w €
2d—r . . . . ..

ZgE{ " (log A), the top differential form 1 A w is locally integrable. Moreover, the pairing

H"(X \ B,A)c @ H¥ (X \ A,B): — R(—d)

given, for ) and w closed, by

_ _ 1
() = awl) = = [ yna

is a perfect pairing inducing an isomorphism as in Lemma 1.13.

1.5 | Currents on a subvariety

Let Z be a subvariety of X. We denote by £,E7, . C £,E the subspace of differential forms with
compact support on X that vanish on Z and we write

B} ={T € ;" | T(w) = 0, Yo € 3,E }.
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The space E; / has been introduced by Bloom and Herrera in [4] and, in the case when Z is

smooth, it agrees with E’Z‘”. This space is a Dolbeault complex and we write

Dy, = By [-2dl(-d), Dy, =Dy/Dy,

Again, the complex Dy, , has a real structure and a Hodge filtration but not a weight filtration.

Let A C X be a normal crossing divisor and Z a closed subvariety, write Y = AUZ. f w €
EL(logAUZ; g) and 7 € Zy E}, then the differential form w A 7 is locally integrable in any proper
modification X — X where w is defined. This induces a map

[-]: Ex(logAUZ;a) —» D)*(/Y(a)

given by

_ 1
@l0) = i [ wnn,

Proposition 1.22. Let A, Z and Y be as before. Assume that Z is smooth and that meets transversely
all the strata of A. Then the map

(Ex(logAUZ;a),F) — (D;/Y(a),F)
is a filtered quasi-isomorphism compatible with the real structure.

Proof. The case when A U Z is a normal crossing divisor has been proved in [14, Theorem 5.44]
using the techniques from [18, 26]. Let 7 : X — X be the blow-up of X along Z. The conditions on
Z imply that Y := 7~1(Y) is a normal crossing divisor. Consider the commutative diagram with
exact rows

0 D% _ D% DL _ 0
Xy X XY
0 Di D} D}y 0.

The formula for the cohomology of a blow-up implies that the total complex associated to the
diagram of complexes

D _ ——= D*
XY X
Dyy — Dy

is acyclic. Even more, every subcomplex defined by the Hodge filtration is acyclic. This implies
that the arrow

(DL _,F) > (D;

XY F)

/Y’

is a filtered quasi-isomorphism. Thus the result follows from the normal crossing case. 1
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Corollary 1.23. With the hypothesis of Proposition 1.22, for every a,r € Z, there is a canonical iso-
morphism

H'X\Y;a): = H’(D;"(/Y(a))C

compatible with the Hodge filtration and the real structure.

1.6 | Wave front sets

A current T can be viewed as a differential form with distribution coefficients or as a generalized
section of a vector bundle. As such, it has a wave front set that is denoted by WF(T). The theory of
wave front sets of distributions is developed in [27, Chapter VIII]. For the theory of wave front sets
of generalized sections, the reader can consult [20, Chapter VI]. Since we will work with currents
and hence with generalized sections of vector bundles, we will mainly follow [27].

Denote the conormal bundle of X minus the zero section as T(\)’X = TVX \ {0}. The wave front
set of a current T is a closed conical subset of T(\)’ X. This set describes the points and directions of
the singularities of T and it allows us to define certain products and inverse images of currents.
For a concise description of the basic properties of the wave front set, we refer to [15, Section 4].

Let S C TXX be a closed conical subset. We denote by D)*(; 5 the space of currents on X with
wave front set contained in S. Then [15, Theorem 4.5] implies that

Proposition 1.24. Assume that X is projective. Then the morphisms

(Ex,F) - (Dy.q, F) = (D, F)

;87
are filtered quasi-isomorphism.

We will need an analogue of Theorem 1.19 for currents with controlled wave front sets. Although
the theory of wave front sets depends only of the underlying structure of differentiable manifolds
we will state the needed notations and results in the complex case.

Definition 1.25. Let f: Y — X be a morphism of complex manifolds, and let S C T;X and
R C T closed conical subsets. Then we denote

NJf ={(x,§) e TyX | x = f(),df(y)'E =0},

[ S ={.n eTyY|3(x,8) € S,x=fy),n=dy)E},

fiR =NJf{i(x,&) e TJX | 3(y,n) € R,x = f(¥),n = df(y)'&}.
Then

Ff'S=NYfU{(x8) € TYX | x = f(»),3(x,') € S, dfy)'E = dfiy)'E'}.

Clearly, f.f*S = f.f*f.f*S. Wecall f,f*S the saturation of S with respectto f.If S = f, f*S
we say that S is saturated. If Y is a smooth submanifold of X and f the corresponding closed
immersion, we write NyY = N/ f.
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The basic functoriality properties of currents and wave front are the following (see [27, Chapter
VIII, Section 2]).

Proposition 1.26. Let f : Y — X be a morphism of complex manifolds of relative dimension e, and
let S C TyX and R C T closed conical subsets.

(G) IfT € D)’(;s and Ny NS = (, then there is a well-defined pullback current f*T € D;;f*s.
.. p
() IfT e Dy %> then f.T € Dy.; .

Lett: A < X be a smooth hypersurface and S C T(\)’ X aclosed conical subset. We will denote

D*

v as =Dy , N D} D:,, . =Di D}

X;S° X/A;S X;87X,A;S"
Lemmal1.27. LetR CT g A be a closed conical subset. The morphism t, induces an isomorphism

L, D} [-21(-1) — D} (1.10)

AR
Therefore, if S C T&’X is saturated, we obtain an isomorphism

L DY g[=2(-1) — D& , ..

Proof. By Proposition 1.26, the map (1.10) is well defined. Since A is smooth, by [4] the map
t,: D, [-2](-1) — Dy ,

is an isomorphism. This implies directly that the map (1.10) is injective. It follows easily
from the definition of wave front set, that if WF(,T) C f,R then WF(T) Cc R which implies
surjectivity. O

When taking the current associated to a differential form with logarithmic singularities,
it is easy to control the wave front set. In fact, the map Ej(logA) — D; /A factors as a

composition

E)*((logA) — D)*(/A;N(YA — D)*(/A.

Let ¢ : B — X be another smooth hypersurface such that S n Ng B = (. By Proposition 1.26
there is a map (//)* : ;(;s — D;;(L/)*S and we define
23Dy ¢ = ker((()").

Definition 1.28. We say that S and B are in good position if, for every p € B there is an open
neighborhood U C X of p and a smooth retractionr : U — U N B such that

r*((')*Slyns) € Sly-
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Lemma 1.29. If S and B are in good position, then the map

AN * £
()" Dx.s = Dpyyes

is surjective.

Proof. By a partition of unity argument, the statement is local on B. Let p € B and U and r the
neighborhood and smooth retraction that exist because S and B are in good position. Let T €
D;_(L,)*S. Then

r*T € D[*J'r*(z’)*s CD} g and ()'r*T=T

proving surjectivity. 1

We now put all the ingredients together. Let X be a smooth projective complex variety,:: A <
X and ' : B & X two smooth disjoint hypersurfaces of X and S C T(\)’ X a closed conical subset
that is, at the same time, saturated with respect to ¢ and in good position with respect to B. We
define

=pD%, . . ={T €D}

X/A;S ITlB:O}

JA;S

Theorem 1.30. Let X, A, B and S be as before. Then the map

(Z5E;(log A), F) — (25D, oo F) (1.11)

/AS’
is a filtered quasi-isomorphism.
Proof. By Lemma 1.27, since S is saturated with respect to ¢, we have an isomorphism

Lt Dy g[=21(=1) — D .6

Since (Djw ¢ F) = (D}, F) is afiltered quasi-isomorphism and the map D7 [-2](-1) — D;( 4 18

an isomorphism, we deduce that (D)*( s F ) — (D; o F )is a filtered quasi-isomorphism. We con-
sider the commutative diagram with exact rows

0— D;,A;S D;;s D)*f/A;S 0

0 D;( " D)} D; /A 0.

As we have discussed, the first vertical arrow is a filtered quasi-isomorphism. By Proposition 1.24,
the second vertical arrow is also filtered quasi isomorphism. We deduce that the third arrow also
is one. Using now Proposition 1.22 we obtain that the map

(Bx(log A),F) — (D} F)

/A;S?
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is a filtered quasi-isomorphism. Consider next the commutative diagram with exact rows:

0 —— XgE5(log A) — E5(log A) Ej 0
0 ——=2pD} yg—> Dy s —— D;-(y)*s —0.

Note that surjectivity of the map D} is Lemma 1.29. We already know that the sec-

— D*
AS By(')*S
ond and third vertical arrows are filtered quasi-isomorphism, hence the first is also one, proving

the result. O

1.7 | Higher Chow groups

We recall here the definition and main properties of the higher Chow groups defined by Bloch in
[2]. Initially, they were defined using the chain complex associated to a simplicial abelian group,
but the description using the cubical complex is more user friendly to define the product structure.
We stick to notations and conventions followed in [12, Section 3].

Fix a base field k and let P! be the projective line over k. Let [] = P! \ {1} (= A!). The cartesian
product (P!) has a cocubical scheme structure. For i = 1,...,n, we denote by t; € (k U {oo}) \ {1}
the absolute coordinate of the ith factor. Then the coface maps are defined as

O (t1swesty) = (b5 s 61,0, Ly e s 1),
8Lty ey ty) = (b e 11,00, Ly eee By).

Then, (7" inherits a cocubical scheme structure from that of (Ply. An r-dimensional face F of [ "
is any subscheme of the form 5;11 5;’;:"’(|:|’). By convention, []" is a face of dimension n. The
codimension of an r-dimensional face of []" isn — r.

Let X be an equidimensional quasi-projective scheme of dimension d over the field k. Let
ZP(X, n)be the free abelian group generated by the codimension p closed irreducible subvarieties
of X X [J", which intersect properly X X F for every face F of []". We call the elements of ZP (X, n)
admissible cycles. The pullback by the coface and codegeneracy maps of [] endow ZP(X, -) with
a cubical abelian group structure, given by

J _ (siyE
5 = @),
n .
5= Y (-1)tsl.
i=1 j=0,1

Note that the indexes have been raised or lowered to reflect the change from cocubical to cubi-
cal structures.

Let (ZP(X, *), &) be the associated chain complex and consider the normalized and refined nor-
malized chain complexes associated to ZP (X, *),

n
ZP(X,n), := (| kerd},
i=1

n n
ZP(X,n)g = | kerd! n[ | kerd!.
i=1 i=2
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The differential of these normalized complexes are also denoted by 6. One can show that the
inclusion

ZP(X,n)yy & ZP(X, n),

is a quasi-isomorphism of cubical chain complexes. An element in the above two complexes will
be called a pre-cycle, and will be called a (higher) cycle if it also satisfies §(Z) = 0.

Definition 1.31. Let X be a quasi-projective equidimensional scheme over a field k. The higher
Chow groups defined by Bloch are

CHP(X,n) := H,(ZP(X, %)y) = H,(ZP(X, %))

Since we will often come across the notion of proper intersection of higher cycles in this paper,
for the sake of easy reference, we recall its definition.

Definition 1.32. Let X be a smooth quasi-projective scheme over k, and let p, g, n, m > 0 be non-
negative integers. If Z € ZP(X,n), W € Z4(X, m), we say that Z and Wintersect properly if, for any
face F of (],

codimy, (77 HZ| N7 W[ N (X XF)) > p+gq,
where
T XxO'"xO" > X xO" n: XxOI'"xd" - Xx"
are the projections.
Let W € Z9(X, m) be an admissible cycle. We denote by ng(X ,n) C ZP(X, n) the subgroup
generated by the codimension p irreducible subvarieties Z C X X []*, such that Z and W intersect
properly. Then it can be shown that the inclusions

Zh (X, %) & ZP(X, %), ZE, (X, )00 = ZP(X, %)gg

are quasi-isomorphisms.

1.8 | Survey of Deligne-Beilinson cohomology

Asin [12, Example 4.17], given a Dolbeault complex A we can associate to it a diagram of complexes
and morphisms

1 H
Drw(A,p) _ ~ D(A,p) __ ~ DA, p), (1.12)
E G

where the three complexes compute the Deligne cohomology of A and all the arrows are homo-
topy equivalences. The leftmost complex has the advantage that, when A is a Dolbeault algebra,
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has also a structure of an associative and graded commutative algebra. On the middle complex,
we have several product structures, but none is at the same time graded commutative and associa-
tive. The rightmost complex is the smallest one and gives a more concise description of Deligne
cohomology but again has the disadvantage that the product is only associative up to homotopy.

In particular, if X is a smooth projective variety over C, we can specialize diagram (1.12) to the
case A = E} to obtain a diagram

Drw(X, p) _ DX, p) _ DX, p), (113)

computing the real Deligne cohomology Hg (X, R(p)) of X. We recall a few pieces of this diagram.
Denote by L = (L}, d) the algebraic de Rham complex of A}R, that is,

L% = R[e], LHIQ = R[e]de,

where ¢ is an indeterminate. For a Dolbeault complex A we write

leZO € A*(p)[R’
Dw(A,p)=< weL: A" (p) (1.14)
N “l@lem € FOA*(p)c.
and
A" (p-1gn @ Ag’q’, ifn < 2p,
p'+q'=n-1
p'<p.q'<p
D(A,p) = .
AM(p)r N @ Aé’ a, ifn > 2p.
p'+q'=n
L p'>p. q'>p
Note that, for n < 2p we can also write
An—l
DA, p) = (p)c : (115)
A" (p)p NFOAM1(p)c
We will denote by
7w, AN (p)e — D"(A, p) (116)

the projection map. Then, for n < 2p, (see [16, paragraphs (6.1) and (6.2)]) the map D7, (A, p) —
D"(A, p) is given by

1
FO®w + 9@ = [ @7, 02), )

1.9 | Goncharov regulator and higher archimedean height pairing

Here we give a quick revision of the cubical Goncharov regulator and of the higher archimedean
height pairing for sake of ready reference. More details about the regulator can be found in [12,
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Section 5], more details about Green currents and forms in [12, Section 6] and about the height
pairingin [12, Section 7.5]. From now on we denote the differential in the Thom-Whitney complex
by dg, to distinguish it from the differential in the de Rham complex.

In the paper [12], Goncharov regulator

P: CHP(X,n) — HZX™"(X,R(p))

is given by a morphism of complexes, also denoted P

k

ZP(X, %)y = D (X, ).

Recall the complex L from Section 1.7. Let 1 € (L ® Ep1(log B))! be the element given by
/1=—%<(£+1)®%+(E—1)®%+de®logtt'>. (1.18)

Then 1 € @%W(E;I(log B),1).
On (P1)" \ B, for n > 0, we consider the Wang forms

W, =1

W, =mjA-mA n>0,

where 7;: (P!)" - P! is the projection onto the i-th factor. Clearly W, €
Dy (E AEEkW)n (log B), n); see [12, Section 5] for the main properties of these forms. By abuse of
notation we will also denote by W,, the pullback of W, to any variety of the form X x (P!)". If
Z is an irreducible subvariety of X x []" intersecting properly all the faces and Z is a resolution
of singularities of the closure Z, then the pullback of W, is locally integrable. Therefore, for any

cycle Z € ZP(X, x),, Writing
Syrw i=1®@6- € @%(D;X(Pl)n, D), (1.19)
we have a well-defined current
Szrw W, € @if;"(D;X(pl)n, p+n).
Then, Goncharov regulator is given by
P(Z) = (mx). (87w - W) € Di,"(D, P), (1.20)
where 77y : X X (P1)" — X is the projection.

Given a cycle Z € ZP(X, n),, we call any current g, € D
it satisfies.

2p—n—1

TW.D (X, p) a Green current for Z if

P(Z) + dg g, = [wy], for w, € DX, p).
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A class of Green currents is the class of a Green current in

~2p—n—1 . en\2p—n-—1

QTW,D (Xa p) L @TW,D (X’ p)/ Im di‘)’
and is denoted by g,. A pair (Z, g, ), where g, is a Green current for Z is called an arithmetic cycle,
and is the building block to define higher arithmetic Chow groups.

To define an intersection theory at the level of higher arithmetic Chow groups, we need the
notion of a Green form of logarithmic type for a cycle Z. It acts as a bridge between the current 1 ®
é, € S?\)’V,D(X x (P1)", p) and a smooth form that lives in 15)?\; "(X, p), and computes the real
Deligne cohomology class P(Z). For shorthand, in the next proposition we denote A := (P!)" \
0.

Definition 1.33. Given a cycle Z € ZP(X, n), and the pullback |Z|; of |Z| in X X OOk (see [12,
Section 6.2] for exact definition of |Z|;), a Green form of logarithmic type for Z is an n-tuple

0
2p—n+k—1
0z 1= (s Gn-1+ 90) €D D e X XTI\ IZ1 o,
k=n

Such that, if n > 0,

(i) the equation 6, + dg[g,] = 0 holds in the complex

2
ng\jV,D,Xx(Pl)"/XxA(p)'
In other words, g, is a Green form for Z in X x []".
() ()" 16g +dpg_1 =0, k=2,..,n
(iii) (-1)"8¢; +dggy =: w(g,) € @%’\’,\,_"(X, p). In other words, the form (—1)"d¢; + dggo
extends to a smooth form on the whole X. It can be shown that w(g,) is closed and belongs
to class P(Z) in Hy' ~"(X, R(p))-

If n = 0, the previous conditions collapse to condition
2
67 +dalg,] € [DIH(X, )]
IfZ € ZP(X, n)y, is acycle in the refined normalized complex, then a refined Green form is defined
as a Green form satisfying the stronger condition

0
—ntk—
3:€P ‘D?\’Nﬁ; ' x T\ 121} Poos (1.21)
k=n

where |Z]} = (5;)7" ok CryVAl

It can be shown that every class g, of Green currents contains a Green form of logarithmic type
(cf. [12, Propositions 6.12 and 6.13]).

Let Z € ZP(X,n), and W € Z9(X, m), be two cycles intersecting properly in the sense of Defi-
nition 1.32. Then for choices of classes of green currents g, and gy, for Z and W, respectively, we
define the start product
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Definition 1.34. Choosing any representative g, of g, and a Green form gy, = {g),, ..., gé} for W
contained in gy, we define the *-product of g, and gy, as

m ~
9z * 9w = ((—1)n<2(”x,*<5z Wy g Wj)> + 9z CU(QW)) ,
j=0

where 5, - W, - gJ’. - W is seen as a current in X X (P1y"*™ and 7y is the projection to X.

Of course, the s-product g, * gy depends on the choice of the Green currents g, and gy, and
not only on the cycles Z and W. Nevertheless, if the real regulators of Z and W are zero, we can
obtain an invariant from the %-product that only depends on the cycles Z and W. This is the higher
analogue of the archimedean component of the height pairing.

Definition 1.35. Let Z € ZP(X,n), and W € Z9(X, m), be cycles intersecting properly, having
real regulator classes zero, and 2(p + ¢ —d — 1) = n + m. Then we can find Green currents for Z
and W satisfying conditions

dogz + P(Z) = dy gy + P(W) = 0. (1.22)
and the higher archimedean height pairing is defined as

(Z, W)Arch = (pX,*(gZ * gW))N € H%(SPeC(C)a R(P +q- d))’

for any choice of Green current g, for Z and a Green current gy, for W satisfying (1.22). Here
Dx : X — Spec(C) is the structural morphism.

It can be shown [12, Proposition 7.20] that the definition is independent of the choice of Green
currents g, and gy, satisfying condition (1.22).
From the fact that w(gy,) has been chosen to be zero, we get

m ~
(ZWaren = (1" X pu (62 Wi 9 W)
j=0

where p = py o my. This pairing is graded commutative and linear on both components.

2 | ORIENTED MIXED HODGE STRUCTURES AND HEIGHT
2.1 | The height of a mixed Hodge structure

Let V be a Q-vector space. A mixed Hodge structure (F, W) on V induces a unique functorial
bigrading [17, Theorem 2.13]

ve=@p 1+t (2.1)

a,b
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of the underlying complex vector space V- such that
(i) F* = @z I

(11) Wk = $a+ﬁ<k IOL,ﬁ; and

(iii) 140 =19 mod @pcpyeq IPC.

The I%? is given by

b b _
I** = F*AW,,, N (Fb AW+ U3+11)_2), 2.2)

where

Ul =Y Faw,;
Jj=0

Definition 2.1. The bigrading (2.1) will be called the Deligne bigrading of (F, W). The associated
semi-simple endomorphism Y = Y yy of Vi which acts as multiplication by p + q on 79 will
be called the Deligne grading of (F, W).

We will denote by IT the projector over Gr} Ve = @, I*? and 11, ;, the projector over 1.
So, for instance, IT;, is the composition

Ve — Gr) Ve & Ve

Moreover, the semi-simple endomorphism Y is given by

Y = Z kIT,,. (2.3)
kez
Let
gl(V )P = {a € gl(Ve) | a(?) C I1¢¥ebHd} (2.4)

be the Hodge decomposition of gl(V') and define

A = @@ etV (2.5)

a<0,b<0

Then, A-1-1 = A=1L~1 [17, Eq. 2.19]. For an element 4 € gl(V) we will denote 1 = ¥ 197 its
decomposition into Hodge components.
There exists a unique real element § = §( ;) € A~"~! such that

Yew) = ¢ Yiew, (2.6)

where ¢ - a := Ad(g)a denotes the adjoint action of GL(V ) on gl(V ) [17, Proposition 2.20]. The
element & defined by (2.6) will be called the Deligne splitting of (F, W).
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For an element g € GL(V) we will denote by ¢ - F the filtration given by (g - F)PV =
g(FPV ). In general if (F, W) is a mixed Hodge structure on V, the pair of filtrations (¢ - F, W) do
not form a mixed Hodge structure.

Lemma 2.2 [30, Lemma 4.11]. Let (F, W) be a mixed Hodge structure on V and A~5~! be the asso-
ciated subalgebra (2.5). Then, 1 € A~5~1 implies that (¢* - F, W) is a mixed Hodge structure on V
and that

p.q Y P X
(eAF,W) € (I(F,W))'

A choice of graded polarization of (F,W) determines a hermitian inner product on V.
by declaring the bigrading @, I%b to be orthogonal and defining the inner product on I%?
using the isomorphism 1% >~ H%b Grgﬁrb and the standard Hodge inner product on GrZ‘;b. In
this way, we can attach a collection of heights to (F, W) via the norms of the Hodge com-
ponents 5% of § [31, Section 5.1]. To attach a signed height to (F, W), we need a notion of
orientation.

Definition 2.3. Given a mixed Hodge structure H = (F, W) on V, define
max(H) = max{k | Gr;’ (V) # 0}, min(H) = min{k | Gr}” (V) # 0}.
and define the length of H as
¢(H) = max(H) — min(H).

We say that H is oriented if GrKl’aX(H)(V) and Grmn(H)(V) are both of rank one. This implies that
max(H) and min(H) are both even and, writing a = max(H)/2 and ¢ = min(H)/2, that

GrKaX(H)(V) = Q(_a)’ erin(H)(V) = Q(_C)- (2.7)

If H is oriented, an orientation of H consists of a choice of Betti generators 1;; of GrzaX (H)(V) and

1]1\3 of Grfgin(H)(V). Equivalently, an orientation is a choice of the isomorphisms (2.7). Given an

orientation of H we define a signed height by the formula

;' (e) = ht(H)e", r=—¢(H)/2, (2.8)

W

. aa . .
where e is the element of I C V¢ which projects to 1;; € Gr @

in Wmin(H) VC .

(V) and eV is the image of 1},
Remark 2.4. The height functions considered above only depend on the underlying R-mixed
Hodge structure.

Definition 2.5. Let H be an oriented mixed Hodge structure on V. We say that H is a generalized
biextension if H has at most three non-trivial weights.



HEIGHT PAIRING ON HIGHER CYCLES AND MIXED HODGE STRUCTURES | 97

Therefore, if H is a generalized biextension, there are three integers 2a > b > 2¢c, and a pure
Hodge structure H;, of weight b such that

Q(—a), ifk=2a,

H,, ifk =b,
Gr/(v)y=4 " ‘

Q(=c), ifk =2c,

0, otherwise.

Note that H;, may be zero.

Lemma 2.6. Let H = (F, W) be a generalized biextension and a, b, ¢ as before. Let e € I*? be the
unique element that maps to the generator 1y and e" the image of 1]\}’1 in I°€. Then,

ht(H)e" = %Im (I, (e — ©)).

Proof. Write ky = 2a, k, = b and k; = 2c for the different weights of H and let Y = Yy ) and
8 = S(r.w)- Since § € A1, there is a decomposition § = &, + &, + &3, with

§; =, 000Il;, &, =I 0d0ll, &3=1II 00l .
The decomposition (2.3) and the fact that the projectors IT;, are orthogonal imply
[Y,8,] = (ky — k)61, [Y,6,] = (ks —ky)8,, [Y,85] = (ks — k;)S5.
In particular,

= (kl + k3 - 2k2)52 o 51.

Therefore,

Y=e20.y =Y -2i[5,Y]-2[5[5,Y]] =

Since e € I*“ is a lift of 1(—a)q € Q(—a)g and 1(—a)q = 1(—a)q, We can write
e=e+ag +a, (2.10)

where Y(a;) = ja;. We now compute

Y(e)=Y(@) =Y(e+a +a,)

= klé + kzdkz + k3dk3 = kle + klak2 + klak3 + kzdkz + k3dk3. (211)
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On the other hand, by Equation (2.9),
Y(e) = kye — 2i(k, — ky)8,(e) — 2i(ky — ky)83(e) — 2(ky + ks — 2k,)8,(8,(e)).  (212)
By (2.10) we deduce
Qy, = =0y, — Ay, — .. (2.13)

By Equations (2.11)—(2.13) and using the splitting, we deduce the equations

(ky = ky)ay, = =2i(k; — k)5, (e), (2.14)

(ky — kyay, + (ks — ky)ay, = 2i(ks — ky)85(e) — 2(ky + k3 — 2k;)8,(6,(e)). (2.15)
From Equation (2.14), taking into account that k; — k, # 0, we obtain
5,(c) = %akz. (2.16)
Applying &, to Equation (2.16) we get
8y(ay,) = —2i6,(5,(e)). (2.17)
Computing ?(akz) in two ways as we have done with Y (e) yields the equation
—2i6,(ay,) = ay, + ay,. (2.18)
Combining Equations (2.15), (2.17) and (2.18) gives

-1 ap. — C_lk
85(e) = 7%,

which is equivalent to the lemma. [l

2.2 | Some ancillary results

We next study the effect of a morphism of mixed Hodge structures on the height we have defined.
To this end, we first recall the compatibility of the Deligne splitting with morphism of mixed
Hodge structures.

Lemma 2.7. Let A and B be mixed Hodge structures with Deligne splittings 6 , and &g, respectively.
Let f : A — B be a morphism of mixed Hodge structures. Then, f o6, = g o f.

Proof. By [17, Proposition 2.20] if C is a mixed Hodge structure, then §. commutes with all
(r,r)-morphisms of C. Let C = A @ B and observe that g(a,b) = (a,b + f(a)) is a morphism
of C. Using the block structure of gl(C) = gl(A @ B) it follows immediately from (2.6) that
Sc(a,b) = (6 4(a), 55(b)). Writing out the g o §» = 6 o g shows that f oS, = Sz 0 f. O
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Proposition 2.8. Let A and B be oriented mixed Hodge structures such that max(A) = max(B)
and min(A) = min(B). Let f : A — B be a morphism of mixed Hodge structures which is injective
on Gt and Gt . Then,
max(A) min(A)

ht(A)dmin(f) = ht(B)dmax(f)y
where f(1,4) = dpq,(f)15 and f(17) = dpy;n (T

Proof. Lete, bealift of 1, and e} the image of 1Y. Then, f(e4) = d,;,q,(f)ep Where ey is a lift of
1. Likewise, f(e}) = d,,;,,(f)ey; where ey is the image of to 1y;. Moreover, since f is of type (0,0),
then f o8, = 8y o f implies that f 0 &"," = 8" o f for any r. Setting r = (min(A) — max(A))/2 it
follows that

fod(e)) = 65 of(en)
I I
ft(Ae}) = 65 (dpax(ep)
I Il
ht(A)dmin(f)e\é = ht(B)dmax(f)e\é' N

Example 2.9. We put Proposition 2.8 in practice for usual cycles. Let X and Y be smooth
projective varieties of dimensions dy and dy, respectively. Let Z € Zf:om(X ), We Zgom(Y) and
T € Z%*(X x Y) be a correspondence of degree r, such that p + q + r = dy, + 1. We assume that
the pullbacks of Z and W intersect I properly, so that I', (Z) and I'*(W) := I (W) are both defined
at the level of cycles. Let By r+(y) and By () be oriented biextensions as defined by Hain in [22],
of graded weights 0, —1, —2. One can show that I" defines a morphism of Hodge structures between
these biextensions

I'zw: Bzr«w) = Br,ow»

with d,,, . (Tz ) = dpy;,(Tz ) = 1. Hence, we get

For later use, we record the following:

Lemma2.10. Let N be a (—1, —1)-morphism of a mixed Hodge structure (F, W). Then, §in . yy =

Proof. By [17, Proposition 2.20], N and S(F,W) commute. Therefore, using Lemma 2.2:

e(t_t)N_Zlé(F,W) . Y(eIN.F’W) — etNe_ZMS(F'W)e_tN . Y(eIN.F’W)

— etNe_Zia(F-W)e_[NetN . Y(F,W)

_ LIN ,—2i§
=e''e FwW) . Y(F,W)

— efN . Y(F,W)
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=elN. Y(F,W)

= Y(eIN-F,W)-

Accordingly, by (2.6) —2i§,iv gy = (I — )N — 2i6(p ) which implies the stated formula after
dividing by —2i. O

Corollary 2.11. Let N be a (—1,—1)-morphism of a mixed Hodge structure (F,W) and r =
(min(F, W) — max(F,W))/2. If r < —1 then

ht(e'N - F,W) = ht(F, W)

forallt € C.

Proof. By Lemma (2.10), 8" NEwy = 6(rFr -, and hence the two mixed Hodge structures have the
same height. O
2.3 | Dual of a mixed Hodge structure

A real mixed Hodge structure A induces a mixed Hodge structure A* on the dual vector space Ay
by the formula

130 ={1€ AL | A1) =0, (c,d)# (-a,—b)}. (219)
If « € gl(Ac) then o € gl(Ap) is the linear map (ocT(/l))(v) = Aa(v)) for all 1 € A7 and v €
Ac. A short calculation shows that if a € gl(A¢)*" then a € gl(A})*P. Tracing through the
definitions, one sees that the Deligne grading Y 4, of A and Y 4. of A* are related by the formula
Y, ==Yl (2.20)
It follows from Equations (2.20) and (2.6) that
Indeed, since ad(X]) --- ad(X" )XT = (-=1)""'{ad(X,) --- ad(X,_,)X,}" it follows that
e

—2i ad(—5£)YA* — el ad(—5£)(_Y£)

= Z —.(21 ad(6))"Y’,

m>0

=Y v

m>0

= —(exp(—2i ad(B )Y ) =V, =Y =7,
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since the operations of transpose and complex conjugation commute. Therefore, § 4. = —5£ by
(2.6).

Now if H is a generalized biextension as defined in Definition 2.5, then its dual H* is also a
generalized biextension with

Q(c), ifk=—2c,
Hy, ifk = —b,

Q(a), ifk=-2a,
0, otherwise.

Gr)/(V*) =

We have the following relation between the heights of H and H*:
Proposition 2.12. Let H be a generalized biextension. Then
ht(H") = —ht(H).
Proof. By the definition of the dual of an oriented biextension, the generators of H ad H* satisfy
(T, 1) =1, (1 1) = 1.

Let ey be an element of II‘_lI’a C V¢ which projects to 1 € Gr‘z"(’l(V) and e}, is the image of 1y, in
Wy V. Correspondingly, for H* we have elements e and e},,. These elements also satisfy

(eH*,e;’I) =1, (el\g*,eH) =1.

Also, since &7, = (8} )T, we get
ht(H)e),, = 6,7 (epy) = —(5Irf)T(€H*)-
Hence,
ht(H*) = <_(5;i,r)T(eH* ), exr).
Finally, using the action of (52’[’)T, we get

ht(H*) = — ht(H)(ey., €);) = — ht(H). O

3 | MIXED HODGE STRUCTURES ASSOCIATED TO HIGHER CYCLES

In this section we define extension classes for higher cycles Z € ZP(X, n),, in the refined normal-
ized complex. For two higher cycles Z € ZP(X,n)yoand W € Z9(X, m)yy, with2(p+q—-d —1) =
n + m, we construct, under certain assumptions, an oriented mixed Hodge structure diagram
(Figure 2) which captures both the extension related to cycle Z and the dual to the extension
related to W. In an even more special situation for n = m = 1, this diagram defines an ori-
ented biextension.
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3.1 | Two divisors on (P!)"
Definition 3.1. On (P1)", we define the following divisors:

A={(ty, . t,) | Fist; =1},

B ={(ty,...,t,) | 3i,t; € {0, 0}}.
Then A U B is a simple normal crossing divisor. Moreover,
EHY'\A =", (PYH*\B=(C*)"and Bn[]" =d[]".
For any variety X we also denote
Ay =X XA, By :=X XB.

The following cohomology groups are easy to compute.

o 1sn _Jo ifr #n,

H'(P)"\ A,B) = {@(0)’ P (3.1)
o 1sn _ )0, ifr # n,

H'(P)"\B,A) = {Q(—n), - (3.2)

In order to fix the isomorphism (3.2) we choose the generator of H*((P!)" \ B, A; n)q, that is rep-
resented by the differential form

dt dt
(=1)" t_l Ao A t_n € F'z,E), ,(log B n), (33)
1 n

where ¢; is the coordinate of the P! in position i. This choice also fixes the isomorphism (3.1). The
reason of the sign (—1)" is to make it compatible with the normalizations chosen in [12]; see for
instance Proposition 3.8. The Kiinneth formula and the computations (3.1) and (3.2) produce, for

a,r € Z, isomorphisms of mixed Hodge structures

H'(X x (PY)"\ Ay,By;a) = H (X, a), (3.4)

H'(X x (P)"\ By, Ay;a) @ H(X,a — n). (3.5)

Since Ay and By are in local product situation (see [3, Lemma 6.1.1 and Remark 6.1.2]), the above
isomorphisms are compatible with duality

H'(X X (PY)* \ Ay, By, Q(p)) & (H* "7 (X x (P1)" \ By, Ay, Q(d + n — p))) "

We fix the isomorphism (3.4) using the generator (3.3) and Proposition 1.21.
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Definition 3.2. For any a,r,n € Z, we denote by
W: H : HX x (P)"\ Ay, By;a) — H (X, a)

the isomorphism determined by the generator (3.3). This isomorphism sends the class of a closed
form

wE ZBXE;(X(W)" (log Ay)

to the class represented by the current

dt —1)" dt
(—1)’1(7'[)()* CO/\%/\"'/\—H] = ( 1_) / w/\%/\.../\_” ,
tl tn (27‘[1)” (Pl)n tl tl’l

where 7y : X X (P1)" is the first projection.

3.2 | The extension associated to a higher cycle
In this section we show how to associate, to a cycle Z € ZP(X, n),,, n > 1, an extension
ez € Xty pus(Q(0), H*P7"71(X; p)).

By definition Z is a codimension p algebraic cycle in X x (P!)" \ Ay, which intersects properly
all the faces of By \ (Ax N By ). We write

BX=B01U'”UB0)1 UBOO1U"'UB

oon?

as the decomposition of By into irreducible components.
Since Z € ZP(X, n)yy, we have Z - (B;; \ (Ax N B;;)) well defined. Moreover, Z being a higher
cycle, we have

We denote by Z the closure of Z as an algebraic cycle in X x (P!)". There is a cycle class with
support

@) e Hf;lof x (P1)"; p)g
and, by restriction, a class
cl(Z) € Hy (X x (") \ Ay; plo-

Now we have the following
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Proposition 3.3. Under the above setting, there is a unique cycle class

[Z1eHJ,\ (XX (P))'\ Ay, By \ AxiD) g,

that is sent to cl(Z) under the obvious map

2 2
ng\AX(XX(Pl)n \AX’BX\AX7p) _)lepl\AX(Xx(lpl)n \AX7p)

Proof. Consider the long exact sequence of relative cohomology with supports

2p—1 . 2p 1\n .
_)H(lzlﬂBx)\AX(BX\AX’p) —)HlZl\AX(XX(lp ) \Ax,Bx\Ax,p)
2p 1\n . 2p .
= Hizpa, XX CYNAGP) = Higop 504, Bx N Axi p) = -

The proof will follow if we show

. 2p—-1 . .
M H(IZlnBX)\AX(BX \ Ax;p) = 0;

. S
(i) cl(Z) ~ 0,in H(émBX)\AX(BX \ Ax; p).

Note that for (i), we cannot use semi-purity directly since By \ Ay is not smooth. Instead we
use the following lemma.

Lemma 3.4. Let D be a complex space that can be covered by a finite number of smooth closed sub-
varieties. That is, D = U;_, D;, with D; Zariski closed and smooth. Put Dy = Nig/D; forI C{1,...,r},
assume furthermore that D; is smooth for every I, and let Z be a Zariski closed subset such that Z N D;
has codimension p for all 1. Then

HE(D;p) =0, forallk < 2p

and the map
,
2 2
HZP(D;p) — @HZiDi(Di;p)
i=1

is a monomorphism.

Proof. The Mayer-Vietoris property for closed coverings gives the first quadrant spectral sequence

,b . .
B = @ Hyep, (D p) = Hg (D3 p).
[Il=a+1

Each D; is smooth and codim(Z nD;) = p. Hence, using semi-purity we conclude that
HgnDI(DI; p) =0 for b < 2p. Since a > 0, the first statement follows. The second statement is
just the fact that edge morphism of a spectral sequence is a monomorphism. O

The first statement of Lemma 3.4, implies directly condition (i).
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The property (3.6) implies that the class cl(Z) is sent to zero in all the groups H |ZZP| B, (Bi; \

Ay; p). Therefore, condition (ii) follows from the second statement of Lemma 3.4.
Lemma 3.5. For Z € ZP(X, n),, the image of the class [Z] in
H?P(X x (P')"\ Ay, By; p),
is zero.
Proof. By the isomorphism (3.4) we know that the mixed Hodge structure
H?P(X x (P')" \ Ay, By; p) = H*P~"(X; p)
is pure of weight —n. Since the image of the class [Z] belongs to
F°H*P"(X; p)c N H**7"(X; p)g.
Since in a pure Hodge structure of weight —n < 0 this group is zero, we conclude the result. []

There is a long exact sequence of mixed Hodge structures

0 — H**7""Y(X; p) » HP~'(X x (P1)" \ Ax U |Z|, By; p) —
HY (XX (P \ Ay, By; p) = HP(XX (PY'\ Ay, Bxip) = =+, (37)

where the zero on the left-hand side follows from

H|ZZP|_1(X X (P1)"\ Ax,Bx;p) =0  (semi-purity).

By Proposition 3.3 and Lemma 3.5, the cycle class [Z] defines a map

$71 Q(0) — HpJ\ (X% (P))'\ A, By:p), (38)

whose image of ¢, in H*P(X x (P1)" \ Ay, By; p) is zero. Therefore, pulling back the above long
exact sequence through ¢, we get an extension

0 — H?P7""Y(X;p) — E, — Q(0) — 0. (3.9)
By abuse of notation, we also denote as
Ey :=[0—> H*7"(X;p) > E; —» Q(0) - 0

: f 1 2p—n—1(y.
the class of this extension in EXtQ—MHS(Q(O)’ H*P~"1(X; p)).
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3.3 | Differential forms attached to the extension E,
The extension E, induces an extension

Ezp € Exty s (R(0), HP7"71(X; p)).
For shorthand we write H = H*’~"~1(X; p), that is a mixed Hodge structure pure of weight —n.
Recall that there is an isomorphism

~ H
Extl_1us (R(0), H) — 0_@ (3.10)

FO + Hy,

1

This isomorphism works as follows. Let E € EXt[R—MHS’

so E is the class of a short exact sequence
0> H— E - R(0) = 0.

Let 1(0) be the canonical generator of R(0). Choose v € F°E an element that is sent to 1(0). Then
h = (v—"0)/2 is sent to zero in R(0) and therefore belongs to H. The class of h in the quotient
at the right-hand side of (3.10) does not depend on the choice of v and represents the image of E
under the isomorphism (3.10). In this section, given an element & € H, we will denote by

—  Hg

He —5— (3.11)
FO +Hy

its class in the quotient.

We will now construct several differential forms related to the extension E  and, in particular
a representative of its class. To this end we will use the complexes of differential forms with zeros
and logarithmic poles

ZBXE;X(Pl)n(logAX;p), and ZBXE;X(Pl)n(logAX ulZl; p).
The relevance of these complexes is clear because, for instance the class [Z] belongs to

FOH)7 (X X (P))" \ Ay, By; P)c-

And the underlying cohomology group can be computed using the simple of the morphism of
complexes

9 L
ZBXE).(X(PI)A (log AX’ p) - ZBXE)*(X(Pl)n (log AX U |Z|s p) (312)

Proposition 3.6. Let X and Z be as in the previous section. Then there are differential forms

G) n, e FOZBXE)Z(ZDL)” (log Ax U |Z|; p) such that dn, = 0 so the pair (0,7) is a cycle in the sim-

ple s(t) and the corresponding class satisfies

{00} = [2] € HJ (X x (P')" \ Ax,By; p)c. (3.13)
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Moreover, on the complex of currents D*

Xx(PL)n /Ay there is an equallty OfCurrents

(i) 6, € F‘”ZBXE;iE;I)n(logAX; p) with d6, = 0 and 52 = —0,. Moreover, if we denote by @

the image of the class {6} under the composition

He

H?P~1(X x (PYY* \ Ay, By: p)e — Hp — ——C
(X x(P)"\ Ax, Bx; P)e C FOH, + Hy,

= Ext! (R(0), H),

where we have used again the shorthand H = H*P~"~1(X; p), then

{0} =E . (3.15)

(ili) g, € F'n ﬁ_lZBXE)Z(Z;I)n (log Ax U |Z|; p) satisfying g, = —g, and

1 —
dg; = E(Uz —7z) =06y, (3.16)

Remark 3.7. Before starting the proof, we recall how the notation in Definition 1.3 works. Condi-
tions

-1 ! 2p—2 -
gy €EF'NF ZBXEXI;(pl)n(IOgAX U|Zl;p), and g, = —gy

are equivalent to

—1,p-1 —dR _
9z € ZBXE)I;X(PI:),‘ (log Ax U |Z|), and g;*" = (-1)P7' gy,

where @dR is the original conjugation of differential forms.

Proof of Proposition 3.6. We first note that the equality (3.15) is a consequence of (3.13) and
(3.16). Recall the explicit construction the isomorphism (3.10) at the beginning of the section.
The mixed Hodge structure E, is a substructure of H??~1(X x (P!)" \ Ay U |Z|, By; p). Condi-
tion (3.13) implies that the class {5} belongs to F OEZ’C and is a choice of the class v. Then Equa-
tion (3.16) implies that {6,} agrees with the class (v — v)/2, and we deduce (3.15).

The class [Z] belongs to F°H |22p| (X x (PYH"\ Ay, By; P)¢c, and we compute the underlying coho-
mology group using the simple of morphism ¢ in (3.12). Therefore, there should be an element
(a1, B;) € FOs(1) that represents [Z].

By Lemma 3.5 the form «; has to be exact. Since by Corollary 1.20 the differential d is strict with
respect to the Hodge filtration we deduce that there is

2p—1
a, € FOEX‘;(Pl)n(logAX;p)

with da, = a;. Writing 8 = 3, — a, we deduce that [Z] is represented by (0,8) = (¢, ;) —

d(a,, 0) with

BeF's; B (logAx UIZl: p).

Xx(pl)n
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Since the class {(0, E)} also agrees with [Z], we get

{0.8-B1=0
Hence,
BB} e W_HP™'(X X (P')" \ Ax U|Z|, By; p) = HP /(X x (P')" \ Ay, By; p) = H
Since this last mixed Hodge structure is pure of weight —n — 1, we can decompose
B—PB}j2=c—C+1, (3.17)
with

0 == —n
ceF°H.,, ©c¢eF H.,, teF "H.
and t = —t. The class c can be represented by a cycle
y € FO%p, Xx(Pl)n(logAX D).

Hence, y represents c. Next choose a representative

—
6, € F "z, Xp(Pl)n(logAX p)

oft. Asaformin ZBXEXP ([:Dl)n (log Ay), it has components of bidegree (a,2p — 1 — a)fora > p — n.
2p -2

We observe that —6; also represents ¢. Hence, there is an u € 2. By, @y

du =06, + 51. Since the bidegrees of 6, and 51 only overlap in the range

(log Ay; p) such that

(p_n’p+n_1)’---y(p+n_17p_n)5 (318)

we see that some components of du will kill some components of 6,. Let F"~'u denote the sum
of the components of u of bidegree (a,b) with a > p + n — 1. Then 6, := 6, — dF"~'u only has
components of bidegrees in the range (3.18). This implies that 52 belongs to F~"

Writing 6, = (6, — 52) /2 we obtain a differential form satisfying

_ 521 =
6,€F ”ZBX Xp (Pl)n(logAX,p) dé, =0and 6, = -6,

and still representing ¢.
The decomposition (3.17) implies that there is a form

2p—2
o €Zp E

XX(Pl)n(logAX U |Z|’p)

such that

(6-B-0-9)-

N

dg, =
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and g; = —g;. We decompose ¢; in bidegrees
1,p—1 =0
9= gf P4+ FOg +F g,
and define
1p-1
9z7=9; P and 7, =p-2y—2dF%,.

By construction, Equation (3.16) is satisfied. Therefore, g, satisfies all the conditions of the theo-
rem. On the other hand

(0’ 772) = (07 ;6) + d(_2y9 2Fogl)9

so 1, satisfies condition (3.13). As explained in the beginning, this implies that 8, satisfies Equa-
tion (3.15).

It remains to show Equation (3.14). The argument is adapted from [8, Theorem 4.4]. By con-
struction of the class [Z] we see that forgetting the vanishing at By, the pair (0,7,) represents
the class cl(Z) € H | Z|(X X (P1)* \ Ay; p)c. Using resolution of singularities we can construct a
smooth complex variety X, a normal crossing divisor D and a codimension p cycle Z’ with |Z|
smooth and intersecting transversely all intersections of components of D and a birational map
7: X - Xx(PY", suchthatn,Z' = Z,D being the union of the exceptional divisor of 7 and the

preimage of Ay. The cohomology group 2 s 2| (X \ D; p)c can be computed as the simple of the

morphism of complexes

> /D(p) D% bz (P)-

Moreover, there is a morphism of complexes s(t) — s(¢’) given by the commutative diagram

E;X(]p)n(lOgAX;p) % ZBX XX(]p])n(logAX U |Z| P)

| |

L *
D3 (P) D} (P

In the complex s(¢) the class cl(Z') is represented by the pair (§,, 0). Therefore, there are currents
u, v such that

(821,0) = (0, [1*nz]) = d(u,v) = (du,u — dv).
Hence,
8, =du, [7*nz] =dv—u

which implies the result, thanks to the projection formula. O
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3.4 | The class of the extension and Goncharov regulator

In this section we will use the form 8, to relate the class of E, with the Goncharov regulator P(Z)
of Section 1.9.

Proposition 3.8. Let P be the cubical Goncharov regulator normalized as in [12, Definition 5.1] and
Y the isomorphism of Definition 3.2. Under the isomorphism

H2p—n—1(X’ C)

2p—n =
HZXT"(X,R ’
® ( (p)— FPH?2p-n=1(X,C) + H2P-"-1(X,R(p))

(3.19)

the class P(Z) is mapped to ¥(6,,).

Proof. In this proof, to compute real Deligne cohomology we use the Thom-Whitney Deligne
complex Dy of Section 1.7 (see [12, Definition 4.14]). This complex has the advantage to have a
well-defined graded commutative and associative product.

From the forms constructed in Proposition 3.6 we can define the following Thom-Whitney
versions, to complement J v given by Equation (1.19).

gzrw =E€®@N;+(1-e)@ (7 +1,)/2+de® gz
2p-1 .
e gTl\)yv (ZBXEXX(pl)n(IOgAX U |Z|)’ p)’ (320)

621w = de ® 6, € DY (Zp, By, 1),(10g Ay U Z]), p).
Equations (3.14) and (3.16) and the fact that E = 6, imply that

dlgrwzl = =8rwz + [Orw 2] (3.21)

Equations (1.20) and (3.21), together with [12, Equation (5.7)] and the fact that g, 1 vanishes
when restricted to By imply the equality of cohomology classes

P(Z) = {(mx). [0z 7w - Wy1b

So we are left to compare the classes {(7rx), [0 Tw A W, ]} with {¥(0,)}. To this end we will use
the explicit description of Wang forms in [16, Definition 6.5]. We note that the form denoted by
W, here is the form (—=1)"W? in [16].

Using (1.17), the image of P(Z) is represented by the form

n 1/ 1y i(0 _ 1\n—i )
S e oo ari) 62
i=1 : :

where P! = Yoes, (—1)"Pﬁw and, for a permutation o € ©,,.

. dt dt .  diy dt
i (1) A A a(i) A o(i+1) A A o(n) '

no -

Lo(1) Loty toasn) [
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We now use that

[PL 1= —[P" ]+ boundaries + currents in By,

n
dt,
(_1)UPZ,U = Ta

i=1 !

that

(e+1-(e—1)"=(-D",

in!(—l)"(e+1>f<e—1>"—i(—1>"l (- 1)"

&~ 21il(n — i)

and that the form 6, vanishes on By to deduce that the current (3.22) is cohomologous to

n A dti _
(=D)"(7x). lez A l/=\1 [—l_] = W(0,). 5

Corollary 3.9. Let Z € ZP(X, n),, be a cycle such that its real regulator class is zero. Then we can
choose g5, 1, and 6 as in Proposition 3.6 with the additional property 6, = 0. Therefore,

1 _
dg; = 5(772 —7z).

Proof. Let gé, n’Z and G’Z a choice of forms as in Proposition 3.6. If the real regulator class of Z is
zero, then Proposition 3.8 implies that the cohomology class of €/, belongs to

FOH?P~Y(X x (PY)" \ Ay, By; p) + H*P /(X x (P")" \ Ay, Bx; P)g-

Hence, there exist differential forms

2p1

0
hleF Z:BX Xx(PL)n

(log Ax; p),

h, € 3y E2P!

XX(Pl)n’R(log AX’ p),

Y € Zp, ;i(;l)n(logAx,P)
with h; and h, closed, such that
6, = hy + h, + dy.
We write y; = (y —¥)/2 and we decompose
ro=r T FYy + F o

—0 —_— —
Then F y, = —F%,. Moreover, since G’Z = —G’Z,

dy? P = 6], — 2 ((hy +2dF%,) = (hy + 2dF%7) ).

[\)|>—‘
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Thus, if we write

—-1,p—1
gz=gé+yf P 772=77,Z_h1_2F071’ 0,=0,
then it is easy to verify that the triple n,,9,, v, satisfies the properties of Proposition 3.6. O

Remark 3.10. When the real regulator class of a higher cycle Z € ZP(Z, n),, is zero, and the forms
71, and g, are as in Corollary 3.9, then n, = 2d¢,.

3.5 | Comparison with [12]

This subsection acts as a bridge between the Hodge theoretic forms obtained above, and the higher
Green forms and currents used in [12]. We will use it later to connect the higher archimedean
height pairing to the height of a mixed Hodge structure associated to a pair of higher cycles. We
will follow the notations of [12].

For each n, consider the complex given by

Dy X P) = Taop Dy (B 1), (108 B), p).

It has a cubical structure and we can form the associated refined normalizes double com-
plex T@;\; A log(X » D)oo and the corresponding total complex 7D, 10g(X , Poo; see [12, 5.2] for
more details.

There is a quasi-isomorphism

T<2p§>¥W(X’ p) s TS;WA,IOg(X’ p)OO

that is given by the inclusion as the column n = 0.
Let Z, 0, 1w and g; 1w be as in the previous section and write

0z = (@x)ul0z1w - Wyl € 9%%7”()(, p)= i‘ﬁ‘\’,v_,gfog(X,p)oo'

In the complex T@,}W Alo

the class {P(Z)}. Therefore, we obtain an element

g(X » P)oo» the forms 6, v and 6, are cohomologous as both represent

2p—n-1
(O(n, s O(O) S gTWA,log(X’ p)o()’

satisfying
(o, ... ,G_Z) - 0z 1w,0,...,0) = d(ay,, ..., Ap). (3.23)
We obtain an n-tuple of forms

gz = (971w + %y s Ap)-
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Lemma 3.11. The n-tuple of forms

0
8z € @ Qb?\)7\/_%[_1(E;F(x(uml)i(logA U IZ1;), Ploo

i=n
is a refined Green form for Z, as in [12, Definition 6.5].

Proof. Equations (3.23) and (3.21) when written componentwise, imply the conditions of [12, Def-
inition 6.5]. O

Remark 3.12. Note that in the Green form g, only the component over X X (P!)" has singularities
along |Z|, while the rest are smooth on X x [/, with logarithmic singularities along Ay.

After constructing a higher Green form out of g, v we also construct a Green current. Let
gz =) lg, - W,] € @i%,_g_l(X,p). Then, in the complex i‘)?\;g_l

(X, p) the equation
dg; = -P(Z)+ 6y,

is satisfied. Hence, g, is a Green current for the cycle Z as in [12, Definition 6.1].

Let now W be a cycle in Z9(X, m),,, which intersects Z properly and ¢y, a Green current for
W in the Thom-Whitney complex. We now can give a second (and simplified) definition of star
product:

Definition 3.13. Let g, v, g, and gy, be as before. Then we define the product

9z *2 9w = (D" (621w * Wi gw.rw = W) +97 Ow
We note here that the products are taking place in the ambient space X x (P1)" x (P1)"*, and
the notations should be interpreted accordingly. For example, gty , really means the pullback of
this form to the ambient space. We avoid the pullback notations to simplify the exposition. This
note will hold true whenever we take products between elements in a priori different spaces.
We next show that the star product *, is compatible with the star product * in [12, Section 6.4].

Proposition 3.14. Let g{)V be a Green form for W in the Thom-Whitney complex, such that gy~ =
[aw]~. Then for any Green current g, of Z, we have

(gZ *) g_w) = (g7 * ay)™-
Proof. Since the product (g, * g’W)N is independent on the choice of g{)V we can make a particular
choice. We consider the elements (¢,,, ... , &) satisfying (3.23). We write
m

a= Z(ﬂx)*(“l‘ -W)).

i=0
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Then « is closed. Indeed by (3.23) and [12, (5.7)]

da = Z(”X)*(d“i W)+ Z(—l)zl)_i_l(ﬂx)*(fxl‘ - dW;) = =(7x). Ow rw - W) + Oy = 0.
i=0 i=0

We define
o
Sy = (Gw rw + gy Q15 oo A Ay — ).

With this choice

[a] = (). (gwarw - W) + D () - W) —a = gy
i=0

Moreover,

m
(=197 * Qhy = 9z %2 gw) = 2,0 Bzaw - Wi - &3 - W) = (3. 7797 - Wiy - @) = 0.
i=0

proving the proposition. O

As a consequence we obtain the following formula for the higher archimedean height pairing
of Definition 1.35.

Corollary 3.15. If Z € ZP(X,n)y, and W € Z9(X, m),, be two higher cycles whose real regulator
classes are zero with2(p + ¢ —d — 1) = n + m, then

(Z,W)aren = DD (821w Wi - gwrw - W)
where p: X X (P1)"* x (P1)"™ — Spec(C) is the structural morphism.
Proof. The key point is that we can use the second definition of Green current using Proposi-
tion 3.14 for the particular choice of Green form for W, since higher archimedean height pairing

is independent of the choice of Green form for a higher cycle. Next, the real regulator class of W
being zero allows us to choose 8y, = 0 by Corollary 3.9. This concludes the proof. [

3.6 | The dual extension

Letnow g > 0Oand m > 1beintegersandlet W € Z9(X, m),, be a cycle. We apply the construction
of Sections 3.2 and 3.3 to this setting, obtaining an extension Ey;; and the corresponding differential
forms. We can dualize the extension Ey; to get a dual extension

This extension is given by the short exact sequence

0 — @(0) — Ey, — H*72"™¥(X;d — p) — 0,
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dual to (3.9). By construction Ey;, is a sub-mixed Hodge structure of
H*7Y(X x (PY)"\ Ax U |W|,By; p). (3.24)

By duality, we would like to see EXV as a quotient mixed Hodge structure. A naive idea would be
to think that E}/, should be a quotient of

H2a0mH (X (P \ By, Ay U [W[;d +m —q).

But the problem is that the above group does not need to be the dual to (3.24) because By and Ay U
|W | may fail to be in a local product situation. To remedy this situation, we consider a composition
of blow-ups as in the next lemma.

Lemma 3.16. There exists a proper transform
T Xy = X X (PH™,

which is a composition of blow-ups with smooth centers whose image in X x (P')™ is contained in
|W| N By, such that if we denote by W, Ay and By, the strict transforms of |W/|, Ay and By, respec-
tively, and by D the exceptional divisor, then

(i) the strict transforms W and §X do not meet; and
ii) the divisor Ay U D U By, is a simple normal crossing divisor.
X X p g

The previous conditions imply that the pair of closed subsets ﬁX UD and §X are in local product
situation and the same is true for the pair Ay U D U W and By.

Proof. Let Iy, be the ideal sheaf of |[IW| and Iy the ideal sheaf of By by blowing up Iy, + Iy
we obtain a proper transform X; — X X (P!)™ such that the strict transform of |W| and By do
not meet [24, Chapter II, Exercise 7.12]. This proper transform is an isomorphism outside |W| N
By but X is possibly singular. By using strong resolution of singularities in the elimination of
indeterminacies, there is a proper transform

which is a composition of blow-ups with smooth centers whose image in X x (P!)™ is contained
in |W| n By, with a map &y, — X, making the diagram

Xy —— X,

N

X x (PHym
commutative and satisfying the conditions of the lemma. O

Let 7 : &y — X X (P1)" be a map provided by Lemma 3.16.
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Notation 3.17. In the sequel we will use the following shorthands:
O"=@®EH"\A, O"=(P)"\AB),
Oy =X x(PHY"\ Ay, [ = X x @)™\ Ay, By)
|:|~§(n = Xy \A\X’ [ﬁ;;" = (Xy \A\X’B\X):

and the dual ones
G"=(PH"\B, G"=(P)"\B,A),
Gy =XXx(PY"\By, GY =Xx(P")"\By,Ax)
Gy =Xy \By,  Gf =(Xy \ By, Ay).

Moreover, in the relative schemes like |]:|]’;;, the notation (|]:|])"(1 \ S, T) will mean

X x(PHY™\ Ay US,Byx UT).
We have the following.
Lemma 3.18. The cohomology of Xy, satisfies
(i) the morphism
H(X x ()" \ Ay U |W|, By) = H"(Xy \ Ay UD U W, By),

is an isomorphism for all r > 0;
(ii) the morphism

H™(X X (PY)™ \ Ay, By) — H'(Xy, \ Ay UD,By)
is an isomorphism for r < 2q, and injective forr = 2q + 1.
Proof. Since the map 7 gives isomorphisms

Xy \Ax UDUW = X x (P1)™ \ Ay U |W|
By \ Ay UDUW = By \ Ay U |W]|,

we get (i) immediately.
For (ii), let C be the center of the blow-ups. by the same reason as before, 7* gives isomorphisms

114

H'(X x (P1)™\ Ay U C,By) — H'(Xy, \ Ay UD,By).

Moreover, using Notation 3.17 we have a diagram of mixed Hodge structures with exact rows and
commutative squares



HEIGHT PAIRING ON HIGHER CYCLES AND MIXED HODGE STRUCTURES | 117

HY([O7) — H'(By \ Ax) — H' (") — H'((0%) — H'(By \ Ay)
|® [ |® |® |
H™Y(O7 \ D) - H'(Bx \ Ax UD) — H'([0 \ D) - H'(T07 \ D) - H'(By \ A UD).

Since C has codimension at least g + 1 in X x (P!)™ and C n By has codimension at least q + 1
in By, the arrows ©, ®, @ and ® are isomorphisms. Hence, the arrow ® is also an isomorphism
for r < 2q. For r = 2q + 1, the arrows © and @ are isomorphisms, while the arrow @ is injective.
Hence, the arrow @ is also injective. O

Corollary 3.19. The morphism
H'(OF) — H' (T \ D)
is an isomorphism for r < 2q and injective for r = 2q + 1. Dually, the map
HY(G},D) — H'(GY)
is an isomorphism for s > 2d + 2m — 2q and surjective for s = 2d +2m —2q — 1.
‘We now consider the commutative diagram with exact rows
- - 2
HY (O~ B> N(Y \ W) — Hyyp (@) — H*(@y)
H*7([y \ D> H* (T \ DU W) = H(TIy \ D) >~ H*(Ty \ D),
where the vertical arrows are isomorphisms thanks to Lemma 3.18,

In the bottom row of the above diagram, all the relevant relative schemes are in a local prod-
uct situation. Hence, the dual to this bottom row, after twisting by Q(—d — m) to make the
twist disappear, writing dy; = dim(W) = d + m — q and taking into account that H4w (W) =
H2w(W,W n (DU Ay)), reads

HZdW(é;ﬁ(’L’D) N szW(m N HZdW+1(@,D U m S szW+1((]§;’?,D).
After unfolding Notation 3.17 we obtain
H*W (X, \ By, Ay UD) - H*W (W)
— H?Ww+l(x,, \ By, Ay UDUW) - H*w*(x,, \ By, Ay UD) — 0. (3.25)

Just as a sanity check, note that in this exact sequence the first arrow is well defined because
W n By = @ and there is a zero at the end because dim W = d;;. We now use that

H*w (W, W n (Ayx U D)) = Hw (W),

since dim(W n (Ay U D)) < dyy .



118 | BURGOS GIL ET AL.

The class of W produces a morphism of mixed Hodge structure
¢y 1 HXW(Widy) — Q(0), (3.26)

which is the dual of the map (3.8). The fact that the image of the class [W] in H?4(X x (P1)™ \
Ay, By; p) is zero implies that

8y, <H2dW(A’W \ By, Ay U D;dW)> =o.

Hence, taking the push-forward through qbVW of the exact sequence (3.25), we obtain a short exact
sequence

0 — Q(0) - Ey, —» H*W*(x,, \ By, Ay UD;dy) - 0.

By Lemma 3.18 (ii), the fact that By, and ﬁX U D are in local product situation and the isomorphism
(3.5) we have

H2dw+1(XW \B\X,gx U D;dy,) = H* 7N ( Xy \A\X UD’B\X;p)V
= H*7 (X x (PY)" \ Ay, By;p)"
= szW+1(X X (Ipl)m \BX7AX’dW)

= H24-Ca-m=D(x: d — q).
Therefore, the above short exact sequence can be written as
0 — Q(0) - Ey, —» H*~2=m=D(X;d - q) > 0. (3.27)
By construction this exact sequence is the dual sequence to 3.9. We denote by
ey, € Extl ¢ (HXHm=2041(x; d — g), @(0)),

to be the class of this extension.

3.7 | Oriented MHS attached to a pair of higher cycles
Letn,m > 1, and p, q > 0 be integers with
2(p+gq—d—-1)=n+m. (3.28)

Let Z € ZP(X,n)yy, and W € Z9(X, m),,, be two cycles in the refined normalized complex inter-
secting properly. We want to attach an oriented rational mixed Hodge structure to this pair. This
mixed Hodge structure is similar to the one constructed by Hain in [22], with one significant dif-
ference: In the case for usual cycles homologous to zero, proper intersection and the numerical
relation p + g = d + 1 mean that the supports of the cycles are disjoint, which is no longer the case
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here. So one should expect the new mixed Hodge structure to reflect this phenomenon. Moreover,
the use of proper modification in order to use duality will add another technical difficulty.
Let

T XX (PH'x (P — X x (P1)"

o X x (PH'x (P — X x (P1)™
be the two projections. Then the fact that Z and W meet properly means precisely that pl_l(|Z DN
Py L(IW])n X x [J"™*™ has codimension p + q and intersects properly all the faces of []"*™.
Hence, there is a well-defined intersection pre-cycle

Z-W e ZPr(X,n + m),.
Since Z and W are cycles in the refined normalized complex, the same is true for Z - W.
Let: Xy — X X (P')™ be a proper modification as in Lemma 3.16 applied to W. Let C C |W|

be the support of the center of 77. Then 7 is an isomorphism outside C. On Xy, W, A\X and By, are

the strict transforms of |W|, Ay and By and D is the exceptional divisor.
We will assume the following technical conditions.

Assumption 3.20. The intersection 7, (|1Z|) n 7, (C) = 4.
Remark 3.21. Assumption 3.20 is more and more restrictive for bigger values of n and m. In the
case n = m = 1, this condition is satisfied generically but it is not the case for higher values of n
and m.

The sought mixed Hodge structure will appear in a diagram that contains at the same time the
exact sequence (3.9) for the cycle Z and the dual exact sequence (3.27) for the cycle W. For the

main diagram to fit in one page, we need to complement Notation 3.17.

Notation 3.22. We have already introduced the projections 7; and 7, and consider also the pro-
jection

7[3 . XW X (Pl)n — XW
Moreover, we also consider the proper transform
' Xy x (P — X x (P x (PD)™.

Note that this map involves a change in the order of the variables. We write

| _ -1
A] —7T1 Ax, A2—7T2 Ax,
B, =n'B B, =m;'B
1=/ X 2 — 1ty X
Z —71_121\ B —7T_1§
2 — 3 X 2 — 3 X

e
I

(77,)_1A1, El = (7[,)_131,
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® = H"('2™", WUD) = B (0™ \ Z,W U D) = B @™, W) > @

® = H YW, WnD)—=>H YW\ S,WnND) —> H(W) —=©

a @

FIGURE 1 The main diagram

D =7;'D, c, =7,'(0),
Z=1Z|x(PHY", W =nr]'W.

Note that the spaces marked with an overline are subsets of X};, X (P!)" while the others are sub-
sets of X x (P1)" x (P1)™. We will also consider the relative schemes

03" = Dy Xx Gy = XX (P X @)™\ A, UB,, B, UA),

O™ = OO} xx G = (Xy X (P \ A, UB,, By UA,).
Z=(Z\A,UB,B,UA) c
W=(W\4,B,UA) c".

The relative schemes will always be denoted, either with a double-line typography or with an
underline. Finally, we write S = Z n W. Note that by Assumption 3.20, the relative schemes Z

and S can be seen as subschemes of either [ or [T;"™. Note also that in the definition of W,
the divisor B, does not appears because W and By, are disjoint.

We consider the commutative diagram with exact rows and columns of Figure 1. In that
diagram, we have omitted D in the last column because, by Assumption 3.20, it is disjoint
with Z.

We now analyze the different terms in that diagram for r = 2p + m — 1. We start with the top
left corner:

H*P*N (Y™, D) = HP (G, D) x [0

— g2p+m-n—1 (é\?’n D)
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— f2ptm—n-1 (Gl}’l(’l)

= H?P7""Y(X; —m).

The first equality is true at the level of relative schemes. The second equality follows from (3.4) and
Kiinneth formula. Since by (3.28),2p + m — n — 1 = 2d + 2m — 2q + 1, the third equality follows
from Corollary 3.19. The last one follows from (3.5). This computation means in particular that
the composition

H2PHMU(EET, D) — PPN, C,) — BRI (3.29)

is an isomorphism. The fact that the composition (3.29) is an isomorphism, together with the fact
that D and Z are disjoint by Assumption 3.20 imply that the compositions

H2p+m—1(u:|];1(,m \Z’ B) il p2ptm-1 (I]:I];L(,m \Z’ Cz)

— HPN O™\ 2) — HP NG \ Z;—m) (3.30)
and
2p mn . 2p+m mn,m 2p+m

are isomorphisms. So, we can identify the top row of the diagram with the exact sequence (3.7). In
fact this argument also implies that @ is zero and that the image of the class of Z in ® is also zero.
Since 2dy, = 2d + 2m — 2q = 2p — 2 + m — n, using the isomorphisms

o~

H2WwHL (G, W u D)), — H*P*"~(GF, W u D) x [0") = H»*"~}([Iy", W u D)

and

H*Ww(W,W n D) = H*w (W) = H**"2(W,W nD)x[01") = H**™ %W, W n D)

we can identify the first column of the diagram with the exact sequence (3.25). By dimension
reasons, these identifications also imply that @ is zero and that the image of © twisted by Q(dy,)
under the map ¢y, in (3.26) is zero.

Note that the group ® agrees with @ and the group @ agrees with @ so they both vanish.

Next we face the technical problem that, in general, the groups Hg (W) are difficult to control.
Even if S is one point, if W is singular, it can be very complicated. So in order to proceed we need to
add another technical assumption. Afterward, we will give an example of geometrical conditions
that assure the fulfillment of the technical assumption.

Assumption 3.23. Assume that the main diagram satisfies the following conditions:

(i) the image of the class of Z in H-*""(W) is zero;
g B w

(i) the map ¢y, sends the image of H;p (W dyy) to zero;

(iii) the mixed Hodge structure H;p tm-l

n—1,2p+2m-—1].

(W) has weights contained in the interval [2p + m —
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0 0 0
0 —— H*~""1(X;p) Ey Q(0) 0
0 EY (7L+ 1) Bz w Czyw 0

DZ,W - H;ernfl(w;p + TL) I

FIGURE 2 Oriented mixed Hodge structure diagram

Proposition 3.24. Let S, be the union of components of S that are not contained in Zl UA,. Ifthe
conditions,

(i) the subset S, is contained in Wsm, the open subset of smooth points;
(ii) the pair of subsets S, and Wn(B 1V DU Az) are in local product situation inside W;
(iii) we are in the symmetric situation n = m;

are satisfied, then the conditions of Assumption 3.23 are also satisfied.

Proof. By resolving singularities of W and using Lemma 1.1, conditions (i) and (ii) of the propo-
sition imply that

HL(W) = H*2m2m=20-r(5 \ B, UD U Ay, Ay;d + n+m—q)”.

Since dim S, = (n + m)/2 — 1, by [21, Chapter IV, Proposition 3.5] the cohomology of S has
weights in the interval [0, n + m — 2]. Therefore, the weights of H (W) are contained in the inter-
val [2p,2p + n + m — 2]. If we add the condition n = m, then this interval is contained in the
interval of Assumption 3. 23(iii)

The class of Z in H2p +m([|:ﬂ ™) has weight 2p + 2m (recall the isomorphism (3.5)) since

2p+m
H§
lows.

Using again n = m, the group Hy

(W) has weight at most 2p + 2m — 2 (here as well we are using n = m) condition 3.23(i) fol-

2ptm= 2(W; dy,) has weights in the interval [2, 2m]. Since the

image of the map ¢;;, has weight zero, we deduce condition 3.23(ii). O

Definition 3.25. Letn = m > 1 and p,q > Osatisfyingp+qg=d+n+1landletZ € ZP(X, n)y,
and W € Z9(X, n),, be cycles satisfying Assumptions 3.20 and 3.23. Then the oriented mixed
Hodge structure diagram associated to Z, W is the diagram obtained from the main diagram in
Figure 1 by first twisting by Q(p + n), then taking the pullback by ¢, and then the push-forward
by q%, twisted by Q(n + 1). This diagram is depicted in Figure 2.
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Remark 3.26. In general, if we switch Z and W, we do not obtain the dual of the diagram in
Figure 2. The first problem is obvious: Assumption 3.20 is not symmetric. But even if Assumptions
3.20, 3.23 and the symmetric assumptions are satisfied, the two obtained diagrams may not be dual
of each other if Z and W are not in local product situation. Later, we will investigate in more detail
the duality of this diagram in a particular case.

3.8 | Thecasen=m=1

Due to the technical difficulties arising from the intersection 77~ zhn Ty (1w ]) we will con-
centrate on the case n = m = 1. Then Equation (3.28) reads

p+g=d+2. (3.32)

Proper intersection means that the intersection 77'(|Z|) N 7;'(IW|)n X x [J* is a finite set
of points.
To ease the analysis, we make the following stronger assumption.

Assumption 3.27. We assume that n = m = 1 and that the whole intersection S = n;1(|z DN
;' (IW]) € X x (P')? is a finite set of points. Moreover,

(i) the subsets Sand A; U A, U B; U B, are disjoint;
(ii) the subset S is contained in 77'(|Z|,) N7, (|W]y,) and the intersection 77 *(|1Z]) N
T L(|W)) is transverse at every point of S.

In particular 77!(|Z|) and 7, '(|W|) are in local product situation.

Assumption 3.27 implies that we can define the diagram in Figure 2 and also the same diagram
with Z and W swapped.

Proposition 3.28. Assumption 3.27 implies Assumptions 3.20 and 3.23 for the pair Z, W and for
the reversed pair W, Z.

Proof. By condition 3.27(i) 7 1(|Z]) and Ty 1(|W| n By) are disjoint. Therefore, Assumption 3.20
is satisfied. Since S is a finite set of points contained in the smooth part of W, the dimension of W
isd+2—q=p,and 2p + m — 1 = 2p, we deduce that

H§p+m(w) _ H§p+m_2(ﬂ) =0,
and that H;p +m_1(w) is pure of weight 2p. Hence, Assumption 3.23 is also satisfied.

Since Assumption 3.27 is symmetric with respect to the swap of Z and W, we deduce Assump-
tions 3.20 and 3.23 for the pair reversed. O

Next, we modify the main diagram in Figure 1 to achieve two goals. First, we want it to be
symmetric under the swap of Z and W, and second, we want the strict transforms of Z and W to
be smooth in order to easily use differential forms on them.
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Using the same method as in Lemma 3.16. we can find a proper transform 7, : Xé - X X P!,
with centers contained in |Z lsing U (1Z] n By), with exceptional divisor D, such that

(i) the strict transform Z of |Z| is smooth and does not meet §X;
(i) the divisor Ay U D, U By is a simple normal crossing divisor.

Similarly, we construct the proper transform 7y, : X{V — X x P! and define
XZ,W = Xé XX XICV’

which is smooth under Assumption 3.27. We denote the union of the centers of blow-ups for X{V
and X/, to be Cy;, and C, respectively. Let

' X,y > XXP P!
be the proper morphism induced by the maps 7, and 7y, and let
71,/ . X N X/ 71,/ . X N X/
1° ZW ’ 2 YZW w

be the projections. We summarize the different maps in the following diagram.

Xzw
m &
%, v f
7z X x Pt x P! Ty (3.33)
/ \
X x P! X x P!

We adapt Notation 3.22 to this case, and introduce
Notation 3.29.

Al = 77.'1_1Ax, A2 = 7T2_1Ax,

B, = ] 'By, B, =7, 'By,

4, = (m) Ay, B, = ())"'By,

4, = () ' Ay, B, = (7)) "'By,
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FIGURE 3 A symmetric version of the main diagram forn =m =1
C, =7, (Cy)s C, =7, (Cw)s
Z=(n)"'Z, W = (z)"'W.
Here we have denoted by Ay and By the strict transforms of Ay, and By in both blow-ups, X, and

&y . Note that the spaces marked with an overline are subsets of X, ;, while the others are subsets
of X x P! x P!. As before, we will consider the relative schemes

[y = [y Xx Gy = (X X P! x P!\ A, UB,,B; UA,),

XZ,W = (XZ,W \Zl UEZ UBZ’EI UZZ Uﬁw),

Z = (E\Zl U§2 UEZ’ZZ) C XZ,W’

W = (W\ZI’EI UZZ Uﬁw) C XZ,W'

Finally, we write S = Z N W. Note that, by Assumption 3.27, the subset S can be seen as the relative
scheme S := (S \ #,0) that is a relative subscheme of either [y or X; ;. As before, B, does not

appear in the definition of W because W and ]§X are disjoint. Similarly, El does not appear in the
definition of Z.

In Figure 3, there is a more symmetric version of the main diagram in Figure 1. The analysis

of the main diagram carries through, with small modifications to the diagram in Figure 3. For
instance, using Lemma 1.12, the fact that codim C; > p + 1 and dim C, < p — 1, yield

H?P(X, ) = H*’(Ox \ C1,Cy)

= H*P(Ox)
= H*P72(X;-1).
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0 0 0

0—— H*""%(X;p) Ez Q(0) 0

0———=Ey,(2) —— Bzw Czw 0

0 Q(2) Dzw — Q(1)®* ——0
0 0 0

FIGURE 4 The biextension diagramforn =m =1

As in the proof of Proposition 3.28, the group H;p (W) is pure of weight 2p. In fact more is true.
If s = #S is the number of points in the intersection, then there is a canonical isomorphism

H (W) = a(-p)®.

Thus, after pulling back through the class of Z, taking the push-forward with respect to the class
of W and twisting by @(p + 1), we obtain, from Figure 3, the particular case of Figure 2 depicted
in Figure 4.

Proposition 3.30. With Assumption 3.27, the dual of the diagram of Figure 4, twisted by Q(2),
agrees with the similar diagram with the role of Z and W reversed. In particular

By, = B}’W(z), Cyz = D},W(Z), Dy, = C\Z”W(Z).

Proof. Since, by condition (3.32), we have (p +1)+(q+1) —2 =d + 2 = dim(& ), and by
Assumption 3.27 all the subspaces appearing in the diagram in Figure 3 are in local product sit-
uation, if we take that diagram, twist it by Q(p + 1), then take the dual and finally twist by Q(2),
we obtain the analogous diagram, with Z and W swapped and twisted by Q(gq + 1). For instance,
the central term of the first diagram twisted by Q(p + 1) is

H(X, 5 \Z,W;p+1), (3.34)

and By y, as a sub-quotient this mixed Hodge structure. The dual of this cohomology group,
twisted by Q(2) is

H* (X, \W,Z;q +1).

From this the sought duality follows easily. O

From Figure 4, and the fact that all the maps there are morphisms of mixed Hodge structures,
we deduce the next result.
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Corollary 3.31. If Assumption 3.27 is satisfied, then the mixed Hodge structure By y, has weights
—4, —2 and 0 and the graded pieces are

Gry B,y = Q(0),
GrtY B,y = HP2(X,Q(p)) ® Q(1)%,

Gr”, B,y = Q(2).

Therefore, it is a generalized biextension. Moreover, if H*P~2(X, Q(p)) is of Hodge-Tate type, the same
is true for By y,.

Remark 3.32. In the case n = m = 1, the duality in Proposition 3.30 is not only a duality of mixed
Hodge structures, as we will see in the proof of the next proposition, this duality preserves the
orientation. This is in contrast with the case n = m = 0 as shown in [22, Proposition 3.3.4].
Proposition 3.33. With Assumption 3.27, we have

ht(BZ,W) = - ht(BW,Z)

Proof. By Proposition 2.12 we only need to show that the duality between B, y, and By, , preserves
the orientation. The mixed Hodge structure By y; is a subquotient of H*P(X, y \Z,W;p+1),

Hence, its elements can be represented by differential forms in

E =% EZPW(logZ1 UB,UD,UZ;p+1),

B1UA,UDy UW ~ X,
while the elements in By, , can be represented by forms in

—y_ _ _ _p2 n A Y 7.
Ey =3 5,05,07Ex,, 108 B1 UA, UDy UW:q + 1),

The duality is given by the map

<oc,ﬁ>=/XZ,WaAﬁ-

The class of Z is represented by a differential form v, € E; and its dual class can be represented by
a differential form u, € E,. Similarly, we have differential forms vy, and uy, . These forms satisfy

/ VZ/\:uZ=/ Yw A Hyw -
XZ,W XZ,W

The orientation of By y, is given by the classes (v, uy,) and the orientation of By, , by the classes
(vw, Mz)- Since

(vz,uz) = / vzAuz =1
XZ,W
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and
Xzw

we obtain that the duality preserves orientations and hence the result. Note that in Equation (3.35)
we are using that n = m = 1, that implies that the forms uy, and vy, have even degree. In the
case n = m = 0 the differential forms have odd degree, hence the similar duality would not be
compatible with the orientations. O

4 | INVARIANTS ATTACHED TO THE MIXED HODGE STRUCTURE
By w

In this section, we suppose that Assumption 3.27 is satisfied and compute the Deligne splitting &
of B y, (see (2.6)). This map characterizes B, y, as a real mixed Hodge structure.

4.1 | A decomposition of the Deligne splitting of B, ;,,

Since we will be considering different mixed Hodge structures we will use the following variant
of the notation in Section 2 to keep track of them.

Notation 4.1. For a MHS H, we will denote the Deligne bigrading as He = @, (I};’, and will

denote the various projections to the individual Ilrf by HI;{,s. Similarly, the projection to the piece
@D+ q=i I1;" of pure weight k will be denoted ITj; ;.. Also, the Deligne splitting of H will be denoted
5H.

After Corollary 3.31, the Deligne bigrading of B := B, y, (see (2.1)) has the shape

0,0 b —2,-2
Be=I & (@a+b=—2 I ) ®I;"
Similarly, the bigradings of C := C,y,, D := Dy, E; and Ej;, are given by
Ce = Ig,o EBIEI’_I, D, = II—)1,—1 69152’_2,

_ 10,0 a,b % _ a,b —2,-2
Ezc =15, ©® @ Ig, Ey (= I, @ DI, @
a+b=-2 a+b=-2 w w

Since H?P~2(X, Q(p)) and Q(1)* are pure Hodge structures of weight —2, their Deligne bigradings
are given by

HPPX,ap)e= @ 17 ewi =5

a+b=-2
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The functoriality of the Deligne bigrading and the diagram of Figure 4, give us canonical identifi-
cations

0,0 _ 70,0 _ 70,0
Iy =1Ig _IEZ’

ab _ ra,b _ qa,b _
IEZ —IE;/(Z)—I1 , fora+b=-2,
-1,-1 _ —1,-1 _ ;—1,-1
= =

e e e N e 4.1
B e E; °
e =2h f b=-2 1
g =1, ora+b=-2,a#-1,
2,2 _ 1=2,-2 _ ;=2,-2
A
In terms of the graded pieces of the weight filtration we obtain identifications
Gry B = Gry C = Gr) E; = Q(0),
Gr",B=Gr",c & G, E,
4.2)

= Gr”, D @ G, E}),(2) = H?* (X, Q(p)) ® Q(1)},,

W p_ oW w —

Gr”,B=Gr",D@®Gr’, E;,(2) = Q(2).
As in the proof of Lemma 2.6 there is a decomposition

6B =51+52+53,
with
6,: Gry B—>Gr",B, 6,: Gr¥,B—>Gr",B, 6&;: G/ B— Gr¥,B.
Using the identifications (4.2), we can write
51 = 5EZ + 6c, 52 = 5EIYV(2) + 5D'

Moreover, §; = 5;2’_2 as in Definition 2.3. Therefore, if e and eV are the generators of Ig’o and
IEZ’_Z given by the orientation of B, y;, then the height of B is determined by the equation

85(e) = ht(B)e".

In conclusion, the Deligne splitting Jp, is characterized by the invariants 6 _, 8¢, , 8gv (2), Sp

z VA4 W AL
and ht(B). By duality, the invariant & EY(2) is determined by 5, and & Dy by SCW,Z. So we will con-
centrate in the computation of the invariants 6 Ey» 8. and ht(B). By Lemma 2.6 and Equation (2.16),



130 | BURGOS GIL ET AL.

we get
55,(€) = 315, (T —¢) = STT, ,(2), (43)
5c(e) = 2T (F—e) = 2114 @), (4.4)
hiB)e’ = 2 1m (TT,22(2) ). (4.5)

In this section we will concentrate in the computation of § By (e), 5C (e) and ht(B). Moreover, we
will show that, when the regulators of Z and W are zero, the helght ht(B) is given by the higher
archimedean height pairing.

4.2 | Computation of 5 (e)

We first compute &, (e) using the mixed Hodge structure arising from (3.9). To this end, we will

Igf that is mapped to the standard generator of Q(0). Most of the job has

find an element e €
been done in Section 3.3. Let 7, g, and 8, be the differential forms provided by Proposition 3.6.

In particular,

2p1

0
77ZEP‘IZB XxPl

(log Ax n|Z]; p),
with dn, = 0. We claim that the class of 1),
tnz} € HP~I(X x P \ Ay U |Z|, By; p)

gives us the sought element e.

By Proposition 3.6, the pair (0,7,) is a cycle in the simple complex associated to the morphism
(3.12), representing the cohomology class of Z. By the construction of E,, this implies that {5}
belongs to E, and that it is mapped to the standard generator of Q(0). We still need to show that
this class belongs to Igf . By (2.2) and the shape of E,,

IOO

On(FO +F1
¥, =Fn (F+FTnw.,,).

By the construction of 7, the class {5} belongs to F°. From the equation

1 _
dg; = 5(’72 —7z) =06y, (4.6)

2p 1
XxPpl J—
is pure of weight —2, we conclude that the cohomology class {r,} belongs to F FO4+F-1n W_,.
Hence, e :={n,} € Igf is the generator we are looking for.

with 6, € F‘lzB (log Ax; p), and the fact that H?P~1(X x P! \ Ay, By; p) = H**7%(X; p)

Using again Equation (4.6) and the fact that the class {6} of 6, belongs to W_,, we deduce that

5EZ(6) = %HEZ,—Z(E —e)= —ia; = —ilp(ez), (4.7)
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where, in the last equation, we are using the map ¥ from Definition 3.2 to identify H?P~1(X x
P!\ Ay, By; p) with H?P~2(X; p). Recall that, by Proposition 3.8, the class ‘@ represents the
Goncharov regulator of Z. So, essentially, the invariant §p_(e) is the regulator of Z. Note that the
factor i comes from the fact that in the chosen normalization, the regulator is purely imaginary,
while the map 6 is chosen to be real.

Remark 4.2. Although we have written the above computation for n = 1 to keep parity with the
rest of Section 4.1, since Section 3.3 is valid for general n > 1, the same is true for the above com-
putation.

‘We now make the computation in the mixed Hodge structure B, y, as the techniques involved

will be used latter in the computations of the other invariants. As before, the key point is to find
the generator e of Ig’o. We see By y;, as a subquotient of

H* (X, \Z,W;p +1).

Hence, we will work on the smooth projective variety X, y, introduced in Section 3.8.

Notation 4.3. We choose (t,,t,) affine coordinates of [ ]>. We denote

de, di,
~ € FOEAE(IPI)Z(logB; 1).
1 b

Recall, as in Example 1.7, that this implies

(2)--2 (49)

1

Moreover, when working with differential forms on the smooth projective variety X y,, that come
from other spaces in diagram (3.33), we will not write down explicitly the pullback map. For
instance we will denote by 7, the differential form (7 o 7r})*1. Similarly dt, /t; and dt, /t, will
also denote differential forms on X y,.

We have the following characterization of Ig’o.

Lemma 4.4. An element £ € By, belongs to Ig’o if and only if

* condition & € F°B y, holds;
* the image of & in E, belongs to Ig’zo.

Proof. The implication ‘only if’ is clear from the fact that £ € Ig’o implies that £ € F 0BZ’W, and
that p: B,y — E; is a morphism of mixed Hodge structures. To show the if part, we note first
that ker(p) = D, y,. Since Dy y, is an extension of Q(1)* by Q(2), we get

Dyyw CF2NW_4Byyw +F'NW_,B,y CF>NW_3B,y + F'NW_,B, .
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By assumption, £ € F'By ;;,, and we need to check that
EE€F'B,y +F ' NW_,B,y + F2nW_3B, .

Now since also by assumption, p(§) € I Of ,we obtain a &' € Ig’o, such that p(§”) = p(&). Hence,
p(& — &") = 0. Since p is a real map, we get p(g - ?) = 0. Thus E - ? € ker(p) = Dz, and

E€E 4D,y CFByy +F AW B,y + F2NW_3B,y,
as required. Hence, £ € I 90 "and the lemma follows. [

Now we have the following:

Proposition 4.5. Let 1, be as above, and write, using Notation 4.3:
v, ==, A dr, € E?? (logA,UB,UD,UZ;p+1).
z 2N X, 2 Ub U7 UZ;

Then the cohomology class {v,} is the generator e of Ig’o that is sent to the canonical generator of
Q(0).
Proof. We first have to show that v, belongs to

0 2p TUuB UDSUZ

F ZA_IUB_ZUD_WUWEXZ,W (10gA2 U Bl U DZ uZ; p+ 1)

For this, the only point that has to be checked is that v, |;;; vanishes. As differential form v, belongs
to FP*L, but

dim(W)=d+2—-q=p.

Therefore, v, |37 = 0. Since 7, is closed, the same is true for v,. By the explicit description of
the isomorphism (3.2), we see that the class {v,} is sent to {,}. In particular to the canonical
generator of @(0). It remains to be shown that it belongs to Ig’o. The map By, — E sends that
class {v,} to the class {5,} that belongs to Igf . By Lemma 4.4, {v,} belongs to Ig’o completing the
proof. O

To compute & (e) using v, it is easier to first project to the cohomology group

H*P (X, \Z;p+1),

that is, we remove the condition of vanishing along W. In the complex

S inEr, (logA,UB,UD,UZ;p+1),
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Equations (4.6) and (4.8), and the fact that 7, has odd degree, imply that

1 _ dt dt 1 -
E(VZ —Vz)— <—92 A t_2> = d(‘QZ A t_z + E(IOg(fztz))nz) (4.9)
2 2

From this equation, we conclude again that the invariant § By (e) is given by Equation (4.7).

4.3 | Computation of 5.(e)

Since the form v, represents the generator e € Ig’o its image in Cy y, represents Ee generator
e e Ig’o. To compute this image, we project to the cohomology group Hzp +1(XZ,W, W). The class
of v, is sent to the class of (0, v,). We know that the class of

. . 2p+1
is sent to zero in the cohomology group H;,

(Xz.w). Therefore, according to Equation (4.4),

in order to compute §-(e), we need to find a preimage of the class of 1, in the group H;p w).

Using Proposition 1.14, the fact that W is smooth and the standard description of the connection
morphism associated to a short exact sequence, the method to find this preimage is the following.
First, we find a primitive of 1, in the complex that computes the cohomology H7, (X ), then

we restrict this primitive to the relative scheme W and the class of this restriction will agree with
dc(e). By Equation (4.9), we have

dt dt, i -
Ay = d<iGZ A=2—igs A =2+ 1 10g(t2t2)nz)-

Therefore, by the previous discussion, the class d-(e) is represented by

dt dt, i _
<iGZ A—2 —igy A —2+ L 1og(t2t2)nz> (4.11)

w

In order to compute explicitly the cohomology class represented by this form, we use that S is
disjoint with A; U B; U A, U Dy, therefore

Hy(W) = Hg(W). (4.12)

.....

sponding to the point (x;, t, j, ¢, ;), for j = 1,...,s. We also denote by u, ; the multiplicity of the
cycle Z in the component of Z containing (x;, t; ;). Using Equation (3.14), we have the residue

computation
_ dt, i - -
] = llez A 5 E] 5 Z{ log(ts 12 ) DMz, 10k 11 10 )"

dt i _
d l <—igz A t_z + %IOg(tztz)UZ>
2
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Since W is smooth, we can compute the cohomology (4.12) using currents. From the residue com-
putation it follows that

N r
i . 1 .
Se(e) = 5 D 108(ta Eo, iz 1 (xyt, 0) = 7= 2 Ky 108(E2 T2, e (4.13)
s j=1

In the second equality we are using the implicit de Rham generator carried by log(,, jfz, Nk

- - 1 -
log(t, jt; ;) = log(ty jt5 ;) ® 1(1)c = i log(t, jt, ;) ® 1(1)g.

As expected, the invariant §-(e) is real.

4.4 | Computation of ht(B)

Since we will need to consider also the dual construction, we denote by e y, the generator of Igf .

previously denoted by e and by ez v the generator of I;ZZ’V;Z. By Proposition 4.5, we know that e, y,
is represented by v,. By Equation (4.5) we have that ,

ht(B)ey ,,, = —% Im (ngz,—z (EZ,W)). (4.14)

We consider the dual mixed Hodge structure By, ,(—2) = B},W with decomposition,

By /(-2)c =1** @ < b J“) I,
[+s=2

Let ey, ,(—2) be the generator of J%? that is mapped to the generator 1(=2)qg of Q(=2)q. It is
constructed as in Section 4.2 with Z and W swapped. It satisfies conditions

(ew z(=2),e5 ) =1, (4.15)

1
eW’Z(—2)6< 4> Ig”’ea[g’o> . (4.16)

a+b=-2

Equations (4.14), (4.15) and (4.16) imply that
1 _
ht(B) = —5 Im(ey, 7(=2), ez )-
The class ey y, is represented by the form

0 2p A,UB,UD,UZ;
vz € P g by Ea,, (10842 U B UDZ U Zp + 1),
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while the class ey, ; is represented by

Vi = —nw A dh ¢ poy, _E*
= w f A,UBUDZUZ "X,

(logA_luB_quUW;q +1).

Note that the subset where v, may have logarithmic singularities agrees with the subset where vy,
vanishes and reciprocally. Therefore, the differential form v, A vy, is locally integrable in X, y,
and the duality pairing is given by

(ew z(=2), ez ) =

(2 i)?

——=Dx,, )elvw AV,] = ﬁ/ Vi AVz,
(27i)d+ X,

where p Xy s Xzw = Spec(C) is the structural map. In consequence, the height of B, y, is given
by

2 Xy z

(2ﬂl)p+q+2
1 1 de, _ dt,
=-Im——— A— AN A —. 4.17
2 (2mi)p+a+2 /XW’Z Tw AT Az 7 (“17)
Recall for the last equality that

— dt dt

Vz =Nz A t_z =1z f—z

2 2

Using the fact that g, |, o = 971~ = 0andthatny |, o = Ny l,—c = 0, theresidue theorem,
and the relations

dloz) =[50z =59 = 82).  dlmw] = =6,

we have
dt dt dt dt t dt
tl t2 1 t2 2 tl tz
t _ dt t dt
R PRSI\ N IR N T N
2 tl tz 1 tz

For type reasons, the second term on the right-hand side is zero (as differential form, », is in FP,
Nw isin F4, so the term isin FP*9*! but p + ¢ + 1 = d + 3 > d + 2). Hence, by Stokes’ theorem,

-1 dt, dt, -1 / dt, de,
ht(B) =Im ——— — AgGgAN—+Im —F— A—2AD A—. (418
= Im i A G [ wATEAG AT G
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The first term on the right-hand side of the above equation resembles the higher height pairing,
and in fact, it agrees with the higher height pairing, in case the real regulators of the cycles are
zZero.

Remark 4.6. Although to define the extension By y,, we needed to go to the blow-up X ;;, in order
to be in local product situation and use duality, in the actual computation of ht(B) we can remain
in X x P! x Pl

4.5 | Connection to the higher height pairing when the regulators are
Zero

In this subsection we want to compare ht(B) to the higher archimedean height pairing (Z, W) s ch>
when the real regulator classes of Z and W are both zero and Assumption 3.27 is satisfied. This
can be seen as a generalization of Hain’s result [22] relating the archimedean height pairing for
the usual cycles homologous to zero with biextensions of mixed Hodge structures.

Before comparison, we need to put both invariants in the same place. Recall that

(Z, W) prch € Hyg (Spec(C); R(2)) = Q(2)¢/Q(2)g,
while
ht(B) € R.

We denote by p, : Q(2)c/Q(2)g — R the isomorphism given by

p,(v) = Im (ﬁ) (4.19)

Theorem 4.7. If the real regulators of Z and W are zero, then
P2({Z; W) arcn) = ht(B).

Proof. Since the real regulators of Z and W are zero, by Corollary 3.9, we can choose g, and 5, with
0, = 0and the same for W. With this choice, after changing the order of the terms, Equation (4.17)

can be written as
dt dt
htB) = Im [ ——(p),( 6w A =2 Ags A =2 ) ).
(27i)? t) L

Since n = m = 1 and the *-product is graded commutative, we have that

(Z, W) arch = =W, Z) arch-
By Corollary 3.15, for n = m = 1 we have

~
k]

(Z,W)preh = =W, Z) preh = (0w (Swrw - Wi(ty) - gz mw - Wi(t1))
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as an element in H %(SpeC(C), R(2)). Here

Wi(t,) = —%((e +1)® ‘% +(E-1D® ‘% +de® log(tziz)),
Wit) = =3(C+ DO L+~ D® L +de @logltily) ).

while

e+1
9zTW =~ ®nz—

n +d€®gZ

In order to prove the proposition, we need to unwrap the product in the TW-complex and use
Stokes’ theorem. Since the pullback of W in X x (P!)? has dimension p, we get

(Z,W)areh = (P)(f()de ® Sy A (Q1 +Q, +Q3)),

where f(¢) = %(62 —1)and

dt dt dt dt
O =—AgA— -2 Ag A=,
ty L L t
dt 77
Q,= t—z A 2 log(ty ) — - log(t,1,),
2 2

dt, dt
log([ztz) A——1lo g(tztz) AL
t 1

In the computation above one has to take into account that de anticommutes with forms of odd
degree. Now let

A, =8y Ad(log(t,t,)) A g, log(tyty),
Ay = 8y Alog(tytr) gz A d(log(t ).
Then one can easily see that
dA =6y A Q) — Q,), dA, =8y A Q3 — Q).
Since our higher height pairing is an element of the Deligne cohomology group, we conclude

(Z,W)areh = (P)(f(e)de ® Sy A (Q; + Q; + Q1))

= 3f(e)de ® (p), (B A Q).

After integrating f(¢) from O to 1, we arrive at

Z.W ) aren = =5(P).(6 A D).
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Finally, using (remember Notation 1.3)

dt dt dt dt
S A—=AggA— =—8 A —= A gy A —,
t) 1 5 t

we conclude

1 ) dr dt
E(P)x(5w A Ql) = —i Im(p)*<5W A 2—2 Agy A t_1>
2 1

Hence, we get

P2(<Z! W>Arch) =1Im (L(P)*<5W A % A 9z A %>>

(27i)? 5 t

= ht(B). O

5 | EXAMPLES OF HIGHER HEIGHT PAIRING
5.1 | The case of dimension O

As a starter we discuss the case when X = Spec(C),sod =0, andn=m=p=q=1.Leta,b €
C \ {0, 1} then a and b define cycles in Z(X, 1), that we denote Z and W. Moreover, these cycles
always have proper intersection and satisfy Assumption 3.27. A choice of differential forms satis-
fying the conditions of Proposition 3.6 for the cycle Z are

dt dt 0w
=—————€F2:;E (logAU|Z|;1
Z=7_1 T—a sE; (log AU |Z|;1)

g7 = log|t — 1| - log|t — a| + log la] —— € Z5EC, (log A U |Z]; 1)
1+ttt

0, = —d<10g la| 1 _> = loglalw IS F‘IZBE[;l(logA; 1).

1+ tt (1 + tt)?

Note that the third term in the definition of g, is added to satisfy condition ¢,(0) = 0 and is the
responsible for the presence of 8,. Recall also Notation 1.3. With this notation the complex con-
jugate of 7, is
— dt dt
Nz=—-""—-—"—.
t—1 t—a

We denote by 7y, g, and 6y, the corresponding differential forms for W obtained by replacing b
for a.

Since X = Spec(C), the relative products over X are just absolute products. Therefore, there
should not be any non-trivial interaction between Z and W. As we will see, this is indeed the case.
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We can choose X, = P! x P1. The intersection W N Z is reduced to the point (a,b). Since
H°(X;1) = Q(1), the biextension By, has the middle graded piece

Gr”, B,y = (1) ® Q(1).

The first factor comes from the cohomology of X and the second from the intersection point.

The different invariants are easy to compute. We start with &5 (e). This has to be a real element
of HO(X; 1). For clarity, as in Definition 1.3, we will use explicitly the generator 1(1). and write
67 =0/, ® 1(1)c with

6, € FOZBE;“(logA)
given by the same formula as 8,,. Then, by Equation (4.7),

. .1 1 dt
5EZ(e) = —i¥(6,) = lﬁ/d<—log la] -~ tf) A e ® 1(1)¢

. 1
=ilogla|l ® 1(1)c = Elog la| ® 1(1)g.

This element is real as expected.
The invariant §-(e) is given by Equation (4.13):

1

Sc(e) = e

log |b| ® 1(1)g € Q(1)c.

Finally we compute the height ht(B). According to (4.17), it is given by

dt dt dt dt dt dt
ht(B)zl;.Im/ dh _ dh )\ dn fdh, o dy ) dh
2 (27i)* @ \tp—1 t,—b t t,—1 t;—-a f

This integral can be computed separately in each variable. Since

L (i_i>/\£:—log|b|
Pl t

27i t—1 t-b
and
1 dt dr dt
— —A|—— ——— | =—loglal,
27l Jpr t t—1 t—-a
we obtain

1
ht(B) = m Im(log |a|log |b|) =0

as we were expecting.
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5.2 | An example in dimension 2

We next compute an example in P2, In this example d = 2, p = ¢ = 2and n = m = 1. So condition
(3.28) is satisfied.

In this subsection we will present the setting, in the next one we will develop the tools needed
to perform the computation using currents and in the last one we will compute the main invariant
associated with the biextension.

Let X = P? and let [x, : x; : X,] be homogeneous coordinates of P? and let

Sl = boXO + b1x1 + b2X2,

be three linear global sections of Op2(1) in general position. Let £; = div(s;), i = 0,1,2 be the
corresponding reduced divisors that we identify with their support. By general position we mean
that the lines 7}, ¢, and ¢, form a non-degenerate triangle.

Fori = 0,1, 2(mod 3) we write

_Sim1
fi=31
Sit2

for the rational function and p; = ¢;,; N ¢;,, for the intersection point. Note the equation f, -
f1+ f2 =1, which will be used later.

Definition 5.1. Given a line # and a rational function f whose divisor does not contain #, we
denote by (¢, f) € Z*(X, 1) the pre-cycle given as the graph of f|,. Let s,, s, and s, be sections as
before. We denote by

2 2
Z(80,51,82) = Z(fi,fi) - Z 7y (py)-
i=0

i=0

Moreover, if & € C*, we write

2
Z(80, 81, 82:a) = (£o.afo) + (€1, f1) + (€2, f2) — Z 7y (P
i=0

In particular Z(sy, 51, S,) = Z(Sg, 51, S35 1).
The following lemma is an easy verification.

Lemma 5.2. For s, s, and s, in general position and o € C*, the pre-cycle Z(s,, 5,,S,; @) is a cycle
and belongs to Z*(X, 1),

Proof. The fact that Z(s, s;, 5,; @) is a cycle follows directly from condition };; div(f;) = 0. The
degenerate components Zizzo 7y (p;) are subtracted precisely in order to fulfill the condition that
Z(8;, 85, S3; ) belongs to the refined normalized complex. O
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We define
Wpg 1= Z(xp, X1, %23 B)
and choose sections s, s; and s, that are in general position with respect to {x,, x;, x,} so that, for
any complex number a € C*, if we write Z, = Z(s, 51, 5,; @) then Z,, and W satisfy Assumption
3.27. We will also write Z = Z; and W = W,.
The real regulator of Z,, is easy to compute.
Proposition 5.3. The real regulator class of Z,, in

H3 (P, R(2)) = H*(P*;2)c /H*(P*; 2)g

is represented by the closed current —log ||8,, for any line ¢ in P2. In particular, if |a| = 1 then the
regulator class is zero.

Proof. In the Thom-Whitney complex, the regulator of the cycle Z,, is represented by (7x),.(8, -
W,). After taking the direct image and integrate with respect to € we obtain

1
P(Z,) = =3 ((log |l + log | foI?)6,, +1og |f1 %5, +1og|f %6, )-
Since each &, is cohomologous to 5, and, by construction f,f, f, = 1 we deduce the result. []
Let Z;, f; and p;, i = 0,1, 2 be the lines, rational functions and intersection points constructed
as before for the sections s, 5;, 5, and let f{ , f l’ and plf ,i=0,1,2be the ones corresponding to the

sections X, x; and x,. For instance £, = {x, = 0}, p) = [1 : 0 : 0] and f{ = x;/x;.
Fori=0,1,2and j = 0,1,2 we write p; ; = £; N f;,

a, ifi=0, 5 B, ifj=o0,
Cx~ — s =
! 1, otherwise, J 1, otherwise,

gij = (pij-aifi(pij)s ﬁjf}(pi,j)) EX XP' xP.

and

By the generality assumption, the set S consist of the nine points g; ;. Moreover, H 2=2(X; p) =
H?(P?;2) = Q(1). Therefore, the biextension B = By w; has the shape

Gr, B = Q(0),
Gr_, B =0(1) ® 0(1)%,

Gr_, B = Q(2).

From the description of the real regulator of Z, above, the invariant §; is given by

65, (@) = i((log |al +1og1f ey, +log 1118, +1oglf13, )
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while from Equation (4.13) the invariant &(e) is given by
1 ’
Se(e) = o ZJ log B f(piles

where e; ; is the generator of the cohomology with support on the point g; ;. The remaining invari-
ant ht(B) will be computed in Section 5.4 after we discuss how to use currents to ease the compu-
tation.

5.3 | Computation using currents

In the classical Arakelov geometry, it is usually simpler to write down explicitly a Green current
for a cycle than to write a Green form with logarithmic singularities for the cycle. Although in
general, inverse images and products of currents are not defined, the theory of wave front sets
sketched in Section 1.6 allows us, in some situations, to work with currents with the same ease as
with differential forms. We will use the notations and results of Section 1.6.

For simplicity we make the following enhancement of Assumption 3.27.

Assumption 5.4. To Assumption 3.27 we add the condition that |Z| and |W| are both union of
smooth subvarieties that intersect Ay and By transversely.

Note that Assumption 5.4 is satisfied in the example presented in Section 5.2.

Hence, we assume 5.4 and we consider first the situation of Z in X x P'. We denote by t the
absolute coordinate of P!, and, for shorthand, A = Ay and B = By. Since |Z| = |J Z; is a union
of smooth components, we write N |Z| = [JN;Z;. Lett: A < X X P! be the inclusion and S =
l*L*N(\)/ |Z]. Then S is saturated with respect to ¢ by construction. The fact that the Z; intersect B
transversely readily implies that S and By are in good position. So, the hypothesis of Theorem 1.30
is satisfied.

Let g,, n, and 6, be the differential forms obtained in Proposition 3.6, They define currents

2p—1
(21 € FOZpD0 L. 5(P)

— 2p—1
621 € F'2D7 . o(P)

-1 5! 2p-2
l¢9,]€F'nF ZBDXiPI/A;S(p)
satisfying the differential equations

dlnz] = -6,

dlgz) = 5(nz] = [7,) = 167

In fact, in our situation, as the following result implies, any choice of currents satisfying the above
properties is enough to compute the regulator of Z and the invariant ht(B).
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Lemma5.5. LetS C T(\)’ X be a closed conical subset that is saturated with respect to t and is in good
position with respect to B. Let

2p—1
Ny € F'ZpD] 1)y s(P)

’ -1 2p-1
QZ EF EBDXxnml/A S(p)

’ -1 A} 2p 2

be currents satisfying the differential equations

dn, = -8, (5.1

1 —_—
dgy = S =1'2) = 6. (52)
Then G’Z is closed and there are currents

2p—2
01 €D 46(P)

v € FOZBD;p le/A <P
satisfying
dv; = [67] - 9/2, dv, = [nz] - 77,2-

In particular O’Z represents the class of the regulator of Z.

Proof. By the properties of the involved forms and currents is easy to see that [5,] — 7, and G’Z
are both closed. Moreover, the current

(Inl—n)/2—-A6,1-6,) —(n,]— Z)/2

is exact. By Theorem 1.30, the cohomology group
ORI )
is the de Rham part of a pure Hodge structure H of weight —2. Moreover,
(I -m)/2 € F, (8,1-0) € F'nF ', and (B l-n/2€F -
Since H is pure of weight —2, there is a direct sum decomposition

_ 0 -1 AL =0
H=FH®F NF H®F H.
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Therefore, the three terms [1,] — 7/, [6,] — 6/, and [7),] — 1/, are exact. In particular we obtain
the current v; in the statement. By Theorems 1.19 and 1.30, the differential of the above complex
is strict with respect to the Hodge filtration. Therefore, we can find a primitive v, of [1,] — 1,
belonging to F°, completing the proof of the result. O

Remark 5.6. Since WF(5,) = N(\)’ |Z| and the differential does not increase the wave front set,
Equation (5.1) implies that, for the currents in the lemma to exist, a necessary condition is that
N, (\)’ |Z] € S.Clearly (,(*N, 5’ |Z] C S is a sufficient condition for the currents to exist. In the explicit
computation of next section it will be handy to have the freedom to enlarge S.

We now put together Z and W to obtain the next result. Recall that we are implicitly taking the
pullbacks to X x (P1)%. Let S, Sy, € TYX X P! be closed conical subsets that are saturated with
respect to A, in good position with respect to B and such that 77S; N 73Sy, = 0.

Corollary 5.7. Assuming 5.4, letn),,, 6/, and g, (respectively, 1y, 6}, and g;,) be currents satisfying
the hypothesis of Lemma 5.5 for the cycle Z and the set S, (vespectively, W and the set Sy,). Then

1 1 dy, _, dt,
ht(B) = = Im —— A — AT, A —=
(B) 5 m (zm.)zp* <77W f Ny 22

1 dt, dt, dt dt,
=—Il’l’1—.p>:< o) /\—/\g,/\_—+77, /\—/\6,/\_— .
(2ri)? < L z t, Yy z t,

where p : X X (P')?> — Spec(C) is the structural map.

Proof. That the product current is well defined follows from the fact that the wave front sets of
the involved currents are disjoint. By (4.17), we have

1 1 dt, —— dt
ht(B) = 7 Im mm([vwl A t—ll INUARS t—;) (5.3)

By Lemma 5.5 there are currents

2p-2 2q-2
vz € FOZBDXI;A;S(P), Uy € FOZBDXq/A;S(Q),

such that

dvy =[nzl=n,,  doy =[ny]—ny. (5.4)

Since v, belongs to FO it has at least p holomorphic differentials. As W x P! ¢ X x (P!)? has
dimension p, we obtain

d, _ dt
b t,
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Similarly

dt dt
Uy A — ASy; A — =0, (5.6)
51 t)

Then the result follows from Stokes’ theorem using Equations (5.3)—(5.6) and the fact that the
forms v, and 7, vanish for t; = 0 and ¢; = oo, while the forms vy, and 7y, vanish for ¢, = 0 and
tz = 0. D

5.4 | The invariant ht(B) of the example in dimension 2

Now that we have set up the theory, we are ready to compute the remaining invariant ht(B) for
the pair of higher cycles Z, and W described in 5.2.

The first task is to compute a set of currents satisfying the conditions of Lemma 5.5 for the cycle
Z,,. The currents for the cycle W will be constructed in a similar way. Since, for the moment we
work with a single cycle we denote by ¢ the absolute coordinate of P! and we omit any needed
pullback to X x P! from the formulas.

We start with a classical Green current for the cycle Z,, in X x [:

2

It —a.fil -

gZowO = z <10g Tl:Hl 551, EF 1D)2(><P1(2)'
i=0

Then one can check that

2

ZaameO = Z a(fiﬂo‘ifi) - 5Pi - 5fi><{1}‘
i=0

Hence,

20097 olxxq = 6z, - (5.7)

Moreover, g, |- = 0. Butin general g ;o # 0. In fact,

9z, 0li=0 = = D log | fi18,, — log|ald,. (5.8)

The two terms appearing in this decomposition have a different nature. The first one, the sum, is
a boundary, hence we will be able to get rid of it without altering Equation (5.7), while the second
one is responsible for the real regulator of Z, therefore will force us a non-zero current 6, .

To see that the first term is a boundary, we introduce the current

uy = [log|foldlog|f,] —log|f,1810g|fol] € F~'Dy(2). (5.9)

This current does not depend on the choice of a. Using the fact that 255[log Ifill= 54“ - éfm,
we get

duy — 31, = —log |f,l8,, —log|f118,, + (log|fol +log|f11)S,,.



146 | BURGOS GIL ET AL.

Finally, using the relation f, - f; - f, = 1, we get

2
duy — Uy = — Y log|fild,,. (5.10)
i=0
Let h be the function
1
h(t) = ——.
® 1+ [t]2

It is smooth in the whole P! and satisfies
h(0) =1, h(o) =1. (5.11)

We define the currents

. 2 ( —q fl )5}//,1_ ~ (Btvu) - 30T ),

97,2 = h(®)log |16, ,
9z, = 97,1t 9z,
By Equations (5.8), (5.10) and (5.11),
9z.1t=0 = 9z, lt=c0 = 0.
We also write
Nz, =2097 1
eza = —dgza,z-
Lett: Ay — X X P! denote the inclusion and S = L "WF(gz_).
Proposition 5.8. The set S and the currents 97, Gza andn Z, satisfy the hypothesis of Lemma 5.5.

Proof. By construction the set S is saturated by respect to Ayx. By examining the singularities of
the different functions, the wave front set of g, is given by

Cm

WF(gz,) = (NY(Z; x PYUNJ(; x {1})) UNY|Z,|.

i=0

Therefore, if i’ : By - X X P! is the inclusion, then

2
W)*S = [Ny (& x {0) UNY (#; x {oo}).
i=0
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Here the conormal bundle is computed in By. Let r, be the retraction to X x {0} and r, the retrac-
tion to X X {oo}. Since, fori = 0,1,2and j = 0, oo,

SiNG (€ X {JHN (€5 % )

we deduce that S and By are in good position.
By construction, for j = §,0,1, 2, §Za, =9z Therefore,

209y 1 =097 1 = —Tiz,-
Therefore,
= 1 _
dg; =099, 1+09; 1 +dgz »= 5(7720, - Uza) -6z .
The remaining hypothesis follow directly from the construction of the different currents. O
By Corollary 5.7, the height of By, v is given by
dt dt dt de
ht(B) = — ZImp* S A—Agy A==+, A— AO, A—= |,
(27i) Foy “ o, Foy “ ot

The support of the current g,_, is the union of the threefold £; X (P1)?. Since we are assuming

that the intersection of Z,, and Wy is proper, the intersection of Wﬁ with this support is the union

of the lines p;; X P! X {8, f ;.(pi j)} (see Section 5.2 for the notation). Since the pullback of d?—fz to
2

these lines is zero, we obtain

We next compute

Using that W x P! has dimension 2, that &y, . vanishes when restricted to ¢, = 0 and ¢, = oo and
that u, vanishes when restricted to t; = oo, we obtain

Iy = p,| Sw, A — Aduz A — | =(po)| Sw, Nz A — |,
S t g t

where now p, is the structural morphism of the product X x P! where W g lives. Since the support
of Wy consist of lines and i, contains one anti-holomorphic differential we deduce I, = 0.
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Next we consider

dt, - dt,
Iz=l)>k 5W /\_/\auZ/\__ .
o ty

By the same argument as before

dr
I, = (Pz)*<5wﬁ AUz A ?_2>
2

This time the integral may be non-zero and we will compute it later. The last piece to consider is
dt, dt, dt, dt,
13=p>k 5WﬁAt_/\gZa72A__+nW[3/\_/\eZ
1 tz tl t2

Using that 5W/3 an/s thatdg, , = -6 ,and that

Owyl=0 = Owyliy=c0 =0, 97, ls,=0 = 10g |at|5y,,
Nw |t2_0 Nw, |t2_oo =0, 9z, |t1=oo =0,
0z, 1t,=0 =0z l1=c =0,

we obtain

2

Iy = (p2):\ 1w, Aloglald, A = )

Using Nw, = 20 w15 8,, is closed, Stokes theorem, and the fact that & Iwza A 5, A 22 s of type

(3,3), we deduce
Iy = —loglal(py).\ gw,1 ASp A d T
2

2 2
= log |oc|<— Y log1B;fi(pop)l — Y log |f;<p0j>|)
j=0 j=0

= —log || log B,

using f{ f" f’, = 1. So Im(I3) = 0, and we are reduced to the expression

1 dr
ht(B) = wlm((pz)*<5wﬁ Aty A ?—22>>
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Recall that the cycle W has six components. The three degenerate vertical components V :=
" . . . dt
Z?zop (q;.) and the three lines Z?zo(f;,ﬁjf;). Since uzlq; =0, we obtain &, Auy A Tt = 0.

Hence, we arrive at
2
1 dt
ht(B) = —— Im u, A—=| |,
®B) (27Ti)2§) (pf;,*l AT D

where pf/ : ﬂ — Spec(C) is the structural morphism, To compute the contribution of each line

we use that f’ = V(x;) and f " = ZJ*L {0 obtain the parametrizations
j+

(5. Bof ) =10 : 12 0),(1 : Bpt)} = PY; ty = Bot,
LB ={t:0:1),Q:B}=Py =41,
(Z%Baf5) ={1 1t :0),(Q: Br0)} = P t = Bt

By symmetry we need only to compute the contribution of (¢/, 8, f (’)) as the other two terms will
be obtained by a cyclic permutation of {0, 1, 2}. Restricting to this line we obtain

bl
b, + byt t—(——)
foleer gorn)(®) = = < )

+ ot - _C_l)
’ N\(t) = —m — =
Filer gorn@® 2 F oy ( > (__)
dt, dt
—|(f' Bof) = =
t
For shorthand we write
b, C by €1 a;
= - > = T 6 — > 6 )
v G a ! b, 2 G ’ a,
and
~ t - 61 ~ t - 62
H=—2, t )
f0=t=g  F©:=14

The differential form u, |(f6,ﬁ0 ) splits up into

uzles gory) = iz + oz,
where
u, ; = loglyldlog|f (1) —log|pldlog|fo(t)l,
u, ; = log | fo(0)|d(og | f1(1)]) — log | f1(1)18(og | fo(DD).
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The current pf(r),*[ul,z A %] is simple to compute:

dt
Py s Uz A ?
~ dt ~ dt
= loglylps; . <d [IOg Ifll7]> —log Iplpgg,*<d[10g Ifol?D
16, 16, ]
=log|y| 1og|9—2| — log|p| log ﬁ
3 2

Since this expression is purely real, it does not contribute to the height of By, o Za To compute

pf(/)’*(uz,z(t) A d?;), we have to make a slight digression to the theory of Bloch-Wigner dilogarithm
function. For details the reader is referred to [37]. The dilogarithm function is the holomorphic
function defined, over the disk D :={t € C: |t| < 1} as

. t"
Li(t) = ) =.
nx1 n

This function can be extended as a holomorphic function to C \ [1, c0) with jumps 27ilog |¢|.
Thus, the function Liz,arg(f) 1= Li,(¢) + iarg(1 — t) log |¢] is continuous. The Bloch-Wigner dilog-
arithm is defined by taking the imaginary part of Li,

Dy(t) = Im(Li()) + arg(1 — £) log ||
= %(Liz(t) —Li, (D) + %i(log(l — £) — log(1 — ))(log(t) + log()).

We take the branch —7 < arg(¢) < 7. The Bloch-Wigner dilogarithm satisfies the following partial
differential equation.

0iD,(t) = log|t|0log|1 — t| —log|1 —t|d log |t|.
For any two linear rational functions f, g in C(P!), we define

S(f,9) :=1log|fl6(log|gl) —log|gl|d(log | f ).

We make the following observations: Let f, g, h be three linear rational functions. Then

* S(f.9) =-S(9. 1)

* S(f.gh) =S(f,9)+S(f. h)

* S(f,1=f)=S(f, f—1) = 0iD,(f).

Using the above observations, we can find a boundary formula for S(f,,, f;). First for rational
t_

functions of the forms ;— and ﬁ we get

s(5=5520) =s(G=hie ) =em(5=5)
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Hence,

S(t—a,t—b) = 6iD2<£

:Z)+S<b—a,%>
=6<iD2(lt)

Since u, ; = S(f, f1), we obtain

|t —b|
log |b —a|l )
>+ og|b—al Ogl a|>

Uy, = S(t—6,,t—6,)— S(t — 6,1 —6;)
—S(t—6,,t—6,))+S(t —6,,t —65)
=S(t—6,,t—0,)+ St —0,,t —65)+ St — 65,6 —6))
= 9(G(1)),

where G(t) is given by

t) = D D D

GO l<2<ef—a>*'2<63—%>*‘2<61—%>>

=6, It 6| =6,
+log |6, — 6;]log ————.

=6, 113, Tlo8le =Gl gy

+1log |6, — 6, |log ——=

Putting everything in place, we obtain

dt
uZ’Z /\ —
t

o e n] = ([1602]) =00t

Noting that G(c0) = 0 since D,(o0) = log1 = 0, and using the sixfold symmetry of Bloch-Wigner
dilogarithm functions, we deduce

(o(5)(3)5(2)

16, — 6;] 16, — 6, 165 — 6,
+ | log|6;]|log ——— +1og|6,|log ———— +1og |6;] lo
(gl A e A R RN

dt
Pey [uz,z(t) A ?

After plugging in the values of 8,, 6, and 8, and taking the imaginary part,

l1[2 [1“2 [l1l2

t boc coa ayb
ImwhpﬂoA% =m<§g)+%<§f)+@<;;)
> 2%0 240 270

dt
Im Pey, [uz(t) A 5
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b,c ca ab
:D2<_1 0>+D2<_1 0>+D2< ! O).
byc, Coaq ayb;

Summing up, the height of BZa’Wﬁ is given by

ht(B) = Z <22Z1>
1Y2

dt
Im Py, [uz(t) A 5

where the sum is over all cyclic permutations of (0,1,2) and (a, b, c¢) for a total of nine terms.

The expression above can be reduced to an expression containing six dilogarithms, using the
five-term relation for Bloch-Wigner dilogarithm. As a prototype, we show the simplification for
the first component of the above sum. Taking

b,c, 00 . @b
= b—, v i=— w .= —b,
162 €10, a0,

we observe that uvw = 1. Hence, D,(w) = D,(1 — i) = D,(1 — uv). Now using the five-term rela-
tion, we conclude

D, (1) + Dy(v) + Dy(w) = D2< —2)+ Dy 11__“v” )

Plugging back the values of u, v and w, we get

b b

o () o (22) on(32)
bic, €1a; ab,
b,c; — by \ a, a,c; —a;c; \ by
Finally, putting everything together, we get a reduced expression
ht(B) = —— ——=| =) )+D| ———={— | ),
)= (€2 1)2 (0;2) < byc, = byey <a2>> 2< aye; —a;6 \ by

where the sum is over the cyclic permutations of (0,1,2) only, giving us six terms.

Remark 5.9. From the formula for ht(B) we can derive two conclusions.

(i) Since D,(r) = 0,Vr € R, we deduce that if the triangles are defined over R the height pairing
is zero. In fact this is a general phenomenon as the Proposition 5.10 shows.

(ii) Since the function D, can be extended to a continuous function on P!(C), the above height
can be extended by continuity to any degenerate situation. We see in the next section that this
is a very general phenomenon.

Proposition 5.10. Let X be a smooth projective variety defined over R and X the corresponding
complexvariety. Let Z € ZP(X, 1) and W € Z9(X, 1) be two higher cycles defined also over R sat-
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isfying Assumption 3.27. Then
ht(BZ,W) =0.
Proof. The short proof is that, under the hypothesis of the proposition

ht(Bz ) € p,(Hy(Spec(R); R(2)))

and H%(Spec(lR); R(2)) = 0.

In more down-to-earth terms, let 0 : X — X be the antilinear involution defined by the real
structure of X. Assume for the moment that Z and W are not necessarily defined over R. By the
functoriality of the construction of mixed Hodge structures, we deduce that B,. ;« = By,
where, for a mixed Hodge structure H, we denote by H the mixed Hodge structure obtained by
sending i to —i.

Let now B be any generalized biextension. Let r = #(B)/2. Then the operation B - B sends a
generator e of Q(a) to (—1)%e (see Remark 1.1) and the map Im is sent to — Im. Therefore,

ht(B) = (—1)""' ht(B).

In our case

ntm o, q1-2

4 (BZ,W)/ 2=
Therefore,

ht(Bysz,0"W) = —ht(B /).
But if Z and W are defined over R we also have

ht(BU*Z,U*W) = ht(BZ,W)’

from which the proposition follows. O

6 | ASYMPTOTIC BEHAVIOR

In this section, we begin the study of the asymptotic behavior of the height of families of higher
cycles. In Section 6.1 we prove the height extends continuously whenever the associated variation
of mixed Hodge structure is of Hodge-Tate type. In Section 6.2 we give a definition of limit height
for arbitrary admissible variations of mixed Hodge structures over the punctured disk with unipo-
tent monodromy. In Section 6.3 we give three examples of heights coming from (i) the dilogarithm
variation, (ii) a particular family of triangles in P2 and (iii) a nilpotent orbit. The first two examples
in Section 6.3 can be read independent of the rest of this section. By definition, an oriented varia-
tion of mixed Hodge structure is a variation equipped with a choice of flat, global sections which
induce an orientation on each fiber.
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6.1 | Hodge-Tate limits

Theorem 6.1. Let S be a Zariski open subset of a complex manifold S such that D =8 — S isa
normal crossing divisor. Let V — S be an oriented Hodge-Tate variation (graded polarized) such that
the length £(V) > 4. Assume V is admissible with respect to S and has unipotent local monodromy
about D. Let p € D. Then, the limit mixed Hodge structure V,, of V at p is an oriented Hodge-Tate
structure with the same weight filtration as V. Moreover,

lim he(V,) = ht(V,). 6.1)
s—p

To set up the machinery to prove Theorem 6.1, let p € S — S. Then we can find a polydisk A" C §
containing p and local holomorphic coordinates (s, ..., 5,) vanishing at p such that

(i) the image of A" under (sy, ..., s,) is the unit polydisk (coordinate norm < 1) in C"; and
(ii) D n A" is given by the local equation s, - s, = 0.

Therefore,
AT —DNA = AF XA TF={s|s, -5, %0}

As Theorem 6.1 concerns the asymptotic behavior of the variation, it is sufficient work on A** x
A"~k We therefore recall the theory of period maps of admissible variations of graded-polarized
mixed Hodge structures in this setting following the conventions of [30].

Pick b € A** x A™"F and let V = V), be the fiber of V at b. Let T ;j denote the local monodromy
of V about s; = 0. We assume T'; to be unipotent and write T; = eNi. Note the [N, N, ] = 0 since
the fundamental group of A** x A" is abelian.

In analogy with the pure case, we can represent V by a period map

p: A"—D - T\M,

where M the classifying space of mixed Hodge structure attached to V with reference fiber V'
and monodromy group I" generated by Ty, ..., T,. As with variations of pure Hodge structures, the
classifying space M is a complex manifold and the period map ¢ is holomorphic, horizontal and
locally liftable.

Let W denote the weight filtration of ¥ and define

GL(Vo)Y ={g € GL(Vy) | g(W)) S W, Vk}L

Let S; denote the graded polarization of Gr}v and define

G ={g e GL(V) | Gr¥(y) € Auty(S.)}.

Then (see [30, Section 3]) G acts transitively on M by biholomorphic transformations.

Let G = G N GL(V) and G be the complexification of G. The classifying space M is a com-
plex analytic open subset of a complex manifold M upon which G acts transitively by biholomor-
phisms. Let g be the Lie algebra of G and gg denote the isotopy subalgebra of elements which
preserve F € M. Let q be a vector space complement to gg in g¢. Then, by the implicit function
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theorem, there exists a neighborhood U of 0 € q such that the map
UEU —e“ - FeM
is a biholomorphism onto its image.
Let(z;, ..., z;) denote the standard Euclidean coordinates on C* and U* C C denote the product

of upper half-planes where Im(z, ), ..., Im(z; ) > 0. Let A"k c A" be the locus where 515058, =0
and

(2,8) = (215 s Zps Sk 1> -+ > Sr)

be the corresponding coordinate system of U* x A",
Let U* x A™% — A*k x A"k be the covering map

27iz 27miz
(Z15 s Zhs S 15 oo 5 8p) —> (€721, L, @72k 51 1, L S0,

that is, Sj = e?7iz; forj=1,..,k.Let nj be the covering transformation nj(z, s)=(z+ € s) where

e; is the j’th unit coordinate vector in ck. Set
N(z) = z;N; + -+ + z;N.

By the local liftability of ¢ there exists a holomorphic map F: U* x A™¥ — M such that
F(n j(z, s)=T IR F(z,s) which makes the following diagram commute:

F
U—— M

| l

a2 \M.

Accordingly, the formula ¥(z,s) = e"N® . F(z,s) defines a map ¥ : U* x A" — M such that
P on;(z,5) = P(z,s). Therefore, ¢ descends to a holomorphic map ¥ : A* x A% — M. By
admissibility [28, 36], ¢ extends to a holomorphic map A" — M with limit Hodge filtration

F, = lin% P(s) € M. (6.2)
S—
Let N be an element of the monodromy cone

C = {Z a]-Nj Ay, A >0}.
J

By admissibility, it follows that the relative weight filtration M = M(N, W) of N and W exists, and
together with F define a graded-polarizable mixed Hodge structure (F,, M).
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The mixed Hodge structure (F,, M) induces a mixed Hodge structure on g with associated
Deligne bigrading

gc = @ Qg’b-

a+b<0

In particular,

0= D o’

a0
a+b<0

and hence

oo *

P o (6.3)

a<0
a+b<0

is a vector space complement to ggm in g¢. Therefore, it follows from Equation (6.2) that for s ~ 0
we can write

Ps) = e - F,
where I'(s) is a holomorphic function with values in q, which vanishes at s = 0. Thus,
F(z,s) = eN@el® . F_. (6.4)

See [30, Section 6] for a complete account of the constructions outlined in the previous paragraphs.
The final preliminary result we need is the following [25, Lemma 5.7]

[N}, D), =] =0, (6.5)

which follows from a straightforward consequence of horizontality and the results established
above. Accordingly,

[N}, I(s)] = [N;,T(s) — F(s)|sj=0]. (6.6)

Considering the power series expansion of I'(s) about s = 0 we see that I'(s) — T'(s)| 5=0 is divisible
by s L Thus,

s;|[N;, T'(s)] 6.7)
in O(A").

By induction one has the following result [25, 8.11]): Given a multi-index J = (ay, ..., a;) with
non-negative entries define

J
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and
SIJl = H Sj.
{jla;#0}
Then
sVlA,T. (6.8)

Let M(z,z) be a monomial in z, ..., z; and Zi, ..., Z;. Let a(s, 5) be a real analytic g.-valued
function on A" in the variables sy, ..., s, and 3, ..., §, which vanishes at s = 0. Motivated by (6.8)
we say that the product M(z, 2)a(s, 5) is a tame monomial if, whenever z jorz; divide M, then
either s; or §; divides a (note: if f is any g valued real analytic function, then z;s; f, z;5; f, Z;s; f,
Z;8;f areall tame monomials). A tame polynomial is a finite sum of tame monomials. Let 7 denote
the set of all tame polynomials.

T is a complex vector space which is closed under complex conjugation and taking Hodge
components with respect to a fixed mixed Hodge structure. If 8 € g- and t € T then [S, 7] clearly
belongs to 7. By Equation (6.8), the application of any polynomial in Ad(N(z)) and Ad(N(2)) to
I'(s) is tame.

To see that 7 is closed under Lie bracket, note that if m; a; and m,a, are tame monomials then

[myay, myay] = mymy[ay, a,].
If z; or Z; divides m;m, then z; or Z; must divide either m, or m,. If z; or z; divides m, then
either s; or §; divides a;. As such s; or §; divides [a;, &, ]. The same argument applies to the case
where z; or z; divides m,.

J
Finally, if 7 € 7 then

lim 17(z,8) =0, (6.9
Im(z)— o
s—=0

where the limit is taken along sequences (z(m),s(m)) € UK x A" such that s(m) — 0,
Im(z,(m)), ..., Im(z; (m)) — oo and Re(z,(m)), ..., Re(z,(m)) is constrained to a finite interval.

‘We now specialize to the case where V is Hodge-Tate. By the monodromy theorem [33, Theorem
6.1], it follows that N € C acts trivially on each Gr;‘; as Grg‘; is pure of type (¢, £). Therefore, by
admissibility and [36, Proposition 2.14] it follows that the relative weight filtration M = M(N, W)
exists and equals W. Accordingly, the limit Hodge filtration F, of V belongs to M. Therefore, the
image of ¢ is contained in M.

Remark 6.2. Since every element N € C acts trivially on Gr", the same holds for every

N€C={Z aijlal,...,akZO}
J

and hence N € C implies that M(N, W) = W. Therefore, (1(s), W) is the limit Hodge structure at
seDNA".
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Before continuing, we note that F, depends on the choice of local coordinates (s, ..., s,). The
permissible changes of coordinates which are compatible with the divisor structure result in the
limit Hodge filtration F, only being well defined up to transformation of the form

For eV F,,  N@W)=) AN, (6.10)
J

for some complex numbers 4,, ..., 4;. Since V is Hodge-Tate, GrkW = 0 for odd k. Since Z(V) > 4,
by Corollary 2.11 we have

ht(e*"N - F,W) = ht(F,, W).
We conclude this section with the proof of Theorem 6.1.

Proof of Theorem 6.1. By Remark 6.2 and the fact that F, € M we deduce that the limit mixed
Hodge structure (F ., M(N,W)) = (F,, W) is Hodge-Tate and has the same weight filtration. So
it only remains to be shown the continuity condition (6.1).

Returning to the subspace (6.3), we see that since V is Hodge-Tate and F ., € M, it follows that

_ a,a _ A—1,-1
Goo = @ 8 =N w

a<0

in this case. Accordingly, by (6.4) and Lemma 2.2 we have

Y(F(Z,S),W) = Y(BN(Z)GF(S)'FN,W) = eN(Z)eF(S) . Y(FOO,W)
and hence
Y = € P Y ).
Let§ =y wy and 6(z, ) = §(p(z,5)w) as in (2.6). Then,

Y(F(z,s)’W) — eN(Z)ef(S)e—Zia . Y(Fm

W)
On the other hand, by definition

Y(F(z,s),W) — e—2i6(z,s) X Y(F(z,s),W) — e—2i5(z,s)eN(z)eF(s) . Y(FOO,W)'

Comparing these two equations, it follows that
eN(Z_)eF(S)e—zla . Y(FOO,W) — e—2i5(Z,S)eN(Z)eF(S) . Y(FDO’W)- (6.11)

By [17, Proposition 2.2], the group exp(W_;gl(V)) acts simply transitively on the set of gradings
of W. Therefore, Equation (6.11) implies that

eN(Z)ef(s)e—Zid — e—2i5(z,s)eN(z)eF(s). (6.12)
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The Hodge components of « € g relative to (F,,, W) will be denoted a2~ For the remainder
of this proof, we constrain Re(z,), ..., Re(z;) to a finite interval.
By the Campbell-Baker-Hausdorff (CBH) formula,

eN(Z)ef(s) — eN(z‘)+f(s)+A(z,s)’ (6.13)

where A(z,s) is a Lie polynomial with terms X = Ad(X;) o Ad(X,,_;)X,, Where at least one
X; = ['(s) and the other X; are either N(2) or ['(s). Therefore, by the discussion following (6.8),
A(z, s) belongs to 7 . For future use, we observe that A~~1(z, s) = 0since A(z, s) is a sum of terms
containing at least two elements from q, = @ ggk’_k.

Before continuing, observe that because each N i = Nj_l’_1 and 6 = Zk>0 §—k—k the equa-

tion [N, 8] = 0 implies [N(z), ~%~¥] = 0 for all k > 0. In particular,
Ad(L)o ... o Ad(L,,_)A(zs) €T (6.14)

if each L; is either —2i8 or N(2) since [N(2), 6] = 0 and A(z, 5) is itself constructed from Lie poly-
nomials in Ad(N(2)) and I'(s).

More generally, any Lie polynomial U = Ad(U,) o ... o Ad(U,,_)U,,, where each U; is either
N(2), I'(s), A(z, s) and —2i6 again belongs to 7. Indeed, bracketing T'(s) or A(z, s) with —2i§ pro-
duces another element of 7. By the remarks of the previous paragraph, if [(s) does not appear the
result belongs to 7. Finally, T'(s) belongs to 7', and T is closed under Lie brackets. Application of
the Jacobi identity now shows that U belongs to 7.

Continuing, by the CBH,

o N@HT($)+A(z.5) 28 _ eN(z)+f(s)+A(z,S)—2i5+B(Z,S), (6.15)

where B(z, s) is a Lie polynomial with terms X = Ad(X;) o Ad(X,,,_;)X,,, where at least one X i=
—2i6 and the other X; are either N(2) + ['(s) + A(z, s) or —2i8. Expanding out X as a sum of terms
U =Ad(U;)o ... o Ad(U,_;)U, whereeach U jiseither N (2),I(s), A(z, s) and —2i6 it follows that
B(z, s) belongs to 7 by the previous paragraph. As was the case for A, B~""!(z, s) = 0since B(z, s)
is a sum of terms involving the Lie bracket of at least 2 elements of q.

Turning now to the right-hand side of (6.12), by (6.13)

eN@)I(s) — eN(Z)+r(S)+A(Z,S)'

Therefore,

e2i8(2:)N(2)oL(s) — p=2i8(z)+N(@)+T()+A(Z5)+C(z2:5) (6.16)

where C(z, s) is a sum of terms X = Ad(X;) o ... o Ad(X,,_)X,, with some X; = —2i5(z, s) and
the remaining terms X; either equal to —2i8(z, s) or to N(z) + ['(s) + A(z, 5).
Comparing (6.15) and (6.16) it follows that

N(2) + I'(s) + A(z, s) — 2i6 + B(z, s)
(6.17)
= —2i8(z,5) + N(z) + T'(s) + A(z, s) + C(z, s).
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Like with A and B, we have C~1~!(z, s) = 0. Accordingly, taking the (—1, —1)-component of Equa-
tion (6.17) yields

NE) + @)V (s) —2i8 7 = —2i6 47Uz, 8) + N(z) + T H71(s).
Solving for §~171(z, s) gives
5 17 1(z,5) = NOm(2)) + Im(I'(s)) b7t + 57171, (6.18)

Returning to Equation (6.16) and noting that A~1~!(z,s) =0, upon taking the (—2,-2)-
component we obtain that

C—Z,—Z(z’ s) = %[_21'5_1’_1(2, 5),N(z) + F_l’_l(s)]

= —i[N(Im(2)) + ImT(s)) "L + 5771 N(2) + TV 1(9)]
= —i[N(Im(z)), T">"(s)] (6.19)
—i[Im(I(s))" ", N(z) + TV 1(s)]

—i[6 T ().
In particular, it follows from (6.19) that C=>~2(z, s) belongs to class 7 .
Taking (—2, —2) components (6.17) implies
(D)272(s) + A27%(z,5) + B~272(z,5) — 2i6 272

= —2i0727%(z,8) + I >72(5) + A=>72(2,5) + C">72(z,s)
and hence
57272(z,5) =622+ D 272(z,5),
where D~>72(z, s) belongs to the class 7. By (6.9) we obtain that

lim &6 27%(z,5)=6>2.
Im(z)—> o
s—0

Therefore, we have completed the proof of Theorem 6.1 in the case where 7(V) = 4 (for example,
the dilogarithm variation in Example 6.7).
To verify the general statement, we assume by induction that for a = 2, ..., k that

(i) C~%79(z,s) belongs to class 7, and is given by a Lie polynomial with terms
& g
Ad(Ly)o ... o Ad(L,_,)L,, (6.20)

where each L; is either 50 N(z), N(2), I~0~b(s) or [0 (s);
(i) 6% %z,5) = 64?4+ D~%"9(z,s) where D~%~%(z, s) satisfies also condition (i).
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The previous paragraphs establish the induction base a = 2.

To establish the case a=k+1 we recall C(z,s) is a sum of terms X =
Ad(X;)o ... o Ad(X,,_1)X,, where some X; = —2i6(z) and the remaining terms X; are either
—2i8(z) or N(z)+ I'(s) + A(z,s) (which occurs at least once). In particular, upon expanding
8(z, s) into Hodge components, it follows that C~¢~1~%71(z, 5) can be expanded into a sum of
terms

U=Ad(U,)o ... o Ad(U,,_;)U,,
of the required form (7). It now follows from (6.17) and the previous results about A(z, s), B(z, s)

and C~bb(z,s) for b = 1, ..., k + 1 that (ii) holds. O

6.2 | Heights of nilpotent orbits

Let " — A* be an admissible variation of mixed Hodge structure over the punctured disk A* with
weight graded quotients Gr)” = Z(0), Gr”, = H and Gr", = Z(1). Assume that " has unipotent
monodromy and select an embedding of A* into the coordinate disk

A={seC]||s| <1}

as the complement of s = 0. In [5, Section 3], the third author and Brosnan proved that there exists
a rational number u such that

h(s) = ht(V;) + ulog |s| (6.21)

extends continuously to A. Moreover, h(0) can be constructed by pure linear algebra from the data
of (N, F,, W) of the nilpotent orbit of /.

Consider now an arbitrary oriented admissible variation V — A* with unipotent monodromy.
As noted in (6.10), the data (N, F,, W) of the associated nilpotent orbit of V is only well defined
up to replacing F, by e*N - F_. In this section, we define a height ht(N, F_, W) of an oriented
admissible nilpotent orbit (e?~ - F_, W) which generalizes the construction of [5] and prove:

Proposition 6.3. If (V) > 2 then, forany A € C,
ht(N,e*N . F,,W) = ht(N,F, W).

Thus, ht(N, F ., W) only depends on the variation V and not on a particular choice of limit Hodge
filtration F . If moreover N acts trivially on Gr" then M(N, W) = W and

ht(N,F ., W) = ht(F,, M).
On the right-hand side ht(F , M) denotes the usual height of the oriented extension (F ., M).

Accordingly, we can define the limit height of V to be ht(N, F, W) of the associated nilpotent
orbit.
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Remark 6.4. Unfortunately, we do not yet have the analog of (6.21) in general. In the next sub-
section we given an example of an admissible nilpotent variation with weight graded quotients
Gry’ = Z, Gr", of rank two and Gr", = Z(3) for which ht(V) grows like a multiple of (log |s])* as
s — 0.

To define the height of a nilpotent orbit, we will freely borrow from Section [6, Section 6]. The
key concept is the notion of a Deligne system, which originates from a letter of Deligne to Cattani
and Kaplan:

Definition 6.5. [6, 6.6]. Let K be a field of characteristic zero. A 1-variable Deligne system over
K consists of the following data:

* an increasing filtration W of a finite-dimensional K-vector space V;

* a nilpotent endomorphism N of V which preserves W such that the relative weight filtration
M = M(N, W) exists; and

» agrading Y of M which preserves W and satisfies [Y, N] = —2N.

A morphism of Deligne systems (W,N,Y) — (W, N, Y) is an endomorphism T of the underlying
K-vector spaces such that

TW,)) CcwW,, YoT—ToY=0 and NoT—-ToN=0.

Given a Deligne system (W, N, Y), each choice of grading Y’ of W which commutes with Y
determines an 8[,-triple (N, H ,N(')* ) where

N=) N, [Y,N_j]l=-jN
Jj=0

s (6.22)

(so N, is the 0-eigencomponent of N relative to AdY')and H = Y — Y’ (cf. [6, Equations 6.8 and
6.9]). The basic construction of Deligne’s letter is the following (see [6] for additional history and
references):

Theorem 6.6 [6, 6.10]. Let (W,N,Y) be a Deligne system. Then, there exists a unique functorial
grading Y' = Y'(N,Y) of W which commutes with Y such that

[N =Ny, Nj]=0, (6.23)
where (N, H, N(;r) is the associated 81,-triple attached to Y' and (W,N,Y).

In particular, given any admissible variation V of mixed Hodge structure over the punctured
disk A* with unipotent monodromy, we obtain a Deligne system (W, N, Y) where W is the weight
filtration of V, N is the local monodromy and Y =Y _ 5,y Where (F,,, M) is the limit mixed
Hodge structure of V. If 1 € C, then e is a morphism from (W,N,Y) to (W,N,Y +2AN) =
(W, N, Y(eAN-Fm,M))‘ Therefore,

YN, Y an) = €N - YN, Yz_an). (6.24)
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We next proceed to the definition of the height of a nilpotent orbit. So let M and M be the
classifying spaces of mixed Hodge structures of a filtered vector space (V, W) and its compact
dual. Let F € M and N a nilpotent endomorphism of V such that (e? - F, W) is an admissible
nilpotent orbit. This means the following conditions:

(i) N(F") c F"~! (horizontality);
(ii) e*N .- F € M for Im(z) > 0; and
(iii) the filtration M = M(N, W) exists.

Let max = max(W), min = min(W). Assume (e?N - F, W) is oriented and # = #(W) > 2. We have
a limit mixed Hodge structure (F, M). Let Y' = Y'(N, Yz 55)) and § = (5 5. Write
=346, [V,6_1=-j5_; (6.25)

Jj=0

Note that this decomposition is with respect to a grading of W and not with respect to a grading
of M. We define the height of the admissible nilpotent orbit as

ht(N,F,W)e" =6_, e, (6.26)

where e is a lift of the generator of Grgax and eV projects to the generator of Grrvgin. We stress here
the fact that the generators e and e" as well as the grading Y’ correspond to the filtration W, while
the operator & is defined by the mixed Hodge structure (F, M). We proceed in this way because
there is no reason for (F, M) to be oriented.

Proof of Proposition 6.3. Let e?N - F be an admissible nilpotent orbit as before and 4 € C. Let
8 = 8 and 8 = v ). By Lemma 2.10

§ =6 + Im(A)N.
Moreover, since N is a (=1, —1)-morphism of both (F, M) and (e’ - F, M) it follows that both §
and § are fixed by the adjoint action of e*V.

Let § =); §; and N = };; N; denote the decomposition of § and N into eigencomponents
with respect to the adjoint action of Y’ = Y'(N, Y »1)) as in (6.25). Then,

§=eN.5=e™N. Y 5 +Im@AN_; = Y e (5_; + ImAN_)). (6.27)
j=0 Jjz0

LetY’ = Y’(N, Y(e/lN-F,M)) and

SZZ S_j’ [Y,’g—j]z_jg—j’
j=0

be the decomposition of § into eigencomponents for Ad Y’. By Equation (6.24), Y’ = eV . Y’.
Moreover,

[N Y, e (6_; + Im(A)N_p] =N - [Y,6_; + Im()N_]
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= —je' - (6_; + Im()N_)).
Comparing the previous equation with (6.27) it follows that

5_j=e™ - (6_; +ImA)N_)). (6.28)
In the notation of (6.26), we are interested in comparing §_, and §_,. As the first step, we note

that N acts trivially on Gr}), and Gr". as each factor has dimension 1and N is nilpotent. As N

preserves W, it then follows that e fixes d_, and N_, under the adjoint action. Thus,

S_f = 5_f + Im(A)N_f

The limit mixed Hodge structure (F, M) induces on Gr" the limit mixed Hodge structures of
the variations of pure Hodge structure on Gr". Let 2a = max and 2b = min. Then, Grg‘c’l is the
constant variation of type (a, a) whereas Gr‘z"l’) is the constant variation of type (b, b). Consequently,
F9 surjects on Gr}, whereas F%*! maps to zero in Gr}, . Moreover, G}/ = W, and W), C F”
whereas F+1 nW,, = 0.

By the previous paragraph, it follows that in Equation (6.26) we can arrange thate € F¢. By [31,
Equation (3.20)], Y’ preserves F. Accordingly, since N is horizontal with respect to F, so is each
eigencomponent N_;.

Therefore, N_,(e) € F®~!. But, 2a — 2b > 2 implies a — 1 > b and hence N_,(e) € F**!n
W,p. Thus, N_,(e) = 0. This proves the first statement of Proposition 6.3.

Finally, if N acts trivially on Gr” then N, = 0 and hence H = Y — Y’ = 0. Therefore, Y = Y’
which implies M = W and the decomposition of § with respect to Y” is just the decomposition of
§ with respectto Y = Yz ). 1

6.3 | Three examples

In this subsection we show that the Bloch-Wigner dilogarithm D, is the height of the dilogarithm
variation over P! — {0, 1, co}. We then show that up to a multiple of 4¢(2), we can express D, as
the height of an elementary family of triangles of the type considered in 5.2. Finally, we show that
the height can become unbounded in the case where the underlying variation of mixed Hodge
structure is not unipotent in the sense of Hain and Zucker [23].

Example 6.7. Let V be the dilog variation over P! — {0, 1, oo} [23, 4.13]. Then, ht(V) = —D,(s).
By [36, 4.13] we may select a basis {e,, e;, e,} of V(- = V, such that V has bigrading I** = Ce_,
and integral structure V', generated by

Uy(8) = €y — log(1 — s)e; + Ly(s)e,,
vi(s) = (7i)(e; + log(s)e,),

vy(2) = (27i)e,,

where L,(s) = Z;’;l j—fz is the dilogarithm. By Lemma 2.6 we need to compute %Im((e0 —€y)_4)-
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Abbreviating v;(s) to v}, it follows from the previous equations that
— =2
e, = (2mi) " v,,
e; = 2mi) v, — (2mi) "% log(s)v,,

ey = Uy + 2mi)log(1 — s)v; — (27ri)2[log(1 — s) log(s)v, + L,(s)]v,.

Therefore,
e — €
= 2(27i)~! Re(log(1 — s))v; — 2i(27'[i)_21m(10g(1 —s)log(s) + L,(s))v,
= 2Re(log(1 — 5))(e; + log(s)e,) — 2iIm(log(1 — s) log(s) + L,(s))e,.
Accordingly,

1 —
EIm((eO —ey)_4)
= Re(log(1 — 5))Im(log(s)) — Im(log(1 — 5) log(s)) — Im(L,(5s)).
To simplify the previous equation, let log(1 —s) = A + iB and log(s) = C + iD. Then,

Re(log(1 — s))Im(log(s)) — Im(log(1 — s) log(s))
= AD — (AD + BC) = —BC = —arg(1 — s)log|s]|.

Thus,
ht(V,) = —Im(L,(s)) — arg(1 — s) log |s| = —D,(s).

Example 6.8. Returning to the setting of 5.2, let W denote the standard triangle and consider
the sections

St,() = xO + txl + x2,
Sp1 = X + X + 11Xy,

St’z e txO + xl + XZ,

of Op2(1), where t € S = P! —{—2,-1,0,1, co}. Let ;= div(s; ;) for i = 0,1, 2 and consider the
family of higher cycles {Z(t)};cs, With individual Z_(¢) as defined in Section 5.2. By the choice of
t, all the cycles Z,(¢) are non-degenerate and intersect W properly and transversely. Moreover,
the pair of cycles Z, (t), W satisfies Assumption 3.27. Then,

_3

Qri)? (D,(8) + Dy(¢) + Dz(t_z)).

ht(BZa(t),Wﬁ) =
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To continue, recall that D,(z) = D,(1 — 1/z) and hence D,(t~2) = D(1 — t?). By the 5 term rela-
tion

1-—x 1-
Dz(x)+D2(y)+D2<1 xy) +D2(1—xy)+D2<1_;y> =0

Setting x = y =t it follows that

D,(t) + Dy() + Dy(1/£%) = Dy(t) + Dy(t) + Dy(1 = 17)
11—t 11—t
- _D2(1—12> _D2<1 —t2>
=-2D,((1+ ) h).
Finally, D,(z) = —D,(1/2) and D,(z) = —D,(1 — z). Therefore,

6

_ _D,(1+1) _ Dy(-)
© (2mi)?

OO R

In particular, upon setting 6 = 7/2 in the formula D,(e’) = ¥7>° | % it follows that D,(4/—1)
is equal to the Catalan constant C. Thus,

hi(B, ) = %.
Also note that
lim ht(By, ) = 0
for p € {-2,-1,0,1, oo}.

To close this subsection, we give an example of an admissible nilpotent orbit (e?N - F, W) with
weight graded quotients Gr) 2 Z(0), Gr"; of rank two and Gr", = Z(3) such that the height
grows like (log |s|)? for s = e?7i2,

Example 6.9. Let VV, be the lattice generated by e, e, f and e_g. Let
W_¢ = Ze_g, W_s=W_c®Zf @ Ze, Wo=V,,
with graded polarizations
So(leols [eo]) = S_z([e], [f]) = S_¢([e_¢l, [e_6]) = 1.

Let N be the nilpotent endomorphism obtained by setting

N(ey) =e, N(e) = f, N(f)=e_q, N(e_g) =0.
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Let (F, M) be the mixed Hodge structure defined by setting
1 =cCey, IVl=Ce, I*P=Cf, I =Ce,

Then, N(I%%) c 1971¢~1 and hence N is horizontal with respect to F. We also have N(M,) C
M, _,. To verify that M is the relative weight filtration N and W it remains to check M induces
the monodromy weight filtration of Gr(N) shifted by —k on Gr}"". This is clear for Gr; and Gr".
Let N be the map induced by N on Gr‘f’3 then

W) =2[fl,  WE), =GrY,

and hence W(N)[3]_, = W(N)_; = Z[f] while W(N)[3]_, = W(N), = GrL_V3. Since I"171 = Ce
and I=272 = Cf it follows that M induces the correct filtration on Grz.
Define

vo(2) = eN(ey) = ey + ze + %zzf + %z3e_6,

v (z)=eNe)=e+zf + %zze_&

v, =eN(f)=f+ ze_g,

v_5(z) = QZN(e—ﬁ) =€ ¢

Then, e?" - F¢ = @, Cv;,(2). Accordingly, e?" - F induces a pure Hodge structure of weight k
on Gr}: For Gry and Gr", we just take the constant variations of type (0,0) and (=3, —3). The
image e?N - F~1 in GrH’3 is C[e + zf] which gives a variation of pure Hodge structure of weight
=3.

Recall [17, 2.12] that

pg — FP 7q q-1
PE=FPnW, . N (F NWpig+ Up+q_1),

where Ul = ¥, F*/ nW,,_;. In particular,
10 = Cvy(2), ) Cv_;(2),

(eN-F.W) (eN-F.W)

as both ?V - FO and (e?N - F~1) n W_5 have rank one.
To determine I=>~! note that

U2 =(Cv_,@)NW_s® (Cv_3(2) N W_g = Ce_g.
Therefore,

(N -F)NW_3;+U2=Ci_(2)®Ce_g =Cle+2f) ® Ce_g,
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and hence
@ - F)nW_sn (N -F-)nW_s + U2)
= (Cv_1(2) ® Cv_,(2)) N (Cle + zf) @ Ce_y)
=Cle+zf +z(z—- %z)e_6)
because e+ zf +z(Z — %z)e_6 =v_1(2)+(Z —z)v_,(z). As such, I(;;I__;,W) [4>) I(_;;,__;,W) is
spanned by v_;(z) and v_,(z). Moreover, [ (_;;,_;’W) =I7373is generated by e_.

To finish, observe that
V9(2) — Vy(2) = (z — 2)(e + %(z +2)f + %(z2 +2Z + 2%)e_g).
Next,
1 ~ 1. 5, . 2
e+ §(z+z)f+ g(z +2zZ+2%)e_g
1 1,
=v_1(2)+ zv_,(2) + =(z — 2)%e_;.
2 6
Thus,
B} 1 .
o(2) — 99(2))_6 = g(z —Z)e_q.

where (--+)_q is projection onto I ~3=3 with respect to the Deligne bigrading of (e?N - F, W).

' (&N -F.W)
Write now s = 272, then the nilpotent orbit (e?" - F, W) defines a variation of mixed Hodge struc-

tures V over the punctured unit disk with coordinate s. Then, by (2.6),

1
1273

ht(Vy) = (log |s])°.
We note also that, since the mixed Hodge structure (F, M) is split over R, then 5(F,M) = 0. There-
fore, in this case

ht(N,F, W) = 0.
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