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Abstract
For a smooth, projective complex variety, we introduce
several mixed Hodge structures associated to higher
algebraic cycles. Most notably, we introduce a mixed
Hodge structure for a pair of higher cycles which are in
the refined normalized complex and intersect properly.
In a special case, this mixed Hodge structure is an ori-
ented biextension, and its height agrees with the higher
archimedean height pairing introduced in a previous
paper by the first two authors. We also compute a non-
trivial example of this height given by Bloch–Wigner
dilogarithm function. Finally, we study the variation of
mixed Hodge structures of Hodge–Tate type, and show
that the height extends continuously to degenerate situ-
ations.
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INTRODUCTION

Main objectives

Let 𝑋 be a smooth projective variety of dimension 𝑑 defined over a number field 𝐹. The height
pairing between cycles is an arithmetic analogue of the intersection product and can be seen as a
linking number. It plays a central role in arithmetic geometry.
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TheArakelov theory and concretely arithmetic intersection theory [19] provide a general frame-
work to define and study the height pairing, exploiting the analogy with the intersection prod-
uct. Let 𝑍 and 𝑊 be disjoint, homologically trivial algebraic cycles on 𝑋 of codimension 𝑝 and
𝑞 = 𝑑 + 1 − 𝑝, respectively.
Assume that there is a regularmodel of𝑋 over𝐹 , the ring of integers of𝐹 and that the cycles

𝑍 and𝑊 can be extended to cycles  and on  , whose intersection with any vertical cycle is
zero. Then we can choose liftings 𝑍 = (, g𝑍) and 𝑊 = ( , g𝑊) of 𝑍 and 𝑊 in the arithmetic
Chow groups ĈH𝑝

() and ĈH𝑞
(), respectively, satisfying the additional condition
𝑑𝑑𝑐g𝑍 + 𝛿𝑍 = 𝑑𝑑𝑐g𝑊 + 𝛿𝑊 = 0.

In this setting the height pairing is given by

⟨𝑍,𝑊⟩ht = d̂eg(𝑍 ⋅𝑊)

and is independent of the choice of liftings. This height pairing can be written as a sum of com-
ponents

⟨𝑍,𝑊⟩ht = ⟨𝑍,𝑊⟩f in + ⟨𝑍,𝑊⟩Arch ∈ ℝ,

where ⟨𝑍,𝑊⟩f in is the finite contribution that is defined using intersection theory on the model , while ⟨𝑍,𝑊⟩Arch is the archimedean height pairing and is computed using the Green currents
in the complex manifold associated to 𝑋:

⟨𝑍,𝑊⟩Arch = ∫𝑋 g𝑍 ∧ 𝛿𝑊 = ∫𝑋 g𝑊 ∧ 𝛿𝑍.

Note that, even if ⟨𝑍,𝑊⟩ht depends only on the rational equivalence class of 𝑍 and𝑊, the finite
and archimedean components depend of the actual cycles 𝑍 and𝑊.
In the paper [22], Hain has given a Hodge theoretical interpretation of the archimedean height

pairing. Namely, to the pair of cycles 𝑍 and 𝑊 one can associate a biextension 𝐵𝑍,𝑊 of mixed
Hodge structure. The isomorphism classes of biextension mixed Hodge structures are classified
by a single real invariant and the archimedean height pairing agrees with this invariant. In fact,
not only the archimedean component can be interpreted as the class of an extension but also other
local components of the height pairing can be obtained as extension classes of motivic origin; see,
for instance, [34, 35].
Bloch has introduced the higher ChowgroupsCH𝑝(𝑋, 𝑛) in [2] as a concrete example ofmotivic

cohomology theory. Subsequently, in [11] Feliu and the first author have introduced the higher
arithmetic Chow groups. These groups have been further studied by the first and second authors
in [12]. Moreover, they have introduced a height pairing between higher cycles whose real regu-
lators are zero. Although there are many differences between the case of algebraic cycles and the
case of higher cycles, the height pairing between higher cycles still decomposes as a sum,

⟨𝑍,𝑊⟩ht = ⟨𝑍,𝑊⟩geom + ⟨𝑍,𝑊⟩Arch, (0.1)

of an archimedean contribution that will be called the archimedean higher height pairing, and a
geometric contribution that, although is very different in nature to the finite contribution in the
case of ordinary cycles, is also related to an intersection product.
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The archimedean higher height pairing depends only on the complex manifold associated to
𝑋 and can be defined for higher cycles on a smooth projective complex variety. The aim of the
present paper is to generalize Hain’s result and give a Hodge theoretical interpretation of the
archimedean higher height pairing between certain higher cycles. More precisely, as we review
below (0.3), CH∗(𝑋, ∗) can be computed as the homology of a complex (𝑍∗(𝑋, ∗)00, 𝛿). The main
result of this paper can be compiled in the following theorem:

Theorem A. Let 𝑋 be a smooth complex projective variety of dimension 𝑑 and 𝑍 ∈ 𝑍𝑝(𝑋, 1)00 and
𝑊 ∈ 𝑍𝑞(𝑋, 1)00 be elements which satisfy the following conditions:

(i) 𝑝 + 𝑞 = 𝑑 + 2;
(ii) 𝛿𝑍 = 𝛿𝑊 = 0;
(iii) 𝑍 and𝑊 intersect properly; and
(iv) the intersection of 𝑍 and𝑊 also satisfies Assumption 3.27.

Then, in analogy withHain’s construction, there is a canonicalmixedHodge structure𝐵𝑍,𝑊 attached
to 𝑍 and𝑊 from which one can extract a Hodge theoretical height pairing ⟨𝑍,𝑊⟩Hodge. Moreover
(see Theorem 4.7), if 𝑍 and𝑊 both have real regulator zero then

⟨𝑍,𝑊⟩Hodge = ⟨𝑍,𝑊⟩Arch.
Regarding condition (i), much of our analysis carries through the case where 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00

and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 provided that 2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑚 + 𝑛. However, condition (iii) allows for
non-trivial intersections of 𝑍 and𝑊 which contribute to the mixed Hodge structure 𝐵𝑍,𝑊 . In the
case 𝑚 = 𝑛 = 1, this intersection is just a finite set of points and is easy to handle provided we
assume some extra technical conditions that are satisfied generically (see Assumption 3.27).
At first glance, the contribution from the intersection of 𝑍 and 𝑊 might appear to be just a

technical issue arising during the construction of 𝐵𝑍,𝑊 . However, on reflection, it is exactly this
new contribution that allows 𝐵𝑍,𝑊 to have interesting deformations which satisfy Griffiths hori-
zontality.
The asymptotic behavior of the archimedean component of the height pairing has been exten-

sively studied by the third author in [31] using the Hodge theoretical interpretation. Moreover, in
collaboration with Brosnan, in [5] he has given an explanation of the height jump phenomenon.
The asymptotic behavior of the height and the height jump phenomenon has also been studied
by the first author in collaboration with de Jong and Holmes in [13].
The second objective of this paper is to use the Hodge theoretical interpretation of the

archimedean higher height pairing to start the study of its asymptotic behavior. In Section 5.2, we
study an example in dimension 2 in which 𝑛 = 𝑚 = 1 and the cohomology of 𝑋 is of Hodge–Tate
type, and we observe that the height can be extended continuously to the degenerate situations.
This is in sharp contrast with the usual height pairing that has logarithmic singularities when
approaching degenerate situations. We show that this is a general phenomenon of higher heights
for Hodge–Tate variations of mixed Hodge structures (Theorem 6.1).

TheoremB. Let 𝑆 be a Zariski open subset of a complexmanifold �̄� such that𝐷 = �̄� − 𝑆 is a normal
crossing divisor. Let → 𝑆 be anoriented graded-polarizedHodge–Tate variationwith length𝓁() ⩾
4. Assume  is admissible with respect to �̄� and has unipotent local monodromy about𝐷. Let 𝑝 ∈ 𝐷.
Then the limit mixed Hodge structure 𝑝 of  at 𝑝 ∈ 𝐷 is an oriented Hodge–Tate structure with the
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same weight filtration as  . Moreover,
lim
𝑠→𝑝

ht(𝑠) = ht(𝑝).

In this result, oriented structure means that the top and the bottom graded pieces are constant
variations of rank one, and ht(𝑠) denotes the height of the oriented mixed Hodge structure 𝑠
(Definition 2.3). The important hypotheses are, first, the length 𝓁() ⩾ 4, that is, the difference
between theminimal andmaximalweight is at least 4 (hence,we are dealingwith ahigher height),
and second, the whole variation is of Hodge–Tate type. In Example 6.9 we show that this last
hypothesis is necessary.

Background for usual cycles

Before giving a more precise statement of the main results of the paper, we briefly recall the case
of ordinary cycles.
Assuming several conjectures, Beilinson [1] has defined a height pairing between the Chow

group of cycles homologous to zero:

⟨ , ⟩𝐻𝑇 ∶ CH𝑝(𝑋)0 ⊗ CH𝑑−𝑝+1(𝑋)0 → ℝ,

where CH𝑝(𝑋)0 indicates the subgroup of CH𝑝(𝑋) consisting of cycles homologous to zero. This
is the same thing as the kernel of the cycle class map to real Deligne cohomology

CH𝑝(𝑋)0 = ker
(
cl𝑝 ∶ CH𝑝(𝑋) → 𝐻

2𝑝

𝔇
(𝑋,ℝ(𝑝))

)
.

Up to certain assumptions on 𝑋, which are true for certain class of examples such as curves and
abelian varieties, Beilinson’s height pairing can be constructed using Gillet and Soulé’s arithmetic
intersection theory (see [29] for more details). More concretely, writing 𝑆 = Spec(𝐹), we have to
make the following assumptions on 𝑋.

A1 There exists a regular scheme  , flat and projective over 𝑆, such that 𝑋 =  × Spec(𝐹).
A2 Every cycle 𝑥 ∈ CH𝑝(𝑋)0

ℚ
can be lifted to a cycle 𝑥 ∈ CH𝑝()ℚ such that 𝑥 ⋅ 𝑌 = 0 for every

cycle 𝑌 ∈ 𝑍𝑑+1−𝑝()f in. Here 𝑍𝑑+1−𝑝()f in is the group of cycles whose support is contained
in a finite number of fibers of the structural map  → 𝑆.

Then, under Assumptions A1 and A2 we can construct Beilinson’s height pairing after tensoring
withℚusing arithmetic intersection on .We give a very succinct description of the pairing below.
Arithmetic Chow groups [19] come equipped with an intersection product

ĈH
𝑝
()ℚ ⊗ ĈH

𝑑−𝑝+1
()ℚ → ĈH

𝑑+1
()ℚ,

push-forward maps

ĈH
𝑑+1

() → ĈH
1
(𝑆) → ĈH

1
(Spec(ℤ))
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and an isomorphism

ĈH
1
(Spec(ℤ)) ≃ ℝ.

Combining the push-forward and the above isomorphism, we obtain an arithmetic degree map

d̂eg∶ ĈH
𝑑+1

() → ℝ.

Composing the intersection product with the arithmetic degree, we obtain a pairing

( , ) ∶ ĈH
𝑝
()ℚ ⊗ ĈH

𝑑−𝑝+1
()ℚ → ĈH

𝑑+1
()ℚ d̂eg

---→ ℝ. (0.2)

Now let ĈH𝑝
()0 be the subgroup ĈH𝑝

(), generated by arithmetic cycles (𝑍, g𝑍) such that
𝑑𝑑𝑐g𝑍 + 𝛿𝑍 = 0 and 𝑍 ⋅ 𝑌 = 0 for every 𝑌 ∈ 𝑍𝑑+1−𝑝()f in. This implies in particular that the
restriction of 𝑍 to the generic fiber 𝑋 is homologous to zero.
Assumption A2 implies that the map ĈH𝑝

() → CH𝑝(𝑋) induces a surjective map

ĈH
𝑝
()0

ℚ
↠ CH𝑝(𝑋)0

ℚ
.

Finally, for elements 𝑥1 ∈ CH𝑝(𝑋)0
ℚ
and 𝑥2 ∈ CH𝑑−𝑝+1(𝑋)0

ℚ
, Beilinson’s height pairing is defined

as follows: Lift 𝑥1 to �̃�1 ∈ ĈH
𝑝
()0

ℚ
and 𝑥2 to �̃�2 ∈ ĈH

𝑑−𝑝+1
()0

ℚ
and define

⟨𝑥1, 𝑥2⟩𝐻𝑇 ∶= (�̃�1, �̃�2) .

One can easily show that the right-hand side does not depend on the lifting (see [29, Section 5]).
This height pairing is an important tool, and has a number of conjectural properties which are

linked to the Beilinson’s conjectures (see [1, Section 5] for further details).
Beilinson’s height pairing can be decomposed into a sum of local contributions. One for each

place ofℚ. The sum of the finite contributions can be grouped together in an intersection theoret-
ical contribution, while the archimedean contribution has a Hodge theoretical interpretation. Let
𝑥1 and 𝑥2 be as before and choose representatives 𝑍 ∈ 𝑍𝑝(𝑋) and𝑊 ∈ 𝑍𝑑+1−𝑝(𝑋) of 𝑥1 and 𝑥2,
respectively, that intersect properly. By the codimensions of 𝑍 and𝑊 proper intersection means
in this case that they do not meet. Lift 𝑍 and 𝑊 to cycles  and  satisfying the condition in
Assumption A2, and choose Green currents g𝑍 and g𝑊 whose associated forms are zero. Then

⟨𝑥1, 𝑥2⟩𝐻𝑇 = ⟨𝑍,𝑊⟩f in + ⟨𝑍,𝑊⟩Arch,
where

⟨𝑍,𝑊⟩f in = deg( ⋅),

⟨𝑍,𝑊⟩Arch = d̂eg(g𝑍 ∗ g𝑊) = ∫𝑋 𝛿𝑍 ∧ g𝑊 ∈ ℝ.

It is important to remark that, while the height pairing ⟨𝑥1, 𝑥2⟩𝐻𝑇 depends only on the classes 𝑥1
and 𝑥2, the decomposition in finite and archimedean components depends on the choice of cycles
𝑍 and𝑊 representing these classes.
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We now discuss Hain’s Hodge theoretic interpretation of ⟨𝑍,𝑊⟩Arch (see [22] for details). Let
𝐻 be a torsion free integral pure Hodge structure of weight −1. A biextension 𝐵 associated to𝐻 is
a mixed Hodge structure of non-zero weights −2,−1, 0, with the graded pieces satisfying

Gr𝑊
0
𝐵 = ℤ(0),

Gr𝑊
−1
𝐵 = 𝐻,

Gr𝑊
−2
𝐵 = ℤ(1).

Let (𝐻) denote the set of isomorphism classes of biextensions as before and (𝐻)ℝ the isomor-
phism classes of real mixed Hodge structures of the same shape. The following results are proved
in [22, Corollaries 3.1.6, 3.2.2 and 3.2.9].

(i) Ext1
𝐌𝐇𝐒

(ℤ(0),𝐻) and Ext1
𝐌𝐇𝐒

(𝐻,ℤ(1)) are dual tori.
(ii) The projection

(𝐻) → Ext1𝐌𝐇𝐒(ℤ(0),𝐻) × Ext
1
𝐌𝐇𝐒(𝐻,ℤ(1))

given by 𝐵 ↦ (𝐵∕𝑊−2,𝑊−1) has the structure of a principal ℂ∗ bundle.
(iii) Ext1

ℝ−𝐌𝐇𝐒
(ℝ(0),𝐻ℝ) = Ext1

ℝ−𝐌𝐇𝐒
(𝐻ℝ,ℝ(1)) = 0.

(iv) There is a canonical bijection ℝ(𝐻)
≅
-→ ℝ.

In particular if 𝑍 ∈ 𝑍
𝑝

hom
(𝑋) and𝑊 ∈ 𝑍

𝑞

hom
(𝑋) are two cycles homologous to zero, intersecting

properly with 𝑝 + 𝑞 = 𝑑 + 1, then the Abel–Jacobi images of 𝑍 and𝑊 define elements

𝑒𝑍 ∈ Ext1
𝐌𝐇𝐒

(ℤ(0),𝐻),

𝑒∨
𝑊
∈ Ext1

𝐌𝐇𝐒
(𝐻,ℤ(1)),

where𝐻 = 𝐻2𝑝−1(𝑋, ℤ(𝑝))∕torsion. The extension class 𝑒𝑍 is defined by a short exact sequence

0 → 𝐻 → 𝐸𝑍 → ℤ(0) → 0,

𝐸𝑍 being a sub-Hodge structure of 𝐻2𝑝−1(𝑋 ⧵ |𝑍|, ℤ(𝑝))∕torsion, whereas 𝑒∨
𝑊
is given by a short

exact sequence

0 → ℤ(1) → 𝐸∨𝑊 → 𝐻 → 0,

with 𝐸∨
𝑊
being a quotient of 𝐻2𝑝−1(𝑋, |𝑊|, ℤ(𝑝))∕torsion. Combining both constructions we get

a biextension [22, Proposition 3.3.2]

𝐵𝑍,𝑊 ↦ (𝑒𝑍, 𝑒
∨
𝑊),

which is a subquotient of the mixed Hodge structure

𝐻2𝑝−1(𝑋 ⧵ |𝑍|, |𝑊|, ℤ(𝑝))∕torsion.
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If 𝜈∶ (𝐻) → ℝ is the composition of the change of coefficients(𝐻) → (𝐻)ℝwith the bijection
above, we have [22, Proposition 3.3.12]

𝜈(𝐵𝑍,𝑊) = −⟨𝑍,𝑊⟩Arch.
Since proper intersection means |𝑍| ∩ |𝑊| = 𝜙, there is a duality

𝐻2𝑝−1(𝑋 ⧵ |𝑍|, |𝑊|, ℚ(𝑝)) ≅ (𝐻2𝑞−1(𝑋 ⧵ |𝑊|, |𝑍|, ℚ(𝑞 − 1))
)∨
,

which implies that the above pairing is symmetric.
In [31, Theorem 5.19], the Hodge theoretical interpretation of the archimedean height pairing

is used to obtain results about its asymptotic behavior. Let 𝑍𝑠,𝑊𝑠 ⊂ 𝑋𝑠 be a flat family of cycles
homologous to zero over a smooth curve 𝑆. Let 𝑧 be a local holomorphic coordinate on a small
disk Δ ⊂ 𝑆 such that, for 0 ≠ 𝑧 ∈ Δ, the variety 𝑋𝑧 is smooth and the cycles 𝑍𝑧 and𝑊𝑧 intersect
properly and such that the variation ofmixedHodge structures𝐵𝑍𝑧,𝑊𝑧

has unipotentmonodromy.
Then there is a rational number 𝜇 that can be read from the monodromy, and such that

⟨𝑍𝑧,𝑊𝑧⟩Arch = 𝜇 log |𝑧| + 𝜂(𝑧),

where 𝜂(𝑧) is real analytic and remains bounded when 𝑧 goes to zero.

Higher intersection pairing

We recall the construction of the higher height pairing of [12]. Before that we will also have to
recall some terminology.
Let now 𝐹 be any field and 𝑋 a smooth projective variety over 𝐹. There are two equivalent

descriptions of Bloch’s higher Chowgroups, the simplicial and the cubical versions. The simplicial
version is the one originally introduced by Bloch, but the cubical version is the one more well
suited for the product structure. In this paper we will use the cubical description.
In the cubical version, in order to compute the right homology, one is forced to normalize the

complex in order to get rid of degenerate elements. There are two versions of the normalization.
In fact, there are two quasi-isomorphic complexes

𝑍𝑝(𝑋, ∗)00 ⊂ 𝑍𝑝(𝑋, ∗)0, (0.3)

whose homologies compute the cubical version of higher Chow groups. We will use the complex
𝑍𝑝(𝑋, ∗)00 because its cycles are easier to link with relative cohomology.
Let □ = ℙ1 ⧵ {1} denote a copy of the affine line where the role of∞ is played by the point 1

and let□𝑛 denote the 𝑛th cartesian product. Recall that there are coface maps 𝛿𝑖
𝑗
∶ □𝑛−1 → □𝑛,

𝑖 = 1, … , 𝑛, 𝑗 = 0, 1, given by

𝛿𝑖0(𝑡1, … , 𝑡𝑛−1) = (𝑡1, … , 𝑡𝑖−1, 0, 𝑡𝑖, … , 𝑡𝑛−1),

𝛿𝑖1(𝑡1, … , 𝑡𝑛−1) = (𝑡1, … , 𝑡𝑖−1,∞, 𝑡𝑖, … , 𝑡𝑛−1).

For any scheme𝑋, we denote also by 𝛿𝑖
𝑗
the inducedmaps𝑋 ×□𝑛−1 → 𝑋 ×□𝑛. Any intersection

of images of the maps 𝛿𝑖
𝑗
is called a face.
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Let𝑍𝑝(𝑋, 𝑛) denote the group of algebraic cycles on𝑋 ×□𝑛 that intersect properly all the faces.
Then

𝑍𝑝(𝑋, 𝑛)00 =

𝑛⋂
𝑖=1

ker(𝛿𝑖1)
∗ ∩

𝑛⋂
𝑖=2

ker(𝛿𝑖0)
∗

with differential 𝛿∶ 𝑍𝑝(𝑋, 𝑛)00 → 𝑍𝑝(𝑋, 𝑛 − 1)00 given by 𝛿 = −(𝛿1
0
)∗. An element of 𝑍𝑝(𝑋, 𝑛)00

will be called a pre-cycle, while an element of 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 with 𝛿𝑍 = 0 is called a cycle. The
higher Chow groups of 𝑋 are the homology of the complex (𝑍𝑝(𝑋, ∗)00, 𝛿):

CH𝑝(𝑋, 𝑛) = 𝐻𝑛(𝑍
𝑝(𝑋, ∗)00, 𝛿), 𝑛 ⩾ 0, 𝑝 ⩾ 0.

There is a graded commutative product in CH∗(𝑋, ∗) given by the intersection product.
Two pre-cycles 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 are said to intersect properly if 𝜋−11 𝑍 and

𝜋−1
2
𝑊 intersect properly among them andwith all the faces of𝑋 ×□𝑛+𝑚. Here𝜋1 ∶ 𝑋 ×□𝑛+𝑚 →

𝑋 ×□𝑛 and 𝜋2 ∶ 𝑋 ×□𝑛+𝑚 → 𝑋 ×□𝑚 are the two projections. If 𝑍 and 𝑊 intersect properly,
then the intersection product 𝑍 ⋅𝑊 is a well-defined pre-cycle of 𝑍𝑝+𝑞(𝑋, 𝑛 + 𝑚).
Let 𝛼 ∈ CH𝑝(𝑋, 𝑛) and 𝛽 ∈ CH𝑞(𝑋,𝑚). Then there exist representatives 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 and

𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 of 𝛼 and 𝛽, respectively, that intersect properly. The product 𝛼 ⋅ 𝛽 is represented
by 𝑍 ⋅𝑊.
Let now𝐹 be a number field andΣ the set of complex immersions of𝐹. To the smooth projective

variety 𝑋 over 𝐹 we associate a complex variety

𝑋Σ =
∐
𝜎∈Σ

𝑋 ×𝜎 ℂ.

This complex manifold has an antilinear involution 𝐹∞ and we denote 𝑋ℝ = (𝑋Σ, 𝐹∞) the corre-
sponding real variety.
There are regulatormaps 𝜌∶ CH𝑝(𝑋, 𝑛) → 𝐻

2𝑝−𝑛

𝔇
(𝑋ℝ, ℝ(𝑝)), where𝐻𝔇 denotesDeligne coho-

mology.
In the papers [11, 12], the higher arithmetic Chow groups ĈH∗

(𝑋, ∗,𝔇TW) of 𝑋 are introduced
and studied. These groups depend on the choice of a particular complex 𝔇TW that computes
Deligne cohomology (see Section 1.8). These groups satisfy many properties similar to the ones
of classical arithmetic Chow groups. We summarize the properties needed in the definition of the
height pairing.

(i) The elements of ĈH𝑝
(𝑋, 𝑛,𝔇TW) are represented by pairs (𝑍, g𝑍) with 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 with

g𝑍 a Green form for 𝑍 in the appropriate sense (Definition 1.33).
(ii) To each Green form g𝑍 , there is an associated canonical differential form 𝜔(g𝑍) ∈

𝔇
2𝑝−𝑛
TW

(𝑋, 𝑝) that represents the class of the regulator 𝜌(𝑍) ∈ 𝐻
2𝑝−𝑛

𝔇
(𝑋ℝ, ℝ(𝑝)).

(iii) There is a ∗-product of Green forms.
(iv) The groups ĈH∗

(𝑋, ∗,𝔇TW) form a graded commutative algebra, where the product is
induced by the intersection product of cycles meeting properly and the star product of Green
forms.

(v) If 𝑓∶ 𝑋 → 𝑌 is a smooth morphism of relative dimension 𝑒, there are morphisms

𝑓∗ ∶ ĈH
𝑝
(𝑋, 𝑛,𝔇TW) → ĈH

𝑝−𝑒
(𝑌, 𝑛,𝔇TW), 𝑛, 𝑝 ⩾ 0.
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(vi) Writing 𝑋𝐹 = Spec(𝐹), there is a short exact sequence

0 →
𝐻1
𝔇
(𝑋𝐹,ℝ, ℝ(𝑝))

Image(𝜌)
→ ĈH

𝑝
(𝑋𝐹, 2𝑝 − 2,𝔇TW) → CH𝑝(𝑋𝐹, 2𝑝 − 2) → 0. (0.4)

In the above 𝑋𝐹,ℝ is the real variety associated to 𝑋𝐹 . So 𝐻1
𝔇
(𝑋𝐹,ℝ, ℝ(𝑝)) is a real vector space of

dimension 𝑟1 + 𝑟2 if𝑝 is odd and 𝑟2 if𝑝 is even, where 𝑟1 is the number of real immersions of𝐹 and
2𝑟2 is the number of non-real complex immersions.Moreover, 𝜌 agreeswith Borel’s regulator up to
a normalization factor [10]. Hence, Image(𝜌) is a lattice in𝐻1

𝔇
(𝑋𝐹,ℝ, ℝ(𝑝)). AlsoCH𝑝(𝑋𝐹, 2𝑝 − 2)

is torsion. Thus ĈH𝑝
(𝑋𝐹, 2𝑝 − 2,𝔇TW) is an extension of a torsion group by a real torus.

Let now 𝛼 ∈ CH𝑝(𝑋, 𝑛) and 𝛽 ∈ CH𝑞(𝑋,𝑚) be two classes satisfying

2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚 (0.5)

and 𝜌(𝛼) = 𝜌(𝛽) = 0. We can find representatives 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 intersect-
ing properly. Much like the usual cycle scenario, we can choose Green forms g𝑍 and g𝑊 for 𝑍
and𝑊 satisfying the attached differential forms 𝜔(g𝑍) = 𝜔(g𝑊) = 0. Using the properties of the
arithmetic Chow groups we obtain an element

𝜋∗((𝑍, g𝑍) ⋅ (𝑊, g𝑊)) ∈ ĈH
𝑝+𝑞−𝑑

(𝑋𝐹, 𝑛 + 𝑚,𝔇TW).

Condition (0.5) assures us that the target group of the element fits in a short exact sequence like
(0.4). After tensoring with ℚ to get rid of the torsion group on the right of the exact sequence, the
height pairing of 𝛼 and 𝛽 is defined as

⟨𝛼, 𝛽⟩ht ∶= 𝜋∗((𝑍, g𝑍) ⋅ (𝑊, g𝑊)) ∈
𝐻1
𝔇
(𝑋𝐹,ℝ, ℝ(𝑝 + 𝑞 − 𝑑))

Image(𝜌)
⊗ ℚ.

The pairs

⟨𝑍,𝑊⟩geom ∶= (𝜋∗(𝑍 ⋅𝑊), 0), and ⟨𝑍,𝑊⟩Arch ∶= (0, 𝜋∗(g𝑍 ∗ g𝑊))

give well-defined elements of ĈH𝑝+𝑞−𝑑
(𝑋𝐹, 𝑛 + 𝑚,𝔇TW)ℚ obtaining the decomposition (0.1).

We note several differences between the higher height pairing and the usual height pairing.

(i) The higher arithmetic Chow groups are defined for the variety 𝑋 over 𝐹 and not for a model
 of 𝑋. This is due to the fact that the good properties of the higher arithmetic Chow groups
are established only for varieties over a field. At first glance, this may seem a big loss of
information. However, if𝐹 is a number field and𝐹 is its ring of integers, then for odd 𝑖 > 1,

𝐾𝑖(𝐹) ⊗ ℚ ≅ 𝐾𝑖(𝐹) ⊗ ℚ.

Therefore, for the purpose of defining higher heights, there is no great benefit in considering
an integral model of the variety. Moreover, if we consider this in the classical case, in order
to have a well-defined intersection product on the model one has to tensor with ℚ.
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(ii) Since we are working over a field, we can define the product without tensoring with ℚ. Nev-
ertheless , we can tensor with ℚ to eliminate the torsion group CH𝑝+𝑞−𝑑(𝑋𝐹, 𝑛 + 𝑚).

(iii) Even if there is no model over the ring of integers involved, there is still a geometric con-
tribution of the height pairing coming from the intersection of the cycles. By contrast, the
definition of the archimedean higher height pairing is formally identical to the classical case.

(iv) In order for the height pairing to be independent on the choice of the Green forms, we need
the condition that the real regulator is zero. By contrast the Hodge theoretical invariant asso-
ciated to the pair of cycles can be defined even when the regulator of the cycles is non-zero.

(v) The higher height pairing is not a real number but an element of the quotient of
𝐻1
𝔇
(𝑋𝐹,ℝ, ℝ(𝑝 + 𝑞 − 𝑑)) by the image of the regulator. The main difference with the clas-

sical case is that, for 𝑝 + 𝑞 − 𝑑 > 1 the image of the regulator is a full-rank lattice. Therefore,
we cannot obtain a well-defined real number.

Although the height pairing is an arithmetic invariant of the rational equivalence class of the
higher cycles and is well defined up to the image of the regulator, the archimedean higher height
pairing can be defined purely in the complex case.

Definition A. Let 𝑋 be a smooth projective variety over ℂ of dimension 𝑑 and 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00
and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 be elements which satisfy the following conditions:

(i) 2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚;
(ii) 𝛿𝑍 = 𝛿𝑊 = 0;
(iii) 𝑍 and𝑊 intersect properly; and
(iv) 𝜌(𝑍) = 𝜌(𝑊) = 0.

Let g𝑍 and g𝑊 be Green forms for 𝑍 and𝑊 satisfying 𝜔(g𝑍) = 𝜔(g𝑊) = 0. Then the archimedean
height pairing of 𝑍 and𝑊 is defined as

⟨𝑍,𝑊⟩Arch ∶= ∫𝑋 g𝑍 ∗ g𝑊 ∈ 𝐻1
𝔇(Spec(ℂ), ℝ(𝑝 + 𝑞 − 𝑑)).

Mixed Hodge structures associated to higher cycles

From now on we consider a smooth projective variety 𝑋 over ℂ, and we discuss several mixed
Hodge structures associated to a pair of higher cycles.
Given cycles 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00,𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00, with 𝑝, 𝑞, 𝑛,𝑚 satisfying

2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚 (0.6)

and intersecting properly. Let𝜋1 ∶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 → 𝑋 × (ℙ1)𝑛 and𝜋2 ∶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 →

𝑋 × (ℙ1)𝑚 be the two projections and

𝑆 = 𝜋−11 (|𝑍|) ∩ 𝜋−12 (|𝑊|)
be the intersection of the pullbacks of supports of 𝑍 and𝑊. Note that unlike the usual algebraic
cycle scenario, proper intersection of 𝑍 and𝑊 no longer means that 𝑆 is empty.
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We first construct a mixed Hodge structure 𝐸𝑍 for 𝑍, fitting in the short exact sequence

0⟶ 𝐻2𝑝−𝑛−1(𝑋; 𝑝)⟶ 𝐸𝑍 ⟶ ℚ(0)⟶ 0,

and hence defining an element in

Ext1𝐌𝐇𝐒

(
ℚ(0),𝐻2𝑝−𝑛−1(𝑋; 𝑝)

)
= 𝐻

2𝑝−𝑛

𝔇
(𝑋,ℚ(𝑝)).

This element agrees with the regulator of 𝑍. Next for𝑊 we consider the dual 𝐸∨
𝑊
extension, fitting

in the short exact sequence

0⟶ ℚ(0)⟶ 𝐸∨𝑊 ⟶𝐻2𝑑−2𝑞+𝑚+1(𝑋; 𝑑 − 𝑞)⟶ 0.

We stress the fact that, in giving a geometric interpretation of 𝐸∨
𝑊
we face the technical problem

that the duality in Lemma 1.11 requires the hypothesis of local product situation. We will address
this problem latter in the main body when we give more details on the construction of the mixed
Hodge structures.
Note that condition (0.5) implies that

𝐻2𝑝−𝑛−1(𝑋; 𝑝) = 𝐻2𝑑−2𝑞+𝑚+1(𝑋; 𝑑 − 𝑞 + (𝑚 + 𝑛)∕2 + 1).

Hence, after the appropriate twist, the cohomology groups appearing in both extensions agree and
one may hope to glue together 𝐸𝑍 and 𝐸∨𝑊 is a biextension. Here the presence of the non-trivial
intersection 𝑆 makes life more interesting. In fact, under several assumptions aimed to keep the
contribution from 𝑆 under control, we associate to the pair (𝑍,𝑊) a mixed Hodge structure 𝐵𝑍,𝑊 ,
which fits in Figure 2. In the special case of 𝑛 = 𝑚 = 1, and under Assumption 3.27, 𝐵𝑍,𝑊 is a gen-
eralized biextension (Definition 2.5 and Corollary 3.31), with three non-zero weight graded pieces.
In Section 2.1, we define the height ht(𝐻) ∈ ℝ of an oriented mixed Hodge structure 𝐻 using

theDeligne splitting (Definition 2.3), in particular we can define ht(𝐵𝑍,𝑊). For 𝑛 = 𝑚 = 1, to com-
pare it with the archimedean height that lives in 𝐻1

𝔇
(Spec(ℂ), ℝ(2)) = ℂ∕(2𝜋𝑖)2ℝ, we make the

following definition.

Definition B. Let 𝜌2 ∶ ℂ∕(2𝜋𝑖)2ℝ → ℝ be the isomorphism given by

𝜌2(𝑣) = Im(𝑣∕(2𝜋𝑖)2),

where for a complex number 𝑧, Im(𝑧) denote its imaginary part. Then the Hodge theoretic height
pairing of 𝑍 and𝑊 is

⟨𝑍,𝑊⟩Hodge = 𝜌−12 (ht(𝐵𝑍,𝑊)).

We give a little bit more details on the construction of the above mixed Hodge structures. On
(ℙ1)𝑛 we have two divisors

𝐴 = {(𝑡1, … , 𝑡𝑛) ∣ ∃𝑖, 𝑡𝑖 = 1},

𝐵 = {(𝑡1, … , 𝑡𝑛) ∣ ∃𝑖, 𝑡𝑖 ∈ {0,∞}}.
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Then 𝐴 ∪ 𝐵 is a simple normal crossing divisor. Moreover, since□ ∶= ℙ1 ⧵ {1 ∶ 1}, we have

(ℙ1)𝑛 ⧵ 𝐴 = □𝑛, (ℙ1)𝑛 ⧵ 𝐵 = (ℂ×)𝑛 and 𝐵 ∩□𝑛 = 𝜕□𝑛.

Further for 𝐴𝑋 ∶= 𝑋 × 𝐴, 𝐵𝑋 ∶= 𝑋 × 𝐵, we get isomorphisms of Hodge structures

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋) ≅ 𝐻𝑟−𝑛(𝑋), (0.7)

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐵𝑋,𝐴𝑋) ≅ 𝐻𝑟−𝑛(𝑋;−𝑛). (0.8)

Since𝐴𝑋 and 𝐵𝑋 are in local product situation (Definition 1.9), the above isomorphisms are com-
patible with duality

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋, ℚ(𝑝)) ≅
(
𝐻2𝑑+2𝑛−𝑟

(
𝑋 × (ℙ1)𝑛 ⧵ 𝐵𝑋,𝐴𝑋,ℚ(𝑑 + 𝑛 − 𝑝)

))∨
.

Since𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 belongs to the refinednormalized complex, the restriction𝑍|𝐵𝑋⧵𝐴𝑋 is zero.
Therefore, the cycle 𝑍 defines a unique class (Proposition 3.3)

[𝑍] ∈ 𝐻
2𝑝|𝑍|⧵𝐴𝑋(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋 ⧵ 𝐴𝑋; 𝑝

)
ℚ
.

By Lemma 3.5 its image in𝐻2𝑝(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋 ⧵ 𝐴𝑋; 𝑝)ℚ is zero. Pulling back the 3.7 ofmixed
Hodge structures, by the class [𝑍] and using the isomorphism (0.7) we obtain the extension 𝐸𝑍 .
We remark that the mixed Hodge structure 𝐸𝑍 is a sub Hodge structure of

𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋 ∪ |𝑍|, 𝐵𝑋; 𝑝).
We now consider the dual construction for 𝑊. As mentioned before, in order to dualize this

construction we face the problem that, in general, 𝐴𝑋 ∪ |𝑊| and 𝐵𝑋 are not in local product sit-
uation. Therefore, to dualize we need first to blow-up |𝑊| ∩ 𝐵𝑋 until a local product situation is
obtained. Let𝑊 be such a blow-up with𝐴𝑋 , 𝐵𝑋 and𝑊 being the strict transforms of𝐴𝑋 , 𝐵𝑋 and|𝑊|. Let 𝐷 be the exceptional divisor. Naively, one would expect the mixed Hodge structure to be
a quotient of

𝐻2𝑑+2𝑚−2𝑞+1(𝑋 × (ℙ1)𝑚 ⧵ 𝐵𝑋,𝐴𝑋 ∪ |𝑊|; 𝑑 + 𝑚 − 𝑞)

= 𝐻2𝑑+2𝑚−2𝑞+1(𝑊 ⧵ 𝐵𝑋 ∪ 𝐷,𝐴𝑋 ∪𝑊; 𝑑 + 𝑚 − 𝑞),

but in fact 𝐸∨
𝑊
is a quotient of

𝐻2𝑑+2𝑚−2𝑞+1(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪𝑊 ∪ 𝐷; 𝑑 + 𝑚 − 𝑞).

Note that the exceptional divisor is in a different position; see Section 3.6 for more details.
Finally, for the construction of 𝐵𝑍,𝑊 we refer to Sections 3.7 and 3.8. We just remark that in

this construction we have to deal, not only with the duality problem mentioned above but also
with the contribution of the intersection 𝑆 of 𝑍 and𝑊. Although the methods of this paper can
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be extended to much more general situations, for the moment we have only made the complete
study in the case 𝑛 = 𝑚 = 1 and Assumption 3.27. One of the main reasons is that we want 𝐵𝑍,𝑊
to be a generalized biextension (Definition 2.5), so there is a clean definition of the height of 𝐵𝑍,𝑊
that we can compare with the height pairing of 𝑍 and𝑊. This forces us to keep 𝑆 under control
to avoid many spurious components in 𝐵𝑍,𝑊 . For instance, even if 𝑆 is a point, if it is contained
in the singular locus of |𝑍| and |𝑊|, the cohomology with support on 𝑆 can be very complicated
and mask the classes of 𝑍 and𝑊.
Nevertheless, using the Deligne splitting one can define a more general height attached to an

oriented mixed Hodge structure (Definition 2.3). One would expect that the main result of this
paper can be extended to a more general situation using this generalization of the height of a
mixed Hodge structure.

Examples

We compute two examples of the higher height pairing. The first one is in dimension 0 with 𝑝 =
𝑞 = 𝑛 = 𝑚 = 1. In this case we find that the higher height pairing is always zero.
The second more interesting example in in dimension 2, with 𝑋 = ℙ2, 𝑝 = 𝑞 = 2 and 𝑛 = 𝑚 =

1. A method of constructing higher cycles in ℙ2 is to consider three sections, 𝑠0, 𝑠1 and 𝑠2 of (1).
They determine a triangle in ℙ2 and a higher cycle as explained in Definition 5.1. For two such
higher cycles 𝑍 and𝑊 in general position we compute their higher height pairing. It turns out to
be given by a linear combination of values of the Bloch–Wigner dilogarithm function. A remark-
able feature of this example is that, in the space of parameters of such pair of divisors, the height
function can be extended continuously to the degenerate situations. A second observation from
the example is that, when both triangles are defined over ℝ the higher height pairing vanishes.
Both phenomenons turn out to hold in more general situations. With respect to the second one,
we show in Proposition 5.10 that the higher height pairing between cycles defined over ℝ should
be zero as long as (𝑛 + 𝑚)∕2 is odd.
With respect to the continuity of the height function, this is the starting point of the study of the

asymptotic behavior. As mentioned previously, we show that the higher height of an admissible
variation  of oriented Hodge–Tate mixed Hodge structures extends continuously to the bound-
ary. It is important to note that this is no longer true if the variation is not of Hodge–Tate type
(Example 6.9) or if 𝓁() = 2.

Layout of the paper

Our paper is organized as follows. Sections 1 and 2 are preliminary in nature where we set up
notations and collect all the necessary results and definitions needed for the rest of the sections.
In Section 3 we study the mixed Hodge structure associated to higher cycles, the key among them
is amixedHodge structure associated to a pair of higher cycles satisfying a numerical condition. In
Section 4 we compute the invariants associated to these mixed Hodge structures in a special case
scenario. A key result in this section is the equality of higher archimedean height pairing and the
height of the biextension, in case the higher cycles have trivial real regulators. Section 5 is devoted
toward computing these invariants in specific examples arising from non-degenerate triangles in
ℙ2. We see that the height of the biextension in this case is given by a sum of Bloch–Wigner Dilog-
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arithm functions. Finally in Section 6 we study the asymptotic behavior of variations of oriented
mixed Hodge structures of Hodge–Tate type and as well as arbitrary admissible variations.

1 PRELIMINARIES

In this section we gather all the conventions, notations and known results that will be used
throughout the paper. All through the section, 𝑋 will denote a smooth complex variety of dimen-
sion 𝑑. To avoid cumbersome notation, we will not distinguish notationally between a complex
algebraic variety and its associated complex space. That is, the symbol 𝑋 will also denote the
associated analytic manifold with the classical topology. It will always be clear from the context
whether 𝑋 denotes the algebraic variety or the complex manifold.

1.1 Mixed Hodge structures

A ℚ-mixed Hodge structure is a triple

𝐻 = ((𝐻ℚ,𝑊), (𝐻ℂ,𝑊, 𝐹), 𝛼),

where (𝐻ℚ,𝑊) is a ℚ-vector space with an increasing filtration𝑊, while (𝐻ℂ,𝑊, 𝐹) is a complex
vector space with an increasing filtration𝑊 and a decreasing filtration 𝐹, and that 𝛼∶ (𝐻ℚ,𝑊) ⊗

ℂ → (𝐻ℂ,𝑊) is a filtered isomorphism. These data are subjected to several axioms; see for
instance [32, Definition 3.13]. The vector space 𝐻ℚ is called the Betti component and 𝐻ℂ the de
Rham component, while 𝛼 is the comparison isomorphism. The rank of a mixed Hodge structure
𝐻 is the complex dimension of𝐻ℂ that agrees with the dimension of𝐻ℚ over ℚ.
One can also consider real mixed Hodge structures, where instead of a ℚ-vector space 𝐻ℚ one

has a real vector space 𝐻ℝ. In fact, given a mixed ℚ-Hodge structure 𝐻 we will denote 𝐻ℝ =

𝐻ℚ ⊗ ℝ obtaining an ℝ-mixed Hodge structure. Usually one identifies𝐻ℚ and𝐻ℝ with its image
in𝐻ℂ through 𝛼.
When studying variations ofmixedHodge structures it is convenient to fix the underlying vector

space and move the filtrations 𝐹 and𝑊. Thus if we fix an (ℝ or ℚ) vector space 𝑉, then a pair of
filtrations (𝐹,𝑊) on 𝑉 ⊗ ℂ and 𝑉, respectively, is called a mixed Hodge structure if the triple

((𝑉,𝑊), (𝑉 ⊗ ℂ,𝑊, 𝐹), Id𝑉⊗ℂ)

is a mixed Hodge structure.
For 𝑎 ∈ ℤ, the Tate mixed Hodge structure ℚ(𝑎) is the mixed Hodge structure given by the

following data

ℚ(𝑎)ℚ = ℚ, 𝑊−2𝑎−1ℚ(𝑎)ℚ = 0, 𝑊−2𝑎ℚ(𝑎)ℚ = ℚ

ℚ(𝑎)ℂ = ℂ, 𝐹−𝑎ℚ(𝑎)ℂ = ℂ, 𝐹−𝑎+1ℚ(𝑎)ℂ = 0

𝛼(1) = (2𝜋𝑖)𝑎 ∈ ℂ.

Note that on ℚ(𝑎)ℂ = ℂ we have two possible complex conjugations. The usual conjugation of ℂ
and the one induced by the isomorphism 𝛼. The first one will be called the de Rham conjugation
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and denoted 𝑧 ↦ 𝑧
dR and the second will be called the Betti conjugation and denoted 𝑧 ↦ 𝑧

B.
These two conjugations are related by

𝑧
B
= (−1)𝑎𝑧

dR
.

In the sequel, we will mainly use the Betti conjugation and write 𝑧 = 𝑧
B. Moreover, the mixed

Hodge structure ℚ(𝑎) comes equipped with the choice of two generators:

𝟙(𝑎)ℚ = 1 ∈ ℚ = ℚ(𝑎)ℚ

𝟙(𝑎)ℂ = 1 ∈ ℂ = ℚ(𝑎)ℂ.

These generators are called the Betti and the de Rham generators. They satisfy

𝟙(𝑎)ℚ = 𝟙(𝑎)ℚ, 𝟙(𝑎)ℂ = (−1)𝑎𝟙(𝑎)ℂ, 𝟙(𝑎)ℚ = (2𝜋𝑖)𝑎𝟙(𝑎)ℚ.

Remark 1.1. Note that, although the isomorphisms class ofℚ(𝑎) does not depend on the choice of
a square root of−1, 𝑖 =

√
−1, when 𝑎 is odd, the ratio of the chosen generators 𝟙(𝑎)ℚ∕𝟙(𝑎)ℂ does.

Remark 1.2. Let𝐻 be a ℚ-mixed Hodge structure of rank one. Then𝐻 is necessarily pure of even
weight, say 2𝑎. It follows that it is isomorphic toℚ(−𝑎). The choice of an isomorphism𝐻 → ℚ(𝑎)

is equivalent to the choice of a generator 𝑒 of𝐻ℚ.

If 𝑍 ⊂ 𝑋 is a closed subvariety and 𝑟 ∈ ℤ, then the cohomology groups

𝐻𝑟(𝑋;ℚ), 𝐻𝑟(𝑋, 𝑍; ℚ) and𝐻𝑟
𝑍(𝑋;ℚ) = 𝐻𝑟(𝑋, 𝑋 ⧵ 𝑍;ℚ)

are all the Betti part of ℚ-mixed Hodge structures that we denote as

𝐻𝑟(𝑋), 𝐻𝑟(𝑋, 𝑍) and𝐻𝑟
𝑍(𝑋) = 𝐻𝑟(𝑋, 𝑋 ⧵ 𝑍),

respectively. We will use the shorthand

𝐻𝑟(𝑋; 𝑝) = 𝐻𝑟(𝑋) ⊗ ℚ(𝑝).

Then𝐻𝑟(𝑋; 𝑝)ℚ,𝐻𝑟(𝑋; 𝑝)ℝ and𝐻𝑟(𝑋; 𝑝)ℂ will denote the rational and real Betti and complex de
Rham components, respectively.
Frequently, in the sequel wewill use complexes that compute relative cohomology of a complex

projective variety, but they only have information about the real structure and the Hodge filtra-
tion, and not about the weight filtration. To work with these at ease we introduce the following
notation.

Definition 1.3. Aweakℝ-Hodge complex is a complex (𝐴∗, 𝑑) ofℂ-vector spaces together with an
anti-linear involution 𝜔 ↦ 𝜔 commuting with 𝑑 and a decreasing filtration 𝐹 (called the Hodge
filtration) compatible with 𝑑. If𝐴∗ is a weakℝ-Hodge complex, we denote by𝐴∗

ℝ
the subcomplex

of elements fixed by the involution.
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Given a weak ℝ-Hodge complex 𝐴∗, the Tate twisted weak ℝ-Hodge complex is defined as
𝐴∗(𝑎) = 𝐴∗ ⊗ ℚ(𝑎)ℂ. Using the identification ℚ(𝑎)ℂ = ℂ, the complex 𝐴∗(𝑎) is given by the fol-
lowing data:

𝐴∗(𝑎) = 𝐴∗, 𝑧
new

= (−1)𝑎𝑧
old
, 𝐹𝑏𝐴∗(𝑎) = 𝐹𝑎+𝑏𝐴∗.

The superindexes new and old arewritten here for clarity butwill not be used in the sequel. Due to
the identification 𝐴∗(𝑎) = 𝐴∗ ⊗ ℚ(𝑎)ℂ = 𝐴∗ ⊗ ℂ = 𝐴∗ there is a potential ambiguity in the use
of the symbol 𝜔, as it depends on whether we consider 𝜔 as an element of𝐴∗ or of𝐴∗(𝑎). In some
rare cases, for clarity, an element 𝜔 ∈ 𝐴∗(𝑎) will be written as 𝜔 ⊗ 𝟙(𝑎)ℂ.

Remark 1.4. Any Dolbeault complex as in [9, Definition 2.2] defines a weak ℝ-Hodge complex.

Recall that the shifted complex 𝐴∗[𝑟] is defined by 𝐴𝑛[𝑟] = 𝐴𝑛+𝑟 with differential (−1)𝑟𝑑.

1.2 Conventions on differential forms and currents

When dealing with differential forms, currents and cohomology classes, one can use the topolo-
gist’s convention, where the emphasis is put on having real or integral valued classes in singular
cohomology. For instance, in this convention the first Chern class of a line bundle will have inte-
gral coefficients. In algebraic geometry, the fact that rational de Rham classes are not rational in
singular cohomology, the ubiquitous appearance of the period 2𝜋𝑖, and the fact that the choice of
a particular square root of −1 is non-canonical, makes it useful to use a different convention.
This algebro-geometric convention aims to control the obvious powers of 2𝜋𝑖 and to be inde-

pendent of the choice of the imaginary unit 𝑖 =
√
−1.

Of course using one convention or the other is amatter of taste and one can go easily fromone to
the other by a normalization factor. In this paper wewill follow the algebro-geometric convention.
Therefore, it is useful to incorporate different powers of 2𝜋𝑖 in the standard operations regarding
forms and currents as in [14, Section 5.4]. We summarize here the conventions used because they
differ from commonly used notations.
We will denote by 𝐸∗

𝑋
the differential graded algebra of complex valued differential forms on𝑋,

by 𝐸∗
𝑋,ℝ

the subalgebra of real valued forms and by 𝐸∗
𝑋,𝑐

and 𝐸∗
𝑋,ℝ,𝑐

the subalgebras of differential
formswith compact support. The complexes of currents are defined as the topological duals of the
latter ones. Namely 𝐸′−𝑛

𝑋
and 𝐸′−𝑛

𝑋,ℝ
are the topological dual of 𝐸𝑛

𝑋,𝑐
and 𝐸𝑛

𝑋,ℝ,𝑐
, respectively, with

differential given by

𝑑𝑇(𝜂) = (−1)𝑛+1𝑇(𝑑𝜂).

Recall that 𝑋 is smooth of dimension 𝑑. We write

𝐷∗
𝑋 = 𝐸′∗𝑋 [−2𝑑](−𝑑).

This implies that

𝐷𝑛
𝑋,ℝ = {𝑇 ∈ 𝐷𝑛

𝑋 ∣ ∀𝜂 ∈ 𝐸2𝑑−𝑛𝑋,ℝ,𝑐 , 𝑇(𝜂) ∈ (2𝜋𝑖)−𝑑ℝ}.

Hence, one can see 𝐷𝑛
𝑋,ℝ

(𝑝) as the topological dual of 𝐸2𝑑−𝑛
𝑋,ℝ

(𝑑 − 𝑝).
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We now consider the current ∫𝑋 given by
𝜔 ↦ ∫𝑋 𝜔.

Then ∫𝑋 ∈ 𝐸′−2𝑑
𝑋,ℝ

= 𝐷0
𝑋,ℝ

(𝑑). This suggest to define

𝛿𝑋 ∶= ∫𝑋 ⊗ 𝟙(−𝑑)ℚ =
1

(2𝜋𝑖)𝑑
∫𝑋 ⊗ 𝟙(−𝑑)ℂ ∈ 𝐷0

𝑋,ℝ.

Remark 1.5. The current 𝛿𝑋 has two advantages over the current ∫𝑋 . The first one is that 𝛿𝑋 is
independent of the choice of square root of −1 while the current ∫𝑋 is not. Indeed, If 𝑧1, … , 𝑧𝑑
are local complex coordinates with 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 , then the standard orientation is given by the
volume form

Vol = 𝑑𝑥1 ∧ 𝑑𝑦1 ∧⋯ ∧ 𝑑𝑥𝑑 ∧ 𝑑𝑦𝑑.

If we change the choice of the square root of −1 from 𝑖 to −𝑖 then Vol is sent to (−1)𝑑 Vol, which
is the same change of sign suffered by (2𝜋𝑖)𝑑. Of course this explains the presence of 𝑖𝑑 but not the
presence of (2𝜋)𝑑. The second advantage of 𝛿𝑋 is that, if𝑋 is defined overℚ and 𝜔 is a differential
form representing a rational class in𝐻2𝑑

Zar
(𝑋,Ω∗

𝑋ℚ
), then 𝛿𝑋(𝜔) ∈ ℚ.

To be consistent with the previous choice we also need to adjust the definition of the current
associated to a locally integrable form and to an algebraic cycle. Given a locally integrable differ-
ential form 𝜔 of degree 𝑛, there is a current

∫𝑋 𝜔 ∧ ⋅ ∈ 𝐸′𝑛−2𝑑𝑋 = 𝐷𝑛
𝑋(𝑑).

we will denote by [𝜔] ∈ 𝐷𝑛
𝑋
the current defined by

[𝜔] = ∫𝑋 𝜔 ∧ ⋅⊗ 𝟙(−𝑑)ℚ =
1

(2𝜋𝑖)𝑑 ∫𝑋 𝜔 ∧ ⋅⊗ 𝟙(−𝑑)ℂ ∈ 𝐷𝑛
𝑋. (1.1)

In other words [𝜔] = 𝛿𝑋 ∧ 𝜔. With this convention, the morphism of complexes [⋅]∶ 𝐸∗
𝑋
→ 𝐷∗

𝑋
respects the structure of weak Hodge complexes on both sides.
If 𝑓∶ 𝑋 → 𝑌 is a proper map of smooth complex varieties, of dimensions 𝑑, 𝑑′ and relative

dimension 𝑒 = 𝑑 − 𝑑′, then the push-forward of currents 𝑓∗ ∶ 𝐸′∗𝑋 → 𝐸′∗
𝑌
is defined, for 𝑇 ∈ 𝐷𝑛

𝑋
and 𝜂 ∈ 𝐸2𝑑−𝑛

𝑌,𝑐
by

𝑓∗𝑇(𝜂) = 𝑇(𝑓∗𝜂).

It induces a map 𝑓∗ ∶ 𝐷∗
𝑋
→ 𝐷∗

𝑌
[−2𝑒](−𝑒).

Finally, let 𝑍 ⊂ 𝑋 be a codimension 𝑝 irreducible subvariety of𝑋. Let 𝜄 ∶ 𝑍 → 𝑋 be a resolution
of singularities of 𝑍. Then the current integration along 𝑍 is defined as

𝛿𝑍 = 𝜄∗(𝛿𝑍) ∈ 𝐷
2𝑝
𝑋,ℝ

(𝑝)

Remark 1.6. Since 𝑍 is irreducible, 𝐻2𝑝
𝑍
(𝑋, 𝑝) = ℚ(0) and the class of 𝛿𝑍 is at the same time the

Betti and the de Rham generator of ℚ(0).
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Given any cycle 𝜁 ∈ 𝑍𝑝(𝑋) we define 𝛿𝜁 by linearity. Following Remark 1.5, the symbols [𝜔]
and 𝛿𝑌 do not depend on a particular choice of

√
−1.

Example 1.7. To see how this conventions, together with the convention in Definition 1.3 work
in practice, we review the classical example of the logarithm. Consider𝑋 = ℙ1 with absolute coor-
dinate 𝑡, so div(𝑡) = [0] − [∞], and let 𝑈 = 𝑋 ⧵ {0,∞}. Write

log(𝑡𝑡) ∈ 𝐸0𝑈(1),
𝑑𝑡

𝑡
,
𝑑𝑡

𝑡
∈ 𝐸1𝑈(1).

Note that, if we want to stress the fact that these elements belong to the twisted complex we will
denote them like log(𝑡𝑡) ⊗ 𝟙(1)ℂ. These elements satisfy

[log 𝑡𝑡 ] ∈ 𝐷0
ℙ1
(1),

[
𝑑𝑡

𝑡

]
,

[
𝑑𝑡

𝑡

]
∈ 𝐷1

ℙ1
(1).

Moreover,

log(𝑡𝑡) = − log(𝑡𝑡)

𝑑𝑡

𝑡
= −

𝑑𝑡

𝑡

𝑑

[
𝑑𝑡

𝑡

]
= 𝛿div 𝑡 = 𝛿0 − 𝛿∞,

𝑑

[
𝑑𝑡

𝑡

]
= −𝛿div 𝑡 = 𝛿∞ − 𝛿0.

𝜕�̄�[log 𝑡𝑡 ] = −𝛿div 𝑡 = 𝛿∞ − 𝛿0

(1.2)

Note how, in the above formulae all the (2𝜋𝑖) factors are now implicit.
Recall also the potential ambiguity on the sign of the conjugation mentioned at the end of

Definition 1.3. The typical example to keep in mind would be the form

𝜂 =
1

2

(
𝑑𝑡

𝑡
−
𝑑𝑡

𝑡

)
∈ 𝐸1𝑈(1),

that represents a generator of 𝐻1(𝑈; 1). Since 𝜂 is an element of 𝐸1
𝑈
(1) then 𝜂 = 𝜂. Hence, 𝜂 ∈

𝐸1
𝑈
(1)ℝ. By contrast, if 𝜂0 ∈ 𝐸1

𝑈
is the differential form with the same values as 𝜂, but this time

belonging to 𝐸1
𝑈
, then 𝜂0 = −𝜂0. Thus 𝜂0 is purely imaginary.

1.3 Local product situation and duality

Assume in this subsection that 𝑋 is projective in order to have Poincaré duality. Let 𝐴 ⊂ 𝑋 be a
Zariski closed subset and 𝑎, 𝑟 ∈ ℤ. Then Lefschetz duality tells us that there is an isomorphism of
mixed Hodge structures

𝐻𝑟(𝑋 ⧵ 𝐴; 𝑎) ≅ 𝐻2𝑑−𝑟(𝑋,𝐴; 𝑑 − 𝑎)∨.
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If 𝐵 is a second Zariski closed subset one may ask if there is a refined duality

𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵; 𝑎) ≅ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝐵,𝐴; 𝑑 − 𝑎)∨? (1.3)

In general the answer is no as the following example shows.

Example 1.8. In this example we put 𝑋 = ℙ2. Let 𝓁0, 𝓁1 and 𝓁2 be three different lines passing
through the same point 𝑝 and write 𝐴 = 𝓁0 ∪ 𝓁1 and 𝐵 = 𝓁2. Then

𝐻1(𝑋 ⧵ 𝐴, 𝐵) = ℚ(−1), 𝐻3(𝑋 ⧵ 𝐴, 𝐵) = 0,

𝐻1(𝑋 ⧵ 𝐵,𝐴) = ℚ(0),𝐻3(𝑋 ⧵ 𝐵,𝐴) = 0.

Thus, the answer to question (1.3) is negative.

Nevertheless, if we add some hypothesis to the sets 𝐴 and 𝐵 we can have a positive answer.

Definition 1.9. Let𝐴 and 𝐵 be closed subvarieties of𝑋. We say that𝐴 and 𝐵 are in a local product
situation if, for any point 𝑥 ∈ 𝑋 there is a neighborhood 𝑈 of 𝑥, a decomposition 𝑈 = 𝑈𝐴 × 𝑈𝐵,
where 𝑈𝐴 and 𝑈𝐵 are open disks of smaller dimension, and analytic subvarieties 𝐴′ ⊂ 𝑈𝐴 and
𝐵′ ⊂ 𝑈𝐵 such that

𝐴 ∩ 𝑈 = 𝐴′ × 𝑈𝐵, 𝐵 ∩ 𝑈 = 𝑈𝐴 × 𝐵
′.

Remark 1.10. The sets 𝐴 and 𝐵 of Example 1.8 are not in a local product situation. By contrast, if
𝐴 and 𝐵 are divisors without common components such that 𝐴 ∩ 𝐵 is a normal crossing divisor,
then 𝐴 and 𝐵 are in local product situation.

The following result is proved in [3, Lemma 6.1.1].

Lemma 1.11. Let 𝐴 and 𝐵 be closed subvarieties of 𝑋 in local product situation. Then, for every
𝑎, 𝑟 ∈ ℤ, there is an isomorphism of mixed Hodge structures

𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵; 𝑎)
≅
-→ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝐵,𝐴; 𝑑 − 𝑎)∨.

In the next section we will explain how to realize this isomorphism explicitly, after tensoring
with ℝ, using differential forms.
We give now two applications of duality.

Lemma 1.12. Let 𝑍 ⊂ 𝑋 be a closed subvariety and let 𝜋∶ 𝑋 → 𝑋 be a blow-up with center con-
tained in 𝑍 such that 𝑋 is smooth. Write 𝑍 = 𝜋−1(𝑍). Then, for all 𝑎, 𝑟 ∈ ℤ, the maps

𝐻𝑟(𝑋 ⧵ 𝑍; 𝑎)
𝜋∗

--→ 𝐻𝑟(𝑋 ⧵ 𝑍; 𝑎) (1.4)

𝐻𝑟(𝑋, 𝑍; 𝑎)
𝜋∗

--→ 𝐻𝑟(𝑋, 𝑍; 𝑎) (1.5)

are isomorphisms.
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Proof. The fact that (1.4) is an isomorphism is obvious because𝑋 ⧵ 𝑍 = 𝑋 ⧵ 𝑍. By the functoriality
of duality, the morphism (1.5) is the composition

𝐻𝑟(𝑋, 𝑍; 𝑎)
≅
-→ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝑍; 𝑑 − 𝑎)∨

(𝜋∗)
∨

-----→ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝑍; 𝑑 − 𝑎))∨
≅
-→ 𝐻𝑟(𝑋, 𝑍; 𝑎).

Since the map 𝜋∗ in the middle is also an isomorphism by the same reason as before, we conclude
that (1.5) is an isomorphism. □

The next result tell us the surprising fact that, under some conditions, we can shift, in the iso-
morphism of Lemma 1.11, part of the closed subset 𝐴 to the closed subset 𝐵.

Lemma 1.13. Let 𝐴, 𝐵 be two divisors without common components such that 𝐴 ∪ 𝐵 is a normal
crossing divisor. Let 𝜋∶ 𝑋 → 𝑋 be a blow-up with center contained in 𝐴 ∩ 𝐵 such that 𝑋 is smooth
and 𝜋−1(𝐴 ∪ 𝐵) is a normal crossing divisor. Let𝐴 and 𝐵 be the strict transforms of𝐴 and 𝐵, respec-
tively, and 𝐶 the exceptional divisor of 𝜋. Then, for all 𝑎, 𝑟 ∈ ℤ there are isomorphism

𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵; 𝑎)
𝜋∗

--→ 𝐻𝑟(𝑋 ⧵ 𝐴 ∪ 𝐶, 𝐵; 𝑎), (1.6)

𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵; 𝑎)
≅
-→ 𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵 ∪ 𝐶; 𝑎). (1.7)

Proof. The fact that 𝜋∗ is an isomorphism is a consequence of the equalities

𝑋 ⧵ 𝐴 = 𝑋 ⧵ (𝐴 ∪ 𝐶), 𝐵 ⧵ 𝐴 = 𝐵 ⧵ (𝐴 ∪ 𝐶)

The isomorphism (1.7) is the composition of the isomorphisms

𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵; 𝑎)
≅
-→ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝐵,𝐴; 𝑑 − 𝑎)∨

≅
-→ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝐵 ∪ 𝐶,𝐴; 𝑑 − 𝑎)∨

≅
-→ 𝐻𝑟(𝑋 ⧵ 𝐴, 𝐵 ∪ 𝐶; 𝑎),

where the existence of the first and third isomorphisms is a consequence of Lemma 1.11 and the
second isomorphism agrees with the isomorphism (1.6) applied with 𝐴 and 𝐵 interchanged. □

1.4 Differential forms with zeros and logarithmic poles

Let 𝑌 ⊂ 𝑋 be a closed subvariety, 𝑌 a resolution of singularities of 𝑌 and 𝜄 ∶ 𝑌 → 𝑋 the induced
map. We denote

Σ𝑌𝐸
∗
𝑋 = {𝜔 ∈ 𝐸∗𝑋 ∣ 𝜄∗𝜔 = 0}.

Then Σ𝑌𝐸
∗
𝑋
is an example of a Dolbeault complex. In particular is a weak ℝ-Hodge complex.

Therefore, we can apply to it the notation of Definition 1.3. We begin with a basic observation.
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Proposition 1.14. Let 𝑌 ⊂ 𝑋 be a smooth subvariety. Then The complexes Σ𝑌𝐸∗𝑋 and 𝑠(𝐸
∗
𝑋

𝜄∗

--→ 𝐸∗
𝑌
)

are quasi-isomorphic.

Proof. For smooth 𝑌 the sequence

0 → Σ𝑌𝐸
∗
𝑋 → 𝐸∗𝑋 → 𝐸∗𝑌 → 0

is exact, which implies the result. □

Note that we do not put a weight filtration on Σ𝑌𝐸∗𝑋 . Nevertheless in good conditions the com-
plex Σ𝑌𝐸∗𝑋 allows us to compute part of the mixed Hodge structure of the relative cohomology of
the pair (𝑋, 𝑌).

Proposition 1.15. Assume that 𝑋 is projective. Let 𝐴 be a normal crossing divisor of 𝑋 and let𝑊
be a smooth closed subvariety that intersects transversely all intersections among the components
of 𝐴. Write 𝑌 = 𝐴 ∪𝑊. Assume furthermore that all possible intersections among components of
𝑌 are smooth and irreducible. Then, there is a mixed Hodge complex 𝐾 that computes the relative
cohomology groups𝐻∗(𝑋, 𝑌), a quasi-isomorphism

Σ𝑌𝐸
∗
𝑋,ℝ ⟶ 𝐾ℝ

and a compatible filtered quasi-isomorphism

(Σ𝑌𝐸
∗
𝑋, 𝐹)⟶ (𝐾ℂ, 𝐹).

Proof. Let 𝑌 = 𝑌1 ∪⋯ ∪ 𝑌𝑟 be the decomposition of 𝑌 into irreducible components. For 𝐼 ⊂
{1, … , 𝑟} we write 𝑌𝐼 =

⋂
𝑖∈𝐼 𝑌𝑖 . Then there is an exact sequence

0 → Σ𝑌𝐸
∗
𝑋 → 𝐸∗𝑋 →

⨁
|𝐼|=1 𝐸

∗
𝑌𝐼
→
⨁
|𝐼|=2 𝐸

∗
𝑌𝐼
→ ⋯ (1.8)

Moreover, this sequence remains exact after taking the 𝐹𝑝 subcomplex at each degree. Since the
total complex of the sequence⨁

|𝐼|=1 𝐸
∗
𝑌𝐼
→
⨁
|𝐼|=2 𝐸

∗
𝑌𝐼
→ ⋯ →

⨁
|𝐼|=𝑘 𝐸

∗
𝑌𝐼
→ ⋯

is the de Rham part of a mixed Hodge complex that computes𝐻∗(𝑌), the result follows. □

Let 𝐴 ⊂ 𝑋 be a normal crossing divisor and 𝐸∗
𝑋
(log𝐴) the complex of differential forms on 𝑋

with logarithmic singularities along 𝐴 introduced in [7]. This is also a Dolbeault complex, so it
has a real structure and a Hodge filtration. Although in this case it also has a weight filtration. We
will use the shorthand

𝐸∗𝑋(log𝐴; 𝑎) ∶= 𝐸∗𝑋(log𝐴)(𝑎).

The following result is proved in [7].
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Proposition 1.16. Assume again that 𝑋 is projective and that 𝐴 ⊂ 𝑋 is a normal crossing divi-
sor. Then, ((𝐸∗

𝑋
(log𝐴)ℝ,𝑊), (𝐸∗

𝑋
(log𝐴),𝑊, 𝐹)) is amixedHodge complex computing the real mixed

Hodge structure𝐻∗(𝑋 ⧵ 𝐴).

Proposition 1.16 can be applied to general subvarieties of 𝑋 using resolution of singularities. In
order to get a complex that does not depend on the choice of a particular resolution one can take
a limit with respect to all possible resolutions. In the sequel we will have a mixed situation where
there is already present a normal crossing divisor 𝐴 that we want to preserve as much as possible
and an arbitrary subvariety 𝑍 that meets 𝐴 properly. In this case we use the following notation:

𝐸∗𝑋(log𝐴 ∪ 𝑍) = lim
⟶
𝑋

𝐸∗𝑋(log𝐴
′), (1.9)

where the limit runs over all proper modifications 𝜋∶ 𝑋 → 𝑋 such that𝐴′ = 𝜋−1(𝐴 ∪ 𝑍) is a nor-
mal crossing divisor and that the restriction 𝜋|𝑋⧵𝜋−1(𝑍) ∶ 𝑋 ⧵ 𝜋−1(𝑍) → 𝑋 ⧵ 𝑍 is an isomorphism.
In otherwords, we are allowed only tomake blow-ups supported on𝑍. The complex𝐸∗

𝑋
(log𝐴 ∪ 𝑍)

inherits a real structure, a Hodge filtration and a weight filtration. Proposition 1.16 easily implies
the next result.

Corollary 1.17. Assume that𝑋 is projective, that𝐴 ⊂ 𝑋 is a normal crossing divisor and that𝑍 ⊂ 𝑋

is a closed subvariety. Then,

((𝐸∗𝑋(log𝐴 ∪ 𝑍)ℝ,𝑊), (𝐸∗𝑋(log𝐴 ∪ 𝑍),𝑊, 𝐹))

is a mixed Hodge complex computing the real mixed Hodge structure𝐻∗(𝑋 ⧵ 𝐴 ∪ 𝑍).

We can now combine Proposition 1.15 and Corollary 1.17.

Definition 1.18. Let𝐴 be a normal crossing divisor of𝑋. Let𝑍,𝑊 ⊂ 𝑋 be closed subvarieties such
that no component of𝑊 is contained in 𝐴 ∪ 𝑍. Let 𝜄 ∶ 𝑊 → 𝑋 be a resolution of singularities of
𝑊 ⧵ 𝐴 ∪ 𝑍. Then we write

Σ𝑊𝐸
∗
𝑋(log𝐴 ∪ 𝑍) = {𝜔 ∈ 𝐸∗𝑋(log𝐴 ∪ 𝑍) ∣ 𝜄∗𝜔 = 0} ⊂ 𝐸∗𝑋(log𝐴 ∪ 𝑍).

We again use the shorthand, for 𝑎 ∈ ℤ,

Σ𝑊𝐸
∗
𝑋(log𝐴 ∪ 𝑍; 𝑎) ∶= Σ𝑊𝐸

∗
𝑋(log𝐴 ∪ 𝑍)(𝑎).

The complex Σ𝑊𝐸∗𝑋(log𝐴 ∪ 𝑍) has a real structure and a Hodge filtration but not a weight
filtration.

Theorem 1.19. Assume that 𝑋 is projective and that 𝐴, 𝐵 are divisors without common compo-
nents such that 𝐴 ∪ 𝐵 is a normal crossing divisor. Let𝑊 be a smooth subvariety intersecting trans-
versely all intersections of components of 𝐴 ∪ 𝐵 and such that all intersections between components
of𝐴 ∪ 𝐵 ∪𝑊 are smooth and irreducible. Let 𝑍 be a closed subvariety. Then, there is a mixed Hodge
complex 𝐾 that computes the relative cohomology groups 𝐻∗(𝑋 ⧵ (𝐵 ∪ 𝑍), (𝐴 ∪𝑊) ⧵ (𝐵 ∪ 𝑍)), a
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quasi-isomorphism

Σ𝐴∪𝑊𝐸
∗
𝑋(log 𝐵 ∪ 𝑍)ℝ ⟶ 𝐾ℝ

and a compatible filtered quasi-isomorphism

(Σ𝐴∪𝑊𝐸
∗
𝑋(log 𝐵 ∪ 𝑍)ℂ, 𝐹)⟶ (𝐾ℂ, 𝐹).

Proof. The proof is essentially the same as the proof of Proposition 1.15 using Corollary 1.17 on
each intersection among components of 𝐴 ∪𝑊. □

Corollary 1.20. With the hypothesis of Theorem 1.19. For each 𝑎, 𝑟 ∈ ℤ there is a canonical isomor-
phism

𝐻𝑟(Σ𝐴∪𝑊𝐸
∗
𝑋(log 𝐵 ∪ 𝑍, 𝑎))

≅
-→ 𝐻𝑟(𝑋 ⧵ (𝐵 ∪ 𝑍), (𝐴 ∪𝑊) ⧵ (𝐵 ∪ 𝑍); 𝑎)ℂ

compatible with the Hodge filtration and the real structure. Moreover, the spectral sequence associ-
ated to the Hodge filtration 𝐹 degenerates at the term 𝐸1. Therefore, the differential 𝑑 in the complex
Σ𝑌𝐸

∗
𝑋
is strict with respect to the filtration 𝐹.

Proof. The first statement is a direct consequence of Theorem 1.19. The second statement is also
consequence of Theorem 1.19 and standard properties of mixed Hodge complexes. □

Finally, we explain how to use differential forms with zeros and poles to make effective the
duality of Lemma 1.11 in the normal crossing case.

Proposition 1.21. Assume that 𝑋 is projective. Let 𝐴 and 𝐵 be two divisors of 𝑋 without com-
mon components such that 𝐴 ∪ 𝐵 is a normal crossing divisor. For 𝜂 ∈ Σ𝐴𝐸

𝑟
𝑋
(log 𝐵) and 𝜔 ∈

Σ𝐵𝐸
2𝑑−𝑟
𝑋

(log𝐴), the top differential form 𝜂 ∧ 𝜔 is locally integrable. Moreover, the pairing

𝐻𝑟(𝑋 ⧵ 𝐵,𝐴)ℂ ⊗ 𝐻2𝑑−𝑟(𝑋 ⧵ 𝐴, 𝐵)ℂ ⟶ ℝ(−𝑑)ℂ

given, for 𝜂 and 𝜔 closed, by

⟨𝜂, 𝜔⟩ = [𝜂 ∧ 𝜔](1) =
1

(2𝜋𝑖)𝑑 ∫𝑋 𝜂 ∧ 𝜔

is a perfect pairing inducing an isomorphism as in Lemma 1.13.

1.5 Currents on a subvariety

Let 𝑍 be a subvariety of 𝑋. We denote by Σ𝑍𝐸∗𝑋,𝑐 ⊂ Σ𝑍𝐸
∗
𝑋
the subspace of differential forms with

compact support on 𝑋 that vanish on 𝑍 and we write

𝐸′−𝑛𝑋,𝑍 = {𝑇 ∈ 𝐸′−𝑛𝑋 ∣ 𝑇(𝜔) = 0, ∀𝜔 ∈ Σ𝑍𝐸
∗
𝑋,𝑐}.
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The space 𝐸′−𝑛
𝑋,𝑍

has been introduced by Bloom and Herrera in [4] and, in the case when 𝑍 is
smooth, it agrees with 𝐸′−𝑛

𝑍
. This space is a Dolbeault complex and we write

𝐷∗
𝑋,𝑍 = 𝐸′∗𝑋,𝑍[−2𝑑](−𝑑), 𝐷∗

𝑋∕𝑍
= 𝐷∗

𝑋∕𝐷
∗
𝑋,𝑍.

Again, the complex 𝐷∗
𝑋,𝑍

has a real structure and a Hodge filtration but not a weight filtration.
Let 𝐴 ⊂ 𝑋 be a normal crossing divisor and 𝑍 a closed subvariety, write 𝑌 = 𝐴 ∪ 𝑍. If 𝜔 ∈

𝐸∗
𝑋
(log𝐴 ∪ 𝑍; 𝑎) and 𝜂 ∈ Σ𝑌𝐸

∗
𝑋
then the differential form 𝜔 ∧ 𝜂 is locally integrable in any proper

modification 𝑋 → 𝑋 where 𝜔 is defined. This induces a map

[⋅]∶ 𝐸∗𝑋(log𝐴 ∪ 𝑍; 𝑎) → 𝐷∗
𝑋∕𝑌

(𝑎)

given by

[𝜔](𝜂) =
1

(2𝜋𝑖)𝑑 ∫𝑋 𝜔 ∧ 𝜂.

Proposition 1.22. Let𝐴, 𝑍 and𝑌 be as before. Assume that 𝑍 is smooth and that meets transversely
all the strata of 𝐴. Then the map

(𝐸∗𝑋(log𝐴 ∪ 𝑍; 𝑎), 𝐹)⟶ (𝐷∗
𝑋∕𝑌

(𝑎), 𝐹)

is a filtered quasi-isomorphism compatible with the real structure.

Proof. The case when 𝐴 ∪ 𝑍 is a normal crossing divisor has been proved in [14, Theorem 5.44]
using the techniques from [18, 26]. Let 𝜋∶ 𝑋 → 𝑋 be the blow-up of𝑋 along 𝑍. The conditions on
𝑍 imply that 𝑌 ∶= 𝜋−1(𝑌) is a normal crossing divisor. Consider the commutative diagram with
exact rows

The formula for the cohomology of a blow-up implies that the total complex associated to the
diagram of complexes

is acyclic. Even more, every subcomplex defined by the Hodge filtration is acyclic. This implies
that the arrow

(𝐷∗
𝑋∕𝑌

, 𝐹) → (𝐷∗
𝑋∕𝑌

, 𝐹)

is a filtered quasi-isomorphism. Thus the result follows from the normal crossing case. □
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Corollary 1.23. With the hypothesis of Proposition 1.22, for every 𝑎, 𝑟 ∈ ℤ, there is a canonical iso-
morphism

𝐻𝑟(𝑋 ⧵ 𝑌; 𝑎)ℂ = 𝐻𝑟(𝐷∗
𝑋∕𝑌

(𝑎))ℂ

compatible with the Hodge filtration and the real structure.

1.6 Wave front sets

A current 𝑇 can be viewed as a differential form with distribution coefficients or as a generalized
section of a vector bundle. As such, it has a wave front set that is denoted byWF(𝑇). The theory of
wave front sets of distributions is developed in [27, Chapter VIII]. For the theory of wave front sets
of generalized sections, the reader can consult [20, Chapter VI]. Since we will work with currents
and hence with generalized sections of vector bundles, we will mainly follow [27].
Denote the conormal bundle of 𝑋 minus the zero section as 𝑇∨

0
𝑋 = 𝑇∨𝑋 ⧵ {0}. The wave front

set of a current 𝑇 is a closed conical subset of 𝑇∨
0
𝑋. This set describes the points and directions of

the singularities of 𝑇 and it allows us to define certain products and inverse images of currents.
For a concise description of the basic properties of the wave front set, we refer to [15, Section 4].
Let  ⊂ 𝑇∨

0
𝑋 be a closed conical subset. We denote by 𝐷∗

𝑋; the space of currents on 𝑋 with
wave front set contained in  . Then [15, Theorem 4.5] implies that

Proposition 1.24. Assume that 𝑋 is projective. Then the morphisms

(𝐸∗𝑋, 𝐹) → (𝐷∗
𝑋; , 𝐹) → (𝐷∗

𝑋, 𝐹)

are filtered quasi-isomorphism.

Wewill need an analogue of Theorem 1.19 for currentswith controlledwave front sets. Although
the theory of wave front sets depends only of the underlying structure of differentiable manifolds
we will state the needed notations and results in the complex case.

Definition 1.25. Let 𝑓∶ 𝑌 → 𝑋 be a morphism of complex manifolds, and let  ⊂ 𝑇∨
0
𝑋 and

 ⊂ 𝑇∨
0
closed conical subsets. Then we denote

𝑁∨
0 𝑓 = {(𝑥, 𝜉) ∈ 𝑇∨0 𝑋 ∣ 𝑥 = 𝑓(𝑦), df(𝑦)𝑡𝜉 = 0},

𝑓∗ = {(𝑦, 𝜂) ∈ 𝑇∨0 𝑌 ∣ ∃(𝑥, 𝜉) ∈  , 𝑥 = 𝑓(𝑦), 𝜂 = df(𝑦)𝑡𝜉},

𝑓∗ = 𝑁∨
0 𝑓{(𝑥, 𝜉) ∈ 𝑇∨0 𝑋 ∣ ∃(𝑦, 𝜂) ∈ , 𝑥 = 𝑓(𝑦), 𝜂 = df(𝑦)𝑡𝜉}.

Then

𝑓∗𝑓
∗ = 𝑁∨

0 𝑓 ∪ {(𝑥, 𝜉) ∈ 𝑇∨0 𝑋 ∣ 𝑥 = 𝑓(𝑦), ∃(𝑥, 𝜉′) ∈  , df(𝑦)𝑡𝜉 = df(𝑦)𝑡𝜉′}.

Clearly, 𝑓∗𝑓∗ = 𝑓∗𝑓
∗𝑓∗𝑓

∗ . We call 𝑓∗𝑓∗ the saturation of  with respect to 𝑓. If  = 𝑓∗𝑓
∗

we say that  is saturated. If 𝑌 is a smooth submanifold of 𝑋 and 𝑓 the corresponding closed
immersion, we write 𝑁∨

0
𝑌 = 𝑁∨

0
𝑓.
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The basic functoriality properties of currents and wave front are the following (see [27, Chapter
VIII, Section 2]).

Proposition 1.26. Let 𝑓∶ 𝑌 → 𝑋 be amorphism of complexmanifolds of relative dimension 𝑒, and
let  ⊂ 𝑇∨

0
𝑋 and ⊂ 𝑇∨

0
closed conical subsets.

(i) If 𝑇 ∈ 𝐷𝑟
𝑋; and𝑁𝑓 ∩  = ∅, then there is a well-defined pullback current 𝑓∗𝑇 ∈ 𝐷𝑟

𝑌;𝑓∗ .
(ii) If 𝑇 ∈ 𝐷𝑟

𝑌;, then 𝑓∗𝑇 ∈ 𝐷𝑋;𝑓∗.

Let 𝜄 ∶ 𝐴 ↪ 𝑋 be a smooth hypersurface and  ⊂ 𝑇∨
0
𝑋 a closed conical subset. We will denote

𝐷∗
𝑋,𝐴; = 𝐷∗

𝑋,𝐴 ∩ 𝐷
∗
𝑋; , 𝐷∗

𝑋∕𝐴; = 𝐷∗
𝑋;𝐷∗

𝑋,𝐴; .

Lemma 1.27. Let ⊂ 𝑇∨
0
𝐴 be a closed conical subset. The morphism 𝜄∗ induces an isomorphism

𝜄∗ ∶ 𝐷
∗
𝐴;[−2](−1)⟶ 𝐷∗

𝑋,𝐴;𝜄∗. (1.10)

Therefore, if  ⊂ 𝑇∨
0
𝑋 is saturated, we obtain an isomorphism

𝜄∗ ∶ 𝐷
∗
𝐴;𝜄∗ [−2](−1)⟶ 𝐷∗

𝑋,𝐴; .

Proof. By Proposition 1.26, the map (1.10) is well defined. Since 𝐴 is smooth, by [4] the map

𝜄∗ ∶ 𝐷
∗
𝐴[−2](−1)⟶ 𝐷∗

𝑋,𝐴

is an isomorphism. This implies directly that the map (1.10) is injective. It follows easily
from the definition of wave front set, that if WF(𝜄∗𝑇) ⊂ 𝑓∗ then WF(𝑇) ⊂  which implies
surjectivity. □

When taking the current associated to a differential form with logarithmic singularities,
it is easy to control the wave front set. In fact, the map 𝐸∗

𝑋
(log𝐴) → 𝐷∗

𝑋∕𝐴
factors as a

composition

𝐸∗𝑋(log𝐴)⟶ 𝐷∗
𝑋∕𝐴;𝑁∨

0
𝐴
⟶ 𝐷∗

𝑋∕𝐴
.

Let 𝜄′ ∶ 𝐵 → 𝑋 be another smooth hypersurface such that  ∩ 𝑁∨
0
𝐵 = ∅. By Proposition 1.26

there is a map (𝜄′)∗ ∶ 𝐷∗
𝑋; → 𝐷∗

𝐵;(𝜄′)∗ and we define

Σ𝐵𝐷
∗
𝑋; = ker((𝜄′)∗).

Definition 1.28. We say that  and 𝐵 are in good position if, for every 𝑝 ∈ 𝐵 there is an open
neighborhood 𝑈 ⊂ 𝑋 of 𝑝 and a smooth retraction 𝑟∶ 𝑈 → 𝑈 ∩ 𝐵 such that

𝑟∗((𝜄′)∗|𝑈∩𝐵) ⊂ |𝑈.
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Lemma 1.29. If  and 𝐵 are in good position, then the map

(𝜄′)∗ ∶ 𝐷∗
𝑋; → 𝐷∗

𝐵;(𝜄′)∗

is surjective.

Proof. By a partition of unity argument, the statement is local on 𝐵. Let 𝑝 ∈ 𝐵 and 𝑈 and 𝑟 the
neighborhood and smooth retraction that exist because  and 𝐵 are in good position. Let 𝑇 ∈

𝐷∗
𝐵;(𝜄′)∗ . Then

𝑟∗𝑇 ∈ 𝐷∗
𝑈;𝑟∗(𝜄′)∗ ⊂ 𝐷∗

𝑈; , and (𝜄′)∗𝑟∗𝑇 = 𝑇

proving surjectivity. □

We now put all the ingredients together. Let 𝑋 be a smooth projective complex variety, 𝜄 ∶ 𝐴 ↪

𝑋 and 𝜄′ ∶ 𝐵 ↪ 𝑋 two smooth disjoint hypersurfaces of 𝑋 and  ⊂ 𝑇∨
0
𝑋 a closed conical subset

that is, at the same time, saturated with respect to 𝜄 and in good position with respect to 𝐵. We
define

Σ𝐵𝐷
∗
𝑋∕𝐴; = {𝑇 ∈ 𝐷∗

𝑋∕𝐴; ∣ 𝑇|𝐵 = 0}.

Theorem 1.30. Let 𝑋, 𝐴, 𝐵 and  be as before. Then the map

(Σ𝐵𝐸
∗
𝑋(log𝐴), 𝐹)⟶ (Σ𝐵𝐷

∗
𝑋∕𝐴; , 𝐹) (1.11)

is a filtered quasi-isomorphism.

Proof. By Lemma 1.27, since  is saturated with respect to 𝜄, we have an isomorphism

𝜄∗ ∶ 𝐷
∗
𝐴;𝜄∗ [−2](−1)⟶ 𝐷∗

𝑋,𝐴; .

Since (𝐷∗
𝐴;𝜄∗ , 𝐹) → (𝐷∗

𝐴
, 𝐹) is a filtered quasi-isomorphism and the map 𝐷∗

𝐴
[−2](−1) → 𝐷∗

𝑋,𝐴
is

an isomorphism, we deduce that (𝐷∗
𝑋,𝐴; , 𝐹) → (𝐷∗

𝑋,𝐴
, 𝐹) is a filtered quasi-isomorphism.We con-

sider the commutative diagram with exact rows

As we have discussed, the first vertical arrow is a filtered quasi-isomorphism. By Proposition 1.24,
the second vertical arrow is also filtered quasi isomorphism. We deduce that the third arrow also
is one. Using now Proposition 1.22 we obtain that the map

(𝐸∗𝑋(log𝐴), 𝐹)⟶ (𝐷∗
𝑋∕𝐴; , 𝐹)
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is a filtered quasi-isomorphism. Consider next the commutative diagram with exact rows:

Note that surjectivity of the map 𝐷∗
𝑋,𝐴; → 𝐷∗

𝐵;(𝜄′)∗ is Lemma 1.29. We already know that the sec-
ond and third vertical arrows are filtered quasi-isomorphism, hence the first is also one, proving
the result. □

1.7 Higher Chow groups

We recall here the definition and main properties of the higher Chow groups defined by Bloch in
[2]. Initially, they were defined using the chain complex associated to a simplicial abelian group,
but the description using the cubical complex ismore user friendly to define the product structure.
We stick to notations and conventions followed in [12, Section 3].
Fix a base field 𝑘 and let ℙ1 be the projective line over 𝑘. Let□ = ℙ1 ⧵ {1} (≅ 𝔸1). The cartesian

product (ℙ1)⋅ has a cocubical scheme structure. For 𝑖 = 1, … , 𝑛, we denote by 𝑡𝑖 ∈ (𝑘 ∪ {∞}) ⧵ {1}

the absolute coordinate of the 𝑖th factor. Then the coface maps are defined as

𝛿𝑖0(𝑡1, … , 𝑡𝑛) = (𝑡1, … , 𝑡𝑖−1, 0, 𝑡𝑖, … , 𝑡𝑛),

𝛿𝑖1(𝑡1, … , 𝑡𝑛) = (𝑡1, … , 𝑡𝑖−1,∞, 𝑡𝑖, … , 𝑡𝑛).

Then,□⋅ inherits a cocubical scheme structure from that of (ℙ1)⋅. An 𝑟-dimensional face 𝐹 of□𝑛

is any subscheme of the form 𝛿
𝑖1
𝑗1
⋯ 𝛿

𝑖𝑛−𝑟
𝑗𝑛−𝑟

(□𝑟). By convention, □𝑛 is a face of dimension 𝑛. The
codimension of an 𝑟-dimensional face of□𝑛 is 𝑛 − 𝑟.
Let 𝑋 be an equidimensional quasi-projective scheme of dimension 𝑑 over the field 𝑘. Let

𝑍𝑝(𝑋, 𝑛) be the free abelian group generated by the codimension 𝑝 closed irreducible subvarieties
of𝑋 ×□𝑛, which intersect properly𝑋 × 𝐹 for every face𝐹 of□𝑛. We call the elements of𝑍𝑝(𝑋, 𝑛)
admissible cycles. The pullback by the coface and codegeneracy maps of□⋅ endow 𝑍𝑝(𝑋, ⋅) with
a cubical abelian group structure, given by

𝛿
𝑗
𝑖
= (𝛿𝑖𝑗)

∗,

𝛿 =

𝑛∑
𝑖=1

∑
𝑗=0,1

(−1)𝑖+𝑗𝛿
𝑗
𝑖
.

Note that the indexes have been raised or lowered to reflect the change from cocubical to cubi-
cal structures.
Let (𝑍𝑝(𝑋, ∗), 𝛿) be the associated chain complex and consider the normalized and refined nor-

malized chain complexes associated to 𝑍𝑝(𝑋, ∗),

𝑍𝑝(𝑋, 𝑛)0 ∶=

𝑛⋂
𝑖=1

ker 𝛿1𝑖 ,

𝑍𝑝(𝑋, 𝑛)00 ∶=

𝑛⋂
𝑖=1

ker 𝛿1𝑖 ∩

𝑛⋂
𝑖=2

ker 𝛿0
𝑖
.
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The differential of these normalized complexes are also denoted by 𝛿. One can show that the
inclusion

𝑍𝑝(𝑋, 𝑛)00 ↪ 𝑍𝑝(𝑋, 𝑛)0

is a quasi-isomorphism of cubical chain complexes. An element in the above two complexes will
be called a pre-cycle, and will be called a (higher) cycle if it also satisfies 𝛿(𝑍) = 0.

Definition 1.31. Let 𝑋 be a quasi-projective equidimensional scheme over a field 𝑘. The higher
Chow groups defined by Bloch are

CH𝑝(𝑋, 𝑛) ∶= 𝐻𝑛(𝑍
𝑝(𝑋, ∗)0) ≅ 𝐻𝑛(𝑍

𝑝(𝑋, ∗)00).

Since we will often come across the notion of proper intersection of higher cycles in this paper,
for the sake of easy reference, we recall its definition.

Definition 1.32. Let𝑋 be a smooth quasi-projective scheme over 𝑘, and let 𝑝, 𝑞, 𝑛,𝑚 ⩾ 0 be non-
negative integers. If 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛),𝑊 ∈ 𝑍𝑞(𝑋,𝑚), we say that 𝑍 and𝑊intersect properly if, for any
face 𝐹 of□𝑛+𝑚,

codim𝑋×𝐹

(
𝜋−11 |𝑍| ∩ 𝜋−12 |𝑊| ∩ (𝑋 × 𝐹)

)
⩾ 𝑝 + 𝑞,

where

𝜋1 ∶ 𝑋 ×□𝑛 ×□𝑚 → 𝑋 ×□𝑛, 𝜋2 ∶ 𝑋 ×□𝑛 ×□𝑚 → 𝑋 ×□𝑚

are the projections.

Let 𝑊 ∈ 𝑍𝑞(𝑋,𝑚) be an admissible cycle. We denote by 𝑍𝑝
𝑊
(𝑋, 𝑛) ⊂ 𝑍𝑝(𝑋, 𝑛) the subgroup

generated by the codimension𝑝 irreducible subvarieties𝑍 ⊂ 𝑋 ×□𝑛, such that𝑍 and𝑊 intersect
properly. Then it can be shown that the inclusions

𝑍
𝑝
𝑊
(𝑋, ∗)0 ↪ 𝑍𝑝(𝑋, ∗)0, 𝑍

𝑝
𝑊
(𝑋, ∗)00 ↪ 𝑍𝑝(𝑋, ∗)00

are quasi-isomorphisms.

1.8 Survey of Deligne–Beilinson cohomology

As in [12, Example 4.17], given aDolbeault complex𝐴we can associate to it a diagramof complexes
and morphisms

(1.12)

where the three complexes compute the Deligne cohomology of 𝐴 and all the arrows are homo-
topy equivalences. The leftmost complex has the advantage that, when 𝐴 is a Dolbeault algebra,
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has also a structure of an associative and graded commutative algebra. On the middle complex,
we have several product structures, but none is at the same time graded commutative and associa-
tive. The rightmost complex is the smallest one and gives a more concise description of Deligne
cohomology but again has the disadvantage that the product is only associative up to homotopy.
In particular, if 𝑋 is a smooth projective variety over ℂ, we can specialize diagram (1.12) to the

case 𝐴 = 𝐸∗
𝑋
to obtain a diagram

(1.13)

computing the real Deligne cohomology𝐻∗
𝔇
(𝑋,ℝ(𝑝)) of𝑋. We recall a few pieces of this diagram.

Denote by 𝐿ℝ = (𝐿∗
ℝ
, 𝑑) the algebraic de Rham complex of 𝔸1

ℝ
, that is,

𝐿0
ℝ
= ℝ[𝜀], 𝐿1

ℝ
= ℝ[𝜀]𝑑𝜀,

where 𝜀 is an indeterminate. For a Dolbeault complex 𝐴 we write

𝔇TW(𝐴, 𝑝) =

{
𝜔 ∈ 𝐿∗

ℝ
⊗ 𝐴∗(𝑝)ℂ

||||| 𝜔|𝜀=0 ∈ 𝐴∗(𝑝)ℝ,

𝜔|𝜀=1 ∈ 𝐹0𝐴∗(𝑝)ℂ.

}
(1.14)

and

𝔇𝑛(𝐴, 𝑝) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐴𝑛−1(𝑝 − 1)ℝ ∩
⨁

𝑝′+𝑞′=𝑛−1
𝑝′<𝑝, 𝑞′<𝑝

𝐴
𝑝′,𝑞′

ℂ
, if 𝑛 < 2𝑝,

𝐴𝑛(𝑝)ℝ ∩
⨁

𝑝′+𝑞′=𝑛
𝑝′⩾𝑝, 𝑞′⩾𝑝

𝐴
𝑝′,𝑞′

ℂ
, if 𝑛 ⩾ 2𝑝.

Note that, for 𝑛 < 2𝑝 we can also write

𝔇𝑛(𝐴, 𝑝) =
𝐴𝑛−1(𝑝)ℂ

𝐴𝑛−1(𝑝)ℝ ∩ 𝐹
0𝐴𝑛−1(𝑝)ℂ

. (1.15)

We will denote by

𝜋𝑝 ∶ 𝐴
𝑛−1(𝑝)ℂ ⟶𝔇𝑛(𝐴, 𝑝) (1.16)

the projection map. Then, for 𝑛 < 2𝑝, (see [16, paragraphs (6.1) and (6.2)]) the map𝔇𝑛
TW
(𝐴, 𝑝) →

𝔇𝑛(𝐴, 𝑝) is given by

𝑓(𝜀) ⊗ 𝜔1 + g(𝜀)𝑑𝜀 ⊗ 𝜔2 ↦ ∫
1

0
g(𝜀)𝑑𝜀 ⋅ 𝜋𝑝(𝜔2). (1.17)

1.9 Goncharov regulator and higher archimedean height pairing

Here we give a quick revision of the cubical Goncharov regulator and of the higher archimedean
height pairing for sake of ready reference. More details about the regulator can be found in [12,
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Section 5], more details about Green currents and forms in [12, Section 6] and about the height
pairing in [12, Section 7.5]. Fromnowonwe denote the differential in the Thom–Whitney complex
by 𝑑𝔇, to distinguish it from the differential in the de Rham complex.
In the paper [12], Goncharov regulator

 ∶ CH𝑝(𝑋, 𝑛)⟶ 𝐻
2𝑝−𝑛

𝔇
(𝑋,ℝ(𝑝))

is given by a morphism of complexes, also denoted 
𝑍𝑝(𝑋, ∗)0 → 𝔇

2𝑝−∗
TW,𝐷

(𝑋, 𝑝).

Recall the complex 𝐿 from Section 1.7. Let 𝜆 ∈ (𝐿ℂ ⊗ 𝐸ℙ1(log 𝐵))
1 be the element given by

𝜆 = −
1

2

(
(𝜀 + 1) ⊗

𝑑𝑡

𝑡
+ (𝜀 − 1) ⊗

𝑑𝑡

𝑡
+ 𝑑𝜀 ⊗ log 𝑡𝑡

)
. (1.18)

Then 𝜆 ∈ 𝔇1
TW
(𝐸∗

ℙ1
(log 𝐵), 1).

On (ℙ1)𝑛 ⧵ 𝐵, for 𝑛 ⩾ 0, we consider the Wang forms

𝑊0 = 1

𝑊𝑛 = 𝜋∗1𝜆⋯𝜋∗𝑛𝜆, 𝑛 > 0,

where 𝜋𝑖 ∶ (ℙ1)𝑛 → ℙ1 is the projection onto the 𝑖-th factor. Clearly 𝑊𝑛 ∈

𝔇𝑛
TW
(Σ𝐴𝐸

∗
(ℙ1)𝑛

(log 𝐵), 𝑛); see [12, Section 5] for the main properties of these forms. By abuse of
notation we will also denote by 𝑊𝑛 the pullback of 𝑊𝑛 to any variety of the form 𝑋 × (ℙ1)𝑛. If
𝑍 is an irreducible subvariety of 𝑋 ×□𝑛 intersecting properly all the faces and 𝑍 is a resolution
of singularities of the closure 𝑍, then the pullback of𝑊𝑛 is locally integrable. Therefore, for any
cycle 𝑍 ∈ 𝑍𝑝(𝑋, ∗)0, Writing

𝛿𝑍,TW ∶= 1 ⊗ 𝛿𝑍 ∈ 𝔇
2𝑝
TW
(𝐷∗

𝑋×(ℙ1)𝑛
, 𝑝), (1.19)

we have a well-defined current

𝛿𝑍,TW ⋅𝑊𝑛 ∈ 𝔇
2𝑝+𝑛
TW

(𝐷∗
𝑋×(ℙ1)𝑛

, 𝑝 + 𝑛).

Then, Goncharov regulator is given by

(𝑍) = (𝜋𝑋)∗(𝛿𝑍,TW ⋅𝑊𝑛) ∈ 𝔇
2𝑝−𝑛
TW

(𝐷∗
𝑋, 𝑝), (1.20)

where 𝜋𝑋 ∶ 𝑋 × (ℙ1)𝑛 → 𝑋 is the projection.
Given a cycle 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)0, we call any current g𝑍 ∈ 𝔇

2𝑝−𝑛−1
TW,𝐷

(𝑋, 𝑝) a Green current for 𝑍 if
it satisfies.

(𝑍) + 𝑑𝔇g𝑍 = [𝜔𝑍], for 𝜔𝑍 ∈ 𝔇
2𝑝−𝑛
TW

(𝑋, 𝑝).
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A class of Green currents is the class of a Green current in

�̃�
2𝑝−𝑛−1
TW,𝐷

(𝑋, 𝑝) ∶= 𝔇
2𝑝−𝑛−1
TW,𝐷

(𝑋, 𝑝)∕ Im𝑑𝔇,

and is denoted by g̃𝑍 . A pair (𝑍, g̃𝑍), where g̃𝑍 is a Green current for 𝑍 is called an arithmetic cycle,
and is the building block to define higher arithmetic Chow groups.
To define an intersection theory at the level of higher arithmetic Chow groups, we need the

notion of a Green form of logarithmic type for a cycle𝑍. It acts as a bridge between the current 1 ⊗
𝛿𝑍 ∈ 𝔇

2𝑝
TW,𝐷

(𝑋 × (ℙ1)𝑛, 𝑝) and a smooth form that lives in 𝔇2𝑝−𝑛
TW

(𝑋, 𝑝), and computes the real
Deligne cohomology class (𝑍). For shorthand, in the next proposition we denote 𝐴 ∶= (ℙ1)𝑛 ⧵

□𝑛.

Definition 1.33. Given a cycle 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)0 and the pullback |𝑍|𝑘 of |𝑍| in 𝑋 ×□𝑘 (see [12,
Section 6.2] for exact definition of |𝑍|𝑘), a Green form of logarithmic type for 𝑍 is an 𝑛-tuple

𝔤𝑍 ∶= (g𝑛, g𝑛−1, … , g0) ∈
0⨁

𝑘=𝑛

𝔇
2𝑝−𝑛+𝑘−1

TW,log
(𝑋 ×□𝑘 ⧵ |𝑍|𝑘, 𝑝)0,

Such that, if 𝑛 > 0,

(i) the equation 𝛿𝑍 + 𝑑𝔇[g𝑛] = 0 holds in the complex

𝔇
2𝑝

TW,𝐷,𝑋×(ℙ1)𝑛∕𝑋×𝐴
(𝑝).

In other words, g𝑛 is a Green form for 𝑍 in 𝑋 ×□𝑛.
(ii) (−1)𝑛−𝑘+1𝛿g𝑘 + 𝑑𝔇g𝑘−1 = 0, 𝑘 = 2,… , 𝑛.
(iii) (−1)𝑛𝛿g1 + 𝑑𝔇g0 =∶ 𝜔(𝔤𝑍) ∈ 𝔇

2𝑝−𝑛
TW

(𝑋, 𝑝). In other words, the form (−1)𝑛𝛿g1 + 𝑑𝔇g0
extends to a smooth form on the whole 𝑋. It can be shown that 𝜔(𝔤𝑍) is closed and belongs
to class (𝑍) in 𝐻2𝑝−𝑛

𝔇
(𝑋,ℝ(𝑝)).

If 𝑛 = 0, the previous conditions collapse to condition

𝛿𝑍 + 𝑑𝔇[g𝑛] ∈ [𝔇
2𝑝
TW
(𝑋, 𝑝)].

If𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 is a cycle in the refined normalized complex, then a refinedGreen form is defined
as a Green form satisfying the stronger condition

𝔤𝑍 ∈

0⨁
𝑘=𝑛

𝔇
2𝑝−𝑛+𝑘−1

TW,log
(𝑋 ×□𝑘 ⧵ |𝑍|′

𝑘
, 𝑝)00, (1.21)

where |𝑍|′
𝑘
= (𝛿1

0
)−1 𝑛−𝑘… (𝛿1

0
)−1|𝑍|.

It can be shown that every class g̃𝑍 of Green currents contains a Green form of logarithmic type
(cf. [12, Propositions 6.12 and 6.13]).
Let 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)0 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)0 be two cycles intersecting properly in the sense of Defi-

nition 1.32. Then for choices of classes of green currents g̃𝑍 and g̃𝑊 for 𝑍 and𝑊, respectively, we
define the start product
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Definition 1.34. Choosing any representative g𝑍 of g̃𝑍 and a Green form 𝔤𝑊 = {g ′𝑚, … , g
′
0
} for𝑊

contained in g̃𝑊 , we define the ∗-product of g̃𝑍 and g̃𝑊 as

g̃𝑍 ∗ g̃𝑊 =

(
(−1)𝑛

(
𝑚∑
𝑗=0

(𝜋𝑋,∗

(
𝛿𝑍 ⋅𝑊𝑛 ⋅ g

′
𝑗 ⋅𝑊𝑗

))
+ g𝑍 ⋅ 𝜔(𝔤𝑊)

)∼
,

where 𝛿𝑍 ⋅𝑊𝑛 ⋅ g
′
𝑗
⋅𝑊𝑗 is seen as a current in 𝑋 × (ℙ1)𝑛+𝑚 and 𝜋𝑋 is the projection to 𝑋.

Of course, the ∗-product g̃𝑍 ∗ g̃𝑊 depends on the choice of the Green currents g̃𝑍 and g̃𝑊 and
not only on the cycles 𝑍 and𝑊. Nevertheless, if the real regulators of 𝑍 and𝑊 are zero, we can
obtain an invariant from the ∗-product that only depends on the cycles𝑍 and𝑊. This is the higher
analogue of the archimedean component of the height pairing.

Definition 1.35. Let 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)0 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)0 be cycles intersecting properly, having
real regulator classes zero, and 2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚. Then we can find Green currents for 𝑍
and𝑊 satisfying conditions

𝑑𝔇g𝑍 + (𝑍) = 𝑑𝔇g𝑊 + (𝑊) = 0. (1.22)

and the higher archimedean height pairing is defined as

⟨𝑍,𝑊⟩Arch ∶= (𝑝𝑋,∗(g𝑍 ∗ g𝑊)
)∼

∈ 𝐻1
𝔇
(Spec(ℂ), ℝ(𝑝 + 𝑞 − 𝑑)),

for any choice of Green current g𝑍 for 𝑍 and a Green current g𝑊 for 𝑊 satisfying (1.22). Here
𝑝𝑋 ∶ 𝑋 → Spec(ℂ) is the structural morphism.

It can be shown [12, Proposition 7.20] that the definition is independent of the choice of Green
currents g𝑍 and g𝑊 satisfying condition (1.22).
From the fact that 𝜔(𝔤𝑊) has been chosen to be zero, we get

⟨𝑍,𝑊⟩Arch = (−1)𝑛
𝑚∑
𝑗=0

𝑝∗

(
𝛿𝑍 ⋅𝑊𝑛 ⋅ g

′
𝑗 ⋅𝑊𝑗

)∼
,

where 𝑝 = 𝑝𝑋 ◦𝜋𝑋 . This pairing is graded commutative and linear on both components.

2 ORIENTEDMIXED HODGE STRUCTURES ANDHEIGHT

2.1 The height of a mixed Hodge structure

Let 𝑉 be a ℚ-vector space. A mixed Hodge structure (𝐹,𝑊) on 𝑉 induces a unique functorial
bigrading [17, Theorem 2.13]

𝑉ℂ =
⨁
𝑎,𝑏

𝐼𝑎,𝑏 (2.1)
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of the underlying complex vector space 𝑉ℂ such that

(i) 𝐹𝑎 = ⊕𝛼⩾𝑎,𝛽 𝐼
𝛼,𝛽 ;

(ii) 𝑊𝑘 = ⊕𝛼+𝛽⩽𝑘 𝐼
𝛼,𝛽 ; and

(iii) 𝐼𝑎,𝑏 ≡ 𝐼𝑏,𝑎 mod ⊕𝛽<𝑏,𝛼<𝑎 𝐼
𝛽,𝛼.

The 𝐼𝑎,𝑏 is given by

𝐼𝑎,𝑏 = 𝐹𝑎 ∩𝑊𝑎+𝑏 ∩
(
𝐹𝑏 ∩𝑊𝑎+𝑏 + 𝑈𝑏−1

𝑎+𝑏−2

)
, (2.2)

where

𝑈𝑟
𝑠 =
∑
𝑗⩾0

𝐹𝑟−𝑗 ∩𝑊𝑠−𝑗.

Definition 2.1. The bigrading (2.1) will be called the Deligne bigrading of (𝐹,𝑊). The associated
semi-simple endomorphism 𝑌 = 𝑌(𝐹,𝑊) of 𝑉ℂ which acts as multiplication by 𝑝 + 𝑞 on 𝐼𝑝,𝑞 will
be called the Deligne grading of (𝐹,𝑊).

Wewill denote byΠ𝑘 the projector overGr𝑊𝑘 𝑉ℂ =
⨁

𝑎+𝑏=𝑘 𝐼
𝑎,𝑏 andΠ𝑎,𝑏 the projector over 𝐼𝑎,𝑏.

So, for instance, Π𝑘 is the composition

𝑉ℂ ⟶ Gr𝑊
𝑘
𝑉ℂ ↪ 𝑉ℂ.

Moreover, the semi-simple endomorphism 𝑌 is given by

𝑌 =
∑
𝑘∈ℤ

𝑘Π𝑘. (2.3)

Let

𝔤𝔩(𝑉ℂ)
𝑎,𝑏 = { 𝛼 ∈ 𝔤𝔩(𝑉ℂ) ∣ 𝛼(𝐼

𝑐,𝑑) ⊆ 𝐼𝑎+𝑐,𝑏+𝑑 } (2.4)

be the Hodge decomposition of 𝔤𝔩(𝑉) and define

Λ−1,−1 =
⨁

𝑎<0,𝑏<0

𝔤𝔩(𝑉ℂ)
𝑎,𝑏. (2.5)

Then, Λ−1,−1 = Λ−1,−1 [17, Eq. 2.19]. For an element 𝜆 ∈ 𝔤𝔩(𝑉ℂ) we will denote 𝜆 =
∑
𝜆𝑎,𝑏 its

decomposition into Hodge components.
There exists a unique real element 𝛿 = 𝛿(𝐹,𝑊) ∈ Λ−1,−1 such that

𝑌(𝐹,𝑊) = 𝑒−2𝑖𝛿 ⋅ 𝑌(𝐹,𝑊), (2.6)

where g ⋅ 𝛼 ∶= Ad(g)𝛼 denotes the adjoint action ofGL(𝑉ℂ) on 𝔤𝔩(𝑉ℂ) [17, Proposition 2.20]. The
element 𝛿 defined by (2.6) will be called the Deligne splitting of (𝐹,𝑊).
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For an element g ∈ GL(𝑉ℂ) we will denote by g ⋅ 𝐹 the filtration given by (g ⋅ 𝐹)𝑝𝑉ℂ =

g(𝐹𝑝𝑉ℂ). In general if (𝐹,𝑊) is a mixed Hodge structure on 𝑉, the pair of filtrations (g ⋅ 𝐹,𝑊) do
not form a mixed Hodge structure.

Lemma 2.2 [30, Lemma 4.11]. Let (𝐹,𝑊) be a mixed Hodge structure on 𝑉 and Λ−1,−1 be the asso-
ciated subalgebra (2.5). Then, 𝜆 ∈ Λ−1,−1 implies that (𝑒𝜆 ⋅ 𝐹,𝑊) is a mixed Hodge structure on 𝑉
and that

𝐼
𝑝,𝑞

(𝑒𝜆⋅𝐹,𝑊)
= 𝑒𝜆(𝐼

𝑝,𝑞

(𝐹,𝑊)
).

A choice of graded polarization of (𝐹,𝑊) determines a hermitian inner product on 𝑉ℂ

by declaring the bigrading ⊕𝑎,𝑏 𝐼
𝑎,𝑏 to be orthogonal and defining the inner product on 𝐼𝑎,𝑏

using the isomorphism 𝐼𝑎,𝑏 ≅ 𝐻𝑎,𝑏 Gr𝑊
𝑎+𝑏

and the standard Hodge inner product on Gr𝑊
𝑎+𝑏

. In
this way, we can attach a collection of heights to (𝐹,𝑊) via the norms of the Hodge com-
ponents 𝛿𝑎,𝑏 of 𝛿 [31, Section 5.1]. To attach a signed height to (𝐹,𝑊), we need a notion of
orientation.

Definition 2.3. Given a mixed Hodge structure𝐻 = (𝐹,𝑊) on 𝑉, define

max(𝐻) = max{𝑘 ∣ Gr𝑊
𝑘
(𝑉) ≠ 0}, min(𝐻) = min{𝑘 ∣ Gr𝑊

𝑘
(𝑉) ≠ 0}.

and define the length of𝐻 as

𝓁(𝐻) = max(𝐻) − min(𝐻).

We say that 𝐻 is oriented if Gr𝑊
max(𝐻)

(𝑉) and Gr𝑊
min(𝐻)

(𝑉) are both of rank one. This implies that
max(𝐻) andmin(𝐻) are both even and, writing 𝑎 = max(𝐻)∕2 and 𝑐 = min(𝐻)∕2, that

Gr𝑊
max(𝐻)

(𝑉) ≅ ℚ(−𝑎), Gr𝑊
min(𝐻)

(𝑉) ≅ ℚ(−𝑐). (2.7)

If𝐻 is oriented, an orientation of𝐻 consists of a choice of Betti generators 𝟙𝐻 of Gr𝑊
max(𝐻)

(𝑉) and
𝟙∨
𝐻
of Gr𝑊

min(𝐻)
(𝑉). Equivalently, an orientation is a choice of the isomorphisms (2.7). Given an

orientation of𝐻 we define a signed height by the formula

𝛿𝑟,𝑟
𝐻
(𝑒) = ht(𝐻)𝑒∨, 𝑟 = −𝓁(𝐻)∕2, (2.8)

where 𝑒 is the element of 𝐼𝑎,𝑎 ⊂ 𝑉ℂ which projects to 𝟙𝐻 ∈ Gr𝑊
max(𝐻)

(𝑉) and 𝑒∨ is the image of 𝟙∨
𝐻

in𝑊min(𝐻)𝑉ℂ.

Remark 2.4. The height functions considered above only depend on the underlying ℝ-mixed
Hodge structure.

Definition 2.5. Let𝐻 be an oriented mixed Hodge structure on 𝑉. We say that𝐻 is a generalized
biextension if𝐻 has at most three non-trivial weights.
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Therefore, if 𝐻 is a generalized biextension, there are three integers 2𝑎 > 𝑏 > 2𝑐, and a pure
Hodge structure𝐻𝑏 of weight 𝑏 such that

Gr𝑊
𝑘
(𝑉) =

⎧⎪⎪⎨⎪⎪⎩

ℚ(−𝑎), if 𝑘 = 2𝑎,

𝐻𝑏, if 𝑘 = 𝑏,

ℚ(−𝑐), if 𝑘 = 2𝑐,

0, otherwise.

Note that𝐻𝑏 may be zero.

Lemma 2.6. Let 𝐻 = (𝐹,𝑊) be a generalized biextension and 𝑎, 𝑏, 𝑐 as before. Let 𝑒 ∈ 𝐼𝑎,𝑎 be the
unique element that maps to the generator 𝟙𝐻 and 𝑒∨ the image of 𝟙∨

𝐻
in 𝐼𝑐,𝑐 . Then,

ht(𝐻)𝑒∨ =
1

2
Im (Π2𝑐(𝑒 − 𝑒)).

Proof. Write 𝑘1 = 2𝑎, 𝑘2 = 𝑏 and 𝑘3 = 2𝑐 for the different weights of 𝐻 and let 𝑌 = 𝑌(𝐹,𝑊) and
𝛿 = 𝛿(𝐹,𝑊). Since 𝛿 ∈ Λ1,1, there is a decomposition 𝛿 = 𝛿1 + 𝛿2 + 𝛿3, with

𝛿1 = Π𝑘2
◦ 𝛿 ◦Π𝑘1

, 𝛿2 = Π𝑘3
◦ 𝛿 ◦Π𝑘2

, 𝛿3 = Π𝑘3
◦ 𝛿 ◦Π𝑘1

.

The decomposition (2.3) and the fact that the projectors Π𝑘 are orthogonal imply

[𝑌, 𝛿1] = (𝑘2 − 𝑘1)𝛿1, [𝑌, 𝛿2] = (𝑘3 − 𝑘2)𝛿2, [𝑌, 𝛿3] = (𝑘3 − 𝑘1)𝛿3.

In particular,

[𝛿, [𝛿, 𝑌]] = [𝛿1 + 𝛿2 + 𝛿3, (𝑘1 − 𝑘2)𝛿1 + (𝑘2 − 𝑘3)𝛿2 + (𝑘1 − 𝑘3)𝛿3]

= (𝑘1 + 𝑘3 − 2𝑘2)𝛿2 ◦ 𝛿1.

Therefore,

𝑌 = 𝑒−2𝑖𝛿 ⋅ 𝑌 = 𝑌 − 2𝑖[𝛿, 𝑌] − 2[𝛿, [𝛿, 𝑌]] =

𝑌 − 2𝑖((𝑘1 − 𝑘2)𝛿1 + (𝑘2 − 𝑘3)𝛿2 + (𝑘1 − 𝑘3)𝛿3) − 2(𝑘1 + 𝑘3 − 2𝑘2)𝛿2 ◦ 𝛿1. (2.9)

Since 𝑒 ∈ 𝐼𝑎,𝑎 is a lift of 𝟙(−𝑎)ℚ ∈ ℚ(−𝑎)ℚ and 𝟙(−𝑎)ℚ = 𝟙(−𝑎)ℚ, we can write

𝑒 = 𝑒 + 𝑎𝑘2 + 𝑎𝑘3 , (2.10)

where 𝑌(𝑎𝑗) = 𝑗𝑎𝑗 . We now compute

𝑌(𝑒) = 𝑌(𝑒) = 𝑌(𝑒 + 𝑎𝑘2 + 𝑎𝑘3)

= 𝑘1𝑒 + 𝑘2�̄�𝑘2 + 𝑘3�̄�𝑘3 = 𝑘1𝑒 + 𝑘1𝑎𝑘2 + 𝑘1𝑎𝑘3 + 𝑘2�̄�𝑘2 + 𝑘3�̄�𝑘3 . (2.11)
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On the other hand, by Equation (2.9),

𝑌(𝑒) = 𝑘1𝑒 − 2𝑖(𝑘1 − 𝑘2)𝛿1(𝑒) − 2𝑖(𝑘1 − 𝑘3)𝛿3(𝑒) − 2(𝑘1 + 𝑘3 − 2𝑘2)𝛿2(𝛿1(𝑒)). (2.12)

By (2.10) we deduce

�̄�𝑘2 = −𝑎𝑘2 − 𝑎𝑘3 − �̄�𝑘3 . (2.13)

By Equations (2.11)–(2.13) and using the splitting, we deduce the equations

(𝑘1 − 𝑘2)𝑎𝑘2 = −2𝑖(𝑘1 − 𝑘2)𝛿1(𝑒), (2.14)

(𝑘1 − 𝑘2)𝑎𝑘3 + (𝑘3 − 𝑘2)�̄�𝑘3 = 2𝑖(𝑘3 − 𝑘1)𝛿3(𝑒) − 2(𝑘1 + 𝑘3 − 2𝑘2)𝛿2(𝛿1(𝑒)). (2.15)

From Equation (2.14), taking into account that 𝑘1 − 𝑘2 ≠ 0, we obtain

𝛿1(𝑒) =
𝑖

2
𝑎𝑘2 . (2.16)

Applying 𝛿2 to Equation (2.16) we get

𝛿2(𝑎𝑘2) = −2𝑖𝛿2(𝛿1(𝑒)). (2.17)

Computing 𝑌(𝑎𝑘2) in two ways as we have done with 𝑌(𝑒) yields the equation

−2𝑖𝛿2(𝑎𝑘2) = 𝑎𝑘3 + �̄�𝑘3 . (2.18)

Combining Equations (2.15), (2.17) and (2.18) gives

𝛿3(𝑒) =
−1

2

𝑎𝑘3 − �̄�𝑘3
2𝑖

,

which is equivalent to the lemma. □

2.2 Some ancillary results

We next study the effect of a morphism of mixed Hodge structures on the height we have defined.
To this end, we first recall the compatibility of the Deligne splitting with morphism of mixed
Hodge structures.

Lemma 2.7. Let𝐴 and 𝐵 be mixed Hodge structures with Deligne splittings 𝛿𝐴 and 𝛿𝐵, respectively.
Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism of mixed Hodge structures. Then, 𝑓 ◦ 𝛿𝐴 = 𝛿𝐵 ◦𝑓.

Proof. By [17, Proposition 2.20] if 𝐶 is a mixed Hodge structure, then 𝛿𝐶 commutes with all
(𝑟, 𝑟)-morphisms of 𝐶. Let 𝐶 = 𝐴⊕ 𝐵 and observe that g(𝑎, 𝑏) = (𝑎, 𝑏 + 𝑓(𝑎)) is a morphism
of 𝐶. Using the block structure of 𝔤𝔩(𝐶) = 𝔤𝔩(𝐴 ⊕ 𝐵) it follows immediately from (2.6) that
𝛿𝐶(𝑎, 𝑏) = (𝛿𝐴(𝑎), 𝛿𝐵(𝑏)). Writing out the g ◦ 𝛿𝐶 = 𝛿𝐶 ◦ g shows that 𝑓 ◦ 𝛿𝐴 = 𝛿𝐵 ◦𝑓. □
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Proposition 2.8. Let 𝐴 and 𝐵 be oriented mixed Hodge structures such that max(𝐴) = max(𝐵)

andmin(𝐴) = min(𝐵). Let 𝑓∶ 𝐴 → 𝐵 be a morphism of mixed Hodge structures which is injective
on Gr𝑊

max(𝐴)
and Gr𝑊

min(𝐴)
. Then,

ht(𝐴)𝑑𝑚𝑖𝑛(𝑓) = ht(𝐵)𝑑𝑚𝑎𝑥(𝑓),

where 𝑓(𝟙𝐴) = 𝑑𝑚𝑎𝑥(𝑓)𝟙𝐵 and 𝑓(𝟙∨𝐴) = 𝑑𝑚𝑖𝑛(𝑓)𝟙
∨
𝐵
.

Proof. Let 𝑒𝐴 be a lift of 𝟙𝐴 and 𝑒∨𝐴 the image of 𝟙
∨
𝐴
. Then, 𝑓(𝑒𝐴) = 𝑑𝑚𝑎𝑥(𝑓)𝑒𝐵 where 𝑒𝐵 is a lift of

𝟙𝐵. Likewise, 𝑓(𝑒∨𝐴) = 𝑑𝑚𝑖𝑛(𝑓)𝑒
∨
𝐵
where 𝑒∨

𝐵
is the image of to 𝟙∨

𝐵
. Moreover, since 𝑓 is of type (0,0),

then 𝑓 ◦ 𝛿𝐴 = 𝛿𝐵 ◦𝑓 implies that 𝑓 ◦ 𝛿𝑟,𝑟
𝐴
= 𝛿𝑟,𝑟

𝐵
◦𝑓 for any 𝑟. Setting 𝑟 = (min(𝐴) − max(𝐴))∕2 it

follows that

𝑓 ◦ 𝛿𝑟,𝑟
𝐴
(𝑒𝐴) = 𝛿𝑟,𝑟

𝐵
◦𝑓(𝑒𝐴)

∥ ∥

𝑓(ht(𝐴)𝑒∨
𝐴
) = 𝛿𝑟,𝑟

𝐵
(𝑑𝑚𝑎𝑥(𝑓)𝑒𝐵)

∥ ∥

ht(𝐴)𝑑𝑚𝑖𝑛(𝑓)𝑒
∨
𝐵
= ht(𝐵)𝑑𝑚𝑎𝑥(𝑓)𝑒

∨
𝐵
. □

Example 2.9. We put Proposition 2.8 in practice for usual cycles. Let 𝑋 and 𝑌 be smooth
projective varieties of dimensions 𝑑𝑋 and 𝑑𝑌 , respectively. Let 𝑍 ∈ 𝑍

𝑝

hom
(𝑋), 𝑊 ∈ 𝑍

𝑞

hom
(𝑌) and

Γ ∈ 𝑍𝑑𝑋+𝑟(𝑋 × 𝑌) be a correspondence of degree 𝑟, such that 𝑝 + 𝑞 + 𝑟 = 𝑑𝑌 + 1. We assume that
the pullbacks of𝑍 and𝑊 intersect Γ properly, so that Γ∗(𝑍) and Γ∗(𝑊) ∶= Γ𝑡∗(𝑊) are both defined
at the level of cycles. Let 𝐵𝑍,Γ∗(𝑊) and 𝐵Γ∗(𝑍),𝑊 be oriented biextensions as defined by Hain in [22],
of gradedweights 0, −1, −2. One can show thatΓ defines amorphismofHodge structures between
these biextensions

Γ𝑍,𝑊 ∶ 𝐵𝑍,Γ∗(𝑊) → 𝐵Γ∗(𝑍),𝑊,

with 𝑑𝑚𝑎𝑥(Γ𝑍,𝑊) = 𝑑𝑚𝑖𝑛(Γ𝑍,𝑊) = 1. Hence, we get

ht(𝐵𝑍,Γ∗(𝑊)) = ht(𝐵Γ∗(𝑍),𝑊).

For later use, we record the following:

Lemma 2.10. Let𝑁 be a (−1, −1)-morphism of amixedHodge structure (𝐹,𝑊). Then, 𝛿(𝑒𝑡𝑁 ⋅𝐹,𝑊) =

𝛿(𝐹,𝑊) + Im(𝑡)𝑁.

Proof. By [17, Proposition 2.20], 𝑁 and 𝛿(𝐹,𝑊) commute. Therefore, using Lemma 2.2:

𝑒(𝑡−𝑡)𝑁−2𝑖𝛿(𝐹,𝑊) ⋅ 𝑌(𝑒𝑡𝑁 ⋅𝐹,𝑊) = 𝑒𝑡𝑁𝑒−2𝑖𝛿(𝐹,𝑊)𝑒−𝑡𝑁 ⋅ 𝑌(𝑒𝑡𝑁 ⋅𝐹,𝑊)

= 𝑒𝑡𝑁𝑒−2𝑖𝛿(𝐹,𝑊)𝑒−𝑡𝑁𝑒𝑡𝑁 ⋅ 𝑌(𝐹,𝑊)

= 𝑒𝑡𝑁𝑒−2𝑖𝛿(𝐹,𝑊) ⋅ 𝑌(𝐹,𝑊)

= 𝑒𝑡𝑁 ⋅ 𝑌(𝐹,𝑊)
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= 𝑒𝑡𝑁 ⋅ 𝑌(𝐹,𝑊)

= 𝑌(𝑒𝑡𝑁 ⋅𝐹,𝑊).

Accordingly, by (2.6) −2𝑖𝛿(𝑒𝑡𝑁 ⋅𝐹,𝑊) = (𝑡 − 𝑡)𝑁 − 2𝑖𝛿(𝐹,𝑊) which implies the stated formula after
dividing by −2𝑖. □

Corollary 2.11. Let 𝑁 be a (−1, −1)-morphism of a mixed Hodge structure (𝐹,𝑊) and 𝑟 =

(min(𝐹,𝑊) − max(𝐹,𝑊))∕2. If 𝑟 < −1 then

ht(𝑒𝑡𝑁 ⋅ 𝐹,𝑊) = ht(𝐹,𝑊)

for all 𝑡 ∈ ℂ.

Proof. By Lemma (2.10), 𝛿𝑟,𝑟
(𝑒𝑡𝑁 ⋅𝐹,𝑊)

= 𝛿𝑟,𝑟
(𝐹,𝑊)

and hence the two mixed Hodge structures have the
same height. □

2.3 Dual of a mixed Hodge structure

A real mixed Hodge structure𝐴 induces a mixed Hodge structure𝐴∗ on the dual vector space𝐴∗
ℝ

by the formula

𝐼𝑎,𝑏
𝐴∗

= { 𝜆 ∈ 𝐴∗
ℂ
∣ 𝜆(𝐼𝑐,𝑑) = 0, (𝑐, 𝑑) ≠ (−𝑎,−𝑏) }. (2.19)

If 𝛼 ∈ 𝔤𝔩(𝐴ℂ) then 𝛼𝑇 ∈ 𝔤𝔩(𝐴∗
ℂ
) is the linear map (𝛼𝑇(𝜆))(𝑣) = 𝜆(𝛼(𝑣)) for all 𝜆 ∈ 𝐴∗

ℂ
and 𝑣 ∈

𝐴ℂ. A short calculation shows that if 𝛼 ∈ 𝔤𝔩(𝐴ℂ)
𝑎,𝑏 then 𝛼𝑇 ∈ 𝔤𝔩(𝐴∗

ℂ
)𝑎,𝑏. Tracing through the

definitions, one sees that the Deligne grading 𝑌𝐴 of 𝐴 and 𝑌𝐴∗ of 𝐴∗ are related by the formula

𝑌𝐴∗ = −𝑌𝑇
𝐴. (2.20)

It follows from Equations (2.20) and (2.6) that

𝛿𝐴∗ = −𝛿𝑇𝐴. (2.21)

Indeed, since ad(𝑋𝑇
1
)⋯ ad(𝑋𝑇

𝑟−1
)𝑋𝑇

𝑟 = (−1)𝑟−1{ad(𝑋1)⋯ ad(𝑋𝑟−1)𝑋𝑟}
𝑇 it follows that

𝑒−2𝑖 ad(−𝛿
𝑇
𝐴
)𝑌𝐴∗ = 𝑒−2𝑖 ad(−𝛿

𝑇
𝐴
)(−𝑌𝑇

𝐴)

= −
∑
𝑚⩾0

1

𝑚!
(2𝑖 ad(𝛿𝑇𝐴))

𝑚𝑌𝑇
𝐴

= −
∑
𝑚⩾0

(−2𝑖)𝑚

𝑚!
((ad(𝛿𝐴)

𝑚)𝑌𝐴)
𝑇

= −(exp(−2𝑖 ad(𝛿𝐴))𝑌𝐴)
𝑇 = −𝑌𝐴

𝑇
= −𝑌𝑇

𝐴
= 𝑌𝐴∗.
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since the operations of transpose and complex conjugation commute. Therefore, 𝛿𝐴∗ = −𝛿𝑇
𝐴
by

(2.6).
Now if 𝐻 is a generalized biextension as defined in Definition 2.5, then its dual 𝐻∗ is also a

generalized biextension with

Gr𝑊
𝑘
(𝑉∗) =

⎧⎪⎪⎨⎪⎪⎩

ℚ(𝑐), if 𝑘 = −2𝑐,

𝐻∗
𝑏
, if 𝑘 = −𝑏,

ℚ(𝑎), if 𝑘 = −2𝑎,

0, otherwise.

We have the following relation between the heights of𝐻 and𝐻∗:

Proposition 2.12. Let𝐻 be a generalized biextension. Then

ht(𝐻∗) = −ht(𝐻).

Proof. By the definition of the dual of an oriented biextension, the generators of𝐻 ad𝐻∗ satisfy

⟨𝟙𝐻, 𝟙∨𝐻∗⟩ = 1, ⟨𝟙∨𝐻, 𝟙𝐻∗⟩ = 1.

Let 𝑒𝐻 be an element of 𝐼𝑎,𝑎
𝐻

⊂ 𝑉ℂ which projects to 𝟙𝐻 ∈ Gr𝑊
2𝑎
(𝑉) and 𝑒∨

𝐻
is the image of 𝟙∨

𝐻
in

𝑊2𝑐𝑉ℂ. Correspondingly, for𝐻∗ we have elements 𝑒𝐻∗ and 𝑒∨𝐻∗ . These elements also satisfy

⟨𝑒𝐻∗ , 𝑒∨𝐻⟩ = 1, ⟨𝑒∨
𝐻∗, 𝑒𝐻⟩ = 1.

Also, since 𝛿𝑟,𝑟
𝐻∗ = −(𝛿𝑟,𝑟

𝐻
)𝑇 , we get

ht(𝐻∗)𝑒∨
𝐻∗ = 𝛿𝑟,𝑟

𝐻∗(𝑒𝐻∗) = −(𝛿𝑟,𝑟
𝐻
)𝑇(𝑒𝐻∗).

Hence,

ht(𝐻∗) = ⟨−(𝛿𝑟,𝑟
𝐻
)𝑇(𝑒𝐻∗), 𝑒𝐻⟩.

Finally, using the action of (𝛿𝑟,𝑟
𝐻
)𝑇 , we get

ht(𝐻∗) = −ht(𝐻)⟨𝑒𝐻∗ , 𝑒∨𝐻⟩ = −ht(𝐻). □

3 MIXEDHODGE STRUCTURES ASSOCIATED TOHIGHER CYCLES

In this section we define extension classes for higher cycles 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 in the refined normal-
ized complex. For two higher cycles𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00, with 2(𝑝 + 𝑞 − 𝑑 − 1) =

𝑛 + 𝑚, we construct, under certain assumptions, an oriented mixed Hodge structure diagram
(Figure 2) which captures both the extension related to cycle 𝑍 and the dual to the extension
related to 𝑊. In an even more special situation for 𝑛 = 𝑚 = 1, this diagram defines an ori-
ented biextension.



102 BURGOS GIL et al.

3.1 Two divisors on (ℙ𝟏)𝒏

Definition 3.1. On (ℙ1)𝑛, we define the following divisors:

𝐴 = {(𝑡1, … , 𝑡𝑛) ∣ ∃𝑖, 𝑡𝑖 = 1},

𝐵 = {(𝑡1, … , 𝑡𝑛) ∣ ∃𝑖, 𝑡𝑖 ∈ {0,∞}}.

Then 𝐴 ∪ 𝐵 is a simple normal crossing divisor. Moreover,

(ℙ1)𝑛 ⧵ 𝐴 = □𝑛, (ℙ1)𝑛 ⧵ 𝐵 = (ℂ∗)𝑛 and 𝐵 ∩□𝑛 = 𝜕□𝑛.

For any variety 𝑋 we also denote

𝐴𝑋 ∶= 𝑋 × 𝐴, 𝐵𝑋 ∶= 𝑋 × 𝐵.

The following cohomology groups are easy to compute.

𝐻𝑟((ℙ1)𝑛 ⧵ 𝐴, 𝐵) =

{
0, if 𝑟 ≠ 𝑛,

ℚ(0), if 𝑟 = 𝑛.
(3.1)

𝐻𝑟((ℙ1)𝑛 ⧵ 𝐵,𝐴) =

{
0, if 𝑟 ≠ 𝑛,

ℚ(−𝑛), if 𝑟 = 𝑛.
(3.2)

In order to fix the isomorphism (3.2) we choose the generator of𝐻𝑛((ℙ1)𝑛 ⧵ 𝐵,𝐴; 𝑛)ℚ, that is rep-
resented by the differential form

(−1)𝑛
𝑑𝑡1
𝑡1

∧⋯ ∧
𝑑𝑡𝑛
𝑡𝑛

∈ 𝐹0Σ𝐴𝐸
𝑛
(ℙ1)𝑛

(log 𝐵; 𝑛), (3.3)

where 𝑡𝑖 is the coordinate of the ℙ1 in position 𝑖. This choice also fixes the isomorphism (3.1). The
reason of the sign (−1)𝑛 is to make it compatible with the normalizations chosen in [12]; see for
instance Proposition 3.8. The Künneth formula and the computations (3.1) and (3.2) produce, for
𝑎, 𝑟 ∈ ℤ, isomorphisms of mixed Hodge structures

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑎) ≅ 𝐻𝑟−𝑛(𝑋, 𝑎), (3.4)

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐵𝑋,𝐴𝑋; 𝑎) ≅ 𝐻𝑟−𝑛(𝑋, 𝑎 − 𝑛). (3.5)

Since𝐴𝑋 and 𝐵𝑋 are in local product situation (see [3, Lemma 6.1.1 and Remark 6.1.2]), the above
isomorphisms are compatible with duality

𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋, ℚ(𝑝)) ≅
(
𝐻2𝑑+2𝑛−𝑟

(
𝑋 × (ℙ1)𝑛 ⧵ 𝐵𝑋,𝐴𝑋,ℚ(𝑑 + 𝑛 − 𝑝)

))∨
.

We fix the isomorphism (3.4) using the generator (3.3) and Proposition 1.21.
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Definition 3.2. For any 𝑎, 𝑟, 𝑛 ∈ ℤ, we denote by

Ψ∶ 𝐻𝑟 ∶ 𝐻𝑟(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑎)⟶ 𝐻𝑟−𝑛(𝑋, 𝑎)

the isomorphism determined by the generator (3.3). This isomorphism sends the class of a closed
form

𝜔 ∈ Σ𝐵𝑋𝐸
𝑟
𝑋×(ℙ1)𝑛

(log𝐴𝑋)

to the class represented by the current

(−1)𝑛(𝜋𝑋)∗

[
𝜔 ∧

𝑑𝑡1
𝑡1

∧⋯ ∧
𝑑𝑡𝑛
𝑡𝑛

]
=

[
(−1)𝑛

(2𝜋𝑖)𝑛 ∫(ℙ1)𝑛 𝜔 ∧
𝑑𝑡1
𝑡1

∧⋯ ∧
𝑑𝑡𝑛
𝑡𝑛

]
,

where 𝜋𝑋 ∶ 𝑋 × (ℙ1)𝑛 is the first projection.

3.2 The extension associated to a higher cycle

In this section we show how to associate, to a cycle 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00, 𝑛 ⩾ 1, an extension

𝑒𝑍 ∈ Ext1
ℚ−𝐌𝐇𝐒(ℚ(0),𝐻

2𝑝−𝑛−1(𝑋; 𝑝)).

By definition 𝑍 is a codimension 𝑝 algebraic cycle in𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋 , which intersects properly
all the faces of 𝐵𝑋 ⧵ (𝐴𝑋 ∩ 𝐵𝑋). We write

𝐵𝑋 = 𝐵01 ∪⋯ ∪ 𝐵0𝑛 ∪ 𝐵∞1 ∪⋯ ∪ 𝐵∞𝑛,

as the decomposition of 𝐵𝑋 into irreducible components.
Since 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00, we have 𝑍 ⋅ (𝐵𝑖𝑗 ⧵ (𝐴𝑋 ∩ 𝐵𝑖𝑗)) well defined. Moreover, 𝑍 being a higher

cycle, we have

𝑍 ⋅ (𝐵𝑖𝑗 ⧵ (𝐴𝑋 ∩ 𝐵𝑖𝑗)) = 0, ∀𝑖 = 0,∞, ∀𝑗 = 1,… , 𝑛. (3.6)

We denote by 𝑍 the closure of 𝑍 as an algebraic cycle in 𝑋 × (ℙ1)𝑛. There is a cycle class with
support

cl(𝑍) ∈ 𝐻
2𝑝|𝑍|(𝑋 × (ℙ1)𝑛; 𝑝)ℚ

and, by restriction, a class

cl(𝑍) ∈ 𝐻
2𝑝|𝑍|(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋; 𝑝)ℚ.

Now we have the following
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Proposition 3.3. Under the above setting, there is a unique cycle class

[𝑍] ∈ 𝐻
2𝑝|𝑍|⧵𝐴𝑋(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋 ⧵ 𝐴𝑋; 𝑝

)
ℚ
,

that is sent to cl(𝑍) under the obvious map

𝐻
2𝑝|𝑍|⧵𝐴𝑋(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋 ⧵ 𝐴𝑋; 𝑝

)
→ 𝐻

2𝑝|𝑍|⧵𝐴𝑋(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋; 𝑝
)
.

Proof. Consider the long exact sequence of relative cohomology with supports

⋯ → 𝐻
2𝑝−1

(|𝑍|∩𝐵𝑋)⧵𝐴𝑋 (𝐵𝑋 ⧵ 𝐴𝑋; 𝑝) → 𝐻
2𝑝|𝑍|⧵𝐴𝑋 (𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋 ⧵ 𝐴𝑋; 𝑝)

→ 𝐻
2𝑝|𝑍|⧵𝐴𝑋 (𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋; 𝑝) → 𝐻

2𝑝

(|𝑍|∩𝐵𝑋)⧵𝐴𝑋 (𝐵𝑋 ⧵ 𝐴𝑋; 𝑝) → ⋯

The proof will follow if we show

(i) 𝐻2𝑝−1

(|𝑍|∩𝐵𝑋)⧵𝐴𝑋 (𝐵𝑋 ⧵ 𝐴𝑋; 𝑝) = 0;

(ii) cl(𝑍) ↦ 0, in𝐻2𝑝

(|𝑍|∩𝐵𝑋)⧵𝐴𝑋 (𝐵𝑋 ⧵ 𝐴𝑋; 𝑝).

Note that for (i), we cannot use semi-purity directly since 𝐵𝑋 ⧵ 𝐴𝑋 is not smooth. Instead we
use the following lemma.

Lemma 3.4. Let 𝐷 be a complex space that can be covered by a finite number of smooth closed sub-
varieties. That is, 𝐷 = ∪𝑟

𝑖=1
𝐷𝑖 , with 𝐷𝑖 Zariski closed and smooth. Put 𝐷𝐼 = ∩𝑖∈𝐼𝐷𝑖 for 𝐼 ⊆ {1, … , 𝑟},

assume furthermore that𝐷𝐼 is smooth for every 𝐼, and let𝑍 be a Zariski closed subset such that𝑍 ∩ 𝐷𝐼
has codimension 𝑝 for all 𝐼. Then

𝐻𝑘
𝑍(𝐷; 𝑝) = 0, for all 𝑘 < 2𝑝

and the map

𝐻
2𝑝
𝑍
(𝐷; 𝑝)⟶

𝑟⨁
𝑖=1

𝐻
2𝑝
𝑍∩𝐷𝑖

(𝐷𝑖; 𝑝)

is a monomorphism.

Proof. TheMayer–Vietoris property for closed coverings gives the first quadrant spectral sequence

𝐸𝑎,𝑏
1

=
⨁
|𝐼|=𝑎+1𝐻

𝑏
𝑍∩𝐷𝐼

(𝐷𝐼; 𝑝)⟹ 𝐻𝑎+𝑏
𝑍

(𝐷; 𝑝).

Each 𝐷𝐼 is smooth and codim(𝑍 ∩ 𝐷𝐼) = 𝑝. Hence, using semi-purity we conclude that
𝐻𝑏
𝑍∩𝐷𝐼

(𝐷𝐼; 𝑝) = 0 for 𝑏 < 2𝑝. Since 𝑎 ⩾ 0, the first statement follows. The second statement is
just the fact that edge morphism of a spectral sequence is a monomorphism. □

The first statement of Lemma 3.4, implies directly condition (i).
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The property (3.6) implies that the class cl(𝑍) is sent to zero in all the groups 𝐻2𝑝|𝑍|∩𝐵𝑖𝑗 (𝐵𝑖𝑗 ⧵
𝐴𝑋; 𝑝). Therefore, condition (ii) follows from the second statement of Lemma 3.4. □

Lemma 3.5. For 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00, the image of the class [𝑍] in

𝐻2𝑝(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝),

is zero.

Proof. By the isomorphism (3.4) we know that the mixed Hodge structure

𝐻2𝑝(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) ≅ 𝐻2𝑝−𝑛(𝑋; 𝑝)

is pure of weight −𝑛. Since the image of the class [𝑍] belongs to

𝐹0𝐻2𝑝−𝑛(𝑋; 𝑝)ℂ ∩ 𝐻
2𝑝−𝑛(𝑋; 𝑝)ℝ.

Since in a pure Hodge structure of weight −𝑛 < 0 this group is zero, we conclude the result. □

There is a long exact sequence of mixed Hodge structures

0 → 𝐻2𝑝−𝑛−1(𝑋; 𝑝) → 𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋 ∪ |𝑍|, 𝐵𝑋; 𝑝) →
𝐻
2𝑝|𝑍|⧵𝐴𝑋 (𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) → 𝐻2𝑝(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) → ⋯ , (3.7)

where the zero on the left-hand side follows from

𝐻
2𝑝−1|𝑍| (𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) = 0 (semi-purity).

By Proposition 3.3 and Lemma 3.5, the cycle class [𝑍] defines a map

𝜙𝑍 ∶ ℚ(0)⟶ 𝐻
2𝑝|𝑍|⧵𝐴𝑋 (𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝), (3.8)

whose image of 𝜙𝑍 in 𝐻2𝑝(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) is zero. Therefore, pulling back the above long
exact sequence through 𝜙𝑍 , we get an extension

0⟶ 𝐻2𝑝−𝑛−1(𝑋; 𝑝)⟶ 𝐸𝑍 ⟶ ℚ(0)⟶ 0. (3.9)

By abuse of notation, we also denote as

𝐸𝑍 ∶=
[
0 → 𝐻2𝑝−𝑛−1(𝑋; 𝑝) → 𝐸𝑍 → ℚ(0) → 0

]
the class of this extension in Ext1

ℚ−𝐌𝐇𝐒
(ℚ(0),𝐻2𝑝−𝑛−1(𝑋; 𝑝)).
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3.3 Differential forms attached to the extension 𝑬𝒁

The extension 𝐸𝑍 induces an extension

𝐸𝑍,ℝ ∈ Ext1
ℝ−𝐌𝐇𝐒

(
ℝ(0),𝐻2𝑝−𝑛−1(𝑋; 𝑝)

)
.

For shorthand we write 𝐻 = 𝐻2𝑝−𝑛−1(𝑋; 𝑝), that is a mixed Hodge structure pure of weight −𝑛.
Recall that there is an isomorphism

Ext1
ℝ−𝐌𝐇𝐒 (ℝ(0),𝐻)

≃
-→

𝐻ℂ

𝐹0
ℂ
+ 𝐻ℝ

. (3.10)

This isomorphismworks as follows. Let𝐸 ∈ Ext1
ℝ−𝐌𝐇𝐒

, so𝐸 is the class of a short exact sequence

0 → 𝐻 → 𝐸 → ℝ(0) → 0.

Let 𝟙(0) be the canonical generator of ℝ(0). Choose 𝑣 ∈ 𝐹0𝐸 an element that is sent to 𝟙(0). Then
ℎ = (𝑣 − 𝑣)∕2 is sent to zero in ℝ(0) and therefore belongs to 𝐻. The class of ℎ in the quotient
at the right-hand side of (3.10) does not depend on the choice of 𝑣 and represents the image of 𝐸
under the isomorphism (3.10). In this section, given an element ℎ ∈ 𝐻ℂ, we will denote by

ℎ̃ ∈
𝐻ℂ

𝐹0
ℂ
+ 𝐻ℝ

(3.11)

its class in the quotient.
We will now construct several differential forms related to the extension 𝐸𝑍,ℝ and, in particular

a representative of its class. To this end we will use the complexes of differential forms with zeros
and logarithmic poles

Σ𝐵𝑋𝐸
∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋; 𝑝), and Σ𝐵𝑋𝐸
∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋 ∪ |𝑍|; 𝑝).
The relevance of these complexes is clear because, for instance the class [𝑍] belongs to

𝐹0𝐻
2𝑝|𝑍|(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)ℂ.

And the underlying cohomology group can be computed using the simple of the morphism of
complexes

Σ𝐵𝑋𝐸
∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋; 𝑝)
𝜄
-→ Σ𝐵𝑋𝐸

∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋 ∪ |𝑍|; 𝑝). (3.12)

Proposition 3.6. Let 𝑋 and 𝑍 be as in the previous section. Then there are differential forms

(i) 𝜂𝑍 ∈ 𝐹0Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|; 𝑝) such that 𝑑𝜂𝑍 = 0 so the pair (0, 𝜂𝑍) is a cycle in the sim-

ple s(𝜄) and the corresponding class satisfies

{(0, 𝜂𝑍)} = [𝑍] ∈ 𝐻
2𝑝|𝑍|(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)ℂ. (3.13)
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Moreover, on the complex of currents 𝐷∗
𝑋×(ℙ1)𝑛∕𝐴𝑋

there is an equality of currents

𝑑[𝜂𝑍] + 𝛿𝑍 = 0. (3.14)

(ii) 𝜃𝑍 ∈ 𝐹−𝑛Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝) with 𝑑𝜃𝑍 = 0 and 𝜃𝑍 = −𝜃𝑍 . Moreover, if we denote by {̃𝜃𝑍}

the image of the class {𝜃𝑍} under the composition

𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)ℂ
≃
-→ 𝐻ℂ →

𝐻ℂ

𝐹0𝐻ℂ + 𝐻ℝ

= Ext1 (ℝ(0),𝐻),

where we have used again the shorthand𝐻 = 𝐻2𝑝−𝑛−1(𝑋; 𝑝), then

{̃𝜃𝑍} = 𝐸𝑍,ℝ. (3.15)

(iii) g𝑍 ∈ 𝐹−1 ∩ 𝐹
−1
Σ𝐵𝑋𝐸

2𝑝−2

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|; 𝑝) satisfying g𝑍 = −g𝑍 and

𝑑g𝑍 =
1

2
(𝜂𝑍 − 𝜂𝑍) − 𝜃𝑍, (3.16)

Remark 3.7. Before starting the proof, we recall how the notation in Definition 1.3 works. Condi-
tions

g𝑍 ∈ 𝐹−1 ∩ 𝐹
−1
Σ𝐵𝑋𝐸

2𝑝−2

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|; 𝑝), and g𝑍 = −g𝑍

are equivalent to

g𝑍 ∈ Σ𝐵𝑋𝐸
𝑝−1,𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|), and g𝑍

dR = (−1)𝑝−1g𝑍,

where g𝑍
dR is the original conjugation of differential forms.

Proof of Proposition 3.6. We first note that the equality (3.15) is a consequence of (3.13) and
(3.16). Recall the explicit construction the isomorphism (3.10) at the beginning of the section.
The mixed Hodge structure 𝐸𝑍 is a substructure of 𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋 ∪ |𝑍|, 𝐵𝑋; 𝑝). Condi-
tion (3.13) implies that the class {𝜂𝑍} belongs to 𝐹0𝐸𝑍,ℂ and is a choice of the class 𝑣. Then Equa-
tion (3.16) implies that {𝜃𝑍} agrees with the class (𝑣 − 𝑣)∕2, and we deduce (3.15).
The class [𝑍] belongs to𝐹0𝐻2𝑝|𝑍|(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)ℂ, andwe compute the underlying coho-

mology group using the simple of morphism 𝜄 in (3.12). Therefore, there should be an element
(𝛼1, 𝛽1) ∈ 𝐹0 s(𝜄) that represents [𝑍].
By Lemma 3.5 the form 𝛼1 has to be exact. Since by Corollary 1.20 the differential 𝑑 is strict with

respect to the Hodge filtration we deduce that there is

𝛼2 ∈ 𝐹0𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝)

with 𝑑𝛼2 = 𝛼1. Writing 𝛽 = 𝛽1 − 𝛼2 we deduce that [𝑍] is represented by (0, 𝛽) = (𝛼1, 𝛽1) −

𝑑(𝛼2, 0) with

𝛽 ∈ 𝐹0Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|; 𝑝).
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Since the class {(0, 𝛽)} also agrees with [𝑍], we get

{(0, 𝛽 − 𝛽)} = 0.

Hence,

{𝛽 − 𝛽} ∈ 𝑊−1𝐻
2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋 ∪ |𝑍|, 𝐵𝑋; 𝑝) = 𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) = 𝐻.

Since this last mixed Hodge structure is pure of weight −𝑛 − 1, we can decompose

{𝛽 − 𝛽}∕2 = 𝑐 − 𝑐 + 𝑡, (3.17)

with

𝑐 ∈ 𝐹0𝐻ℂ, 𝑐 ∈ 𝐹
0
𝐻ℂ, 𝑡 ∈ 𝐹−𝑛𝐻ℂ

and 𝑡 = −𝑡. The class 𝑐 can be represented by a cycle

𝛾 ∈ 𝐹0Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝).

Hence, 𝛾 represents 𝑐. Next choose a representative

𝜃1 ∈ 𝐹−𝑛Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝)

of 𝑡. As a form inΣ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋), it has components of bidegree (𝑎, 2𝑝 − 1 − 𝑎) for𝑎 ⩾ 𝑝 − 𝑛.

We observe that −𝜃1 also represents 𝑡. Hence, there is an 𝑢 ∈ Σ𝐵𝑋𝐸
2𝑝−2

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝) such that

𝑑𝑢 = 𝜃1 + 𝜃1. Since the bidegrees of 𝜃1 and 𝜃1 only overlap in the range

(𝑝 − 𝑛, 𝑝 + 𝑛 − 1), … , (𝑝 + 𝑛 − 1, 𝑝 − 𝑛), (3.18)

we see that some components of 𝑑𝑢 will kill some components of 𝜃1. Let 𝐹𝑛−1𝑢 denote the sum
of the components of 𝑢 of bidegree (𝑎, 𝑏) with 𝑎 ⩾ 𝑝 + 𝑛 − 1. Then 𝜃2 ∶= 𝜃1 − 𝑑𝐹𝑛−1𝑢 only has
components of bidegrees in the range (3.18). This implies that 𝜃2 belongs to 𝐹−𝑛

Writing 𝜃𝑍 = (𝜃2 − 𝜃2)∕2 we obtain a differential form satisfying

𝜃𝑍 ∈ 𝐹−𝑛Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝), 𝑑𝜃𝑍 = 0 and 𝜃𝑍 = −𝜃𝑍

and still representing 𝑡.
The decomposition (3.17) implies that there is a form

g1 ∈ Σ𝐵𝑋𝐸
2𝑝−2

𝑋×(ℙ1)𝑛
(log𝐴𝑋 ∪ |𝑍|; 𝑝)

such that

𝑑g1 =
1

2

(
(𝛽 − 𝛽) − (𝛾 − 𝛾)

)
− 𝜃𝑍
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and g1 = −g1. We decompose g1 in bidegrees

g1 = g𝑝−1,𝑝−1
1

+ 𝐹0g1 + 𝐹
0
g1.

and define

g𝑍 = g𝑝−1,𝑝−1
1

and 𝜂𝑍 = 𝛽 − 2𝛾 − 2𝑑𝐹0g1.

By construction, Equation (3.16) is satisfied. Therefore, g𝑍 satisfies all the conditions of the theo-
rem. On the other hand

(0, 𝜂𝑍) = (0, 𝛽) + 𝑑(−2𝛾, 2𝐹0g1),

so 𝜂𝑍 satisfies condition (3.13). As explained in the beginning, this implies that 𝜃𝑍 satisfies Equa-
tion (3.15).
It remains to show Equation (3.14). The argument is adapted from [8, Theorem 4.4]. By con-

struction of the class [𝑍] we see that forgetting the vanishing at 𝐵𝑋 , the pair (0, 𝜂𝑍) represents
the class cl(𝑍) ∈ 𝐻

2𝑝|𝑍|(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋; 𝑝)ℂ. Using resolution of singularities we can construct a
smooth complex variety 𝑋, a normal crossing divisor 𝐷 and a codimension 𝑝 cycle 𝑍′ with |𝑍′|
smooth and intersecting transversely all intersections of components of 𝐷 and a birational map
𝜋∶ 𝑋 → 𝑋 × (ℙ1)𝑛, such that 𝜋∗𝑍′ = 𝑍,𝐷 being the union of the exceptional divisor of 𝜋 and the
preimage of 𝐴𝑋 . The cohomology group 𝐻

2𝑝|𝑍′|(𝑋 ⧵ 𝐷; 𝑝)ℂ can be computed as the simple of the
morphism of complexes

𝐷∗
𝑋∕𝐷

(𝑝)
𝜄′

-→ 𝐷∗
𝑋∕(𝐷∪𝑍′)

(𝑝).

Moreover, there is a morphism of complexes s(𝜄) → s(𝜄′) given by the commutative diagram

In the complex s(𝜄) the class cl(𝑍′) is represented by the pair (𝛿𝑍′ , 0). Therefore, there are currents
𝑢, 𝑣 such that

(𝛿𝑍′ , 0) − (0, [𝜋∗𝜂𝑍]) = 𝑑(𝑢, 𝑣) = (𝑑𝑢, 𝑢 − 𝑑𝑣).

Hence,

𝛿𝑍′ = 𝑑𝑢, [𝜋∗𝜂𝑍] = 𝑑𝑣 − 𝑢,

which implies the result, thanks to the projection formula. □
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3.4 The class of the extension and Goncharov regulator

In this section we will use the form 𝜃𝑍 to relate the class of 𝐸𝑍 with the Goncharov regulator(𝑍)
of Section 1.9.

Proposition 3.8. Let be the cubical Goncharov regulator normalized as in [12, Definition 5.1] and
Ψ the isomorphism of Definition 3.2. Under the isomorphism

𝐻
2𝑝−𝑛

𝔇
(𝑋,ℝ(𝑝))

≅
-→

𝐻2𝑝−𝑛−1(𝑋, ℂ)

𝐹𝑝𝐻2𝑝−𝑛−1(𝑋, ℂ) + 𝐻2𝑝−𝑛−1(𝑋, ℝ(𝑝))
, (3.19)

the class (𝑍) is mapped to Ψ̃(𝜃𝑍).
Proof. In this proof, to compute real Deligne cohomology we use the Thom–Whitney Deligne
complex𝔇TW of Section 1.7 (see [12, Definition 4.14]). This complex has the advantage to have a
well-defined graded commutative and associative product.
From the forms constructed in Proposition 3.6 we can define the following Thom–Whitney

versions, to complement 𝛿𝑍,TW given by Equation (1.19).

g𝑍,TW ∶= 𝜖 ⊗ 𝜂𝑍 + (1 − 𝜖) ⊗ (𝜂𝑍 + 𝜂𝑍)∕2 + 𝑑𝜖 ⊗ g𝑍

∈ 𝔇
2𝑝−1
TW

(Σ𝐵𝑋𝐸
∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋 ∪ |𝑍|), 𝑝),
𝜃𝑍,TW ∶= 𝑑𝜖 ⊗ 𝜃𝑍 ∈ 𝔇

2𝑝
TW
(Σ𝐵𝑋𝐸

∗
𝑋×(ℙ1)𝑛

(log𝐴𝑋 ∪ |𝑍|), 𝑝).
(3.20)

Equations (3.14) and (3.16) and the fact that 𝛿𝑍 = 𝛿𝑍 imply that

𝑑[gTW,𝑍] = −𝛿TW,𝑍 + [𝜃TW,𝑍]. (3.21)

Equations (1.20) and (3.21), together with [12, Equation (5.7)] and the fact that g𝑍,TW vanishes
when restricted to 𝐵𝑋 imply the equality of cohomology classes

(𝑍) = {(𝜋𝑋)∗[𝜃𝑍,TW ⋅𝑊𝑛]}.

So we are left to compare the classes {(𝜋𝑋)∗[𝜃𝑍,TW ∧𝑊𝑛]} with {Ψ(𝜃𝑍)}. To this end we will use
the explicit description of Wang forms in [16, Definition 6.5]. We note that the form denoted by
𝑊𝑛 here is the form (−1)𝑛𝑊3

𝑛 in [16].
Using (1.17), the image of (𝑍) is represented by the form

𝑛∑
𝑖=1

∫
1

0

(−1)𝑛(𝜖 + 1)𝑖(𝜖 − 1)𝑛−𝑖

2𝑛𝑖!(𝑛 − 𝑖)!
𝑑𝜖 ⋅ (𝜋𝑋)∗[𝜃𝑍 ∧ 𝑃

𝑖
𝑛], (3.22)

where 𝑃𝑖𝑛 =
∑

𝜎∈𝔖𝑛
(−1)𝜎𝑃𝑖𝑛,𝜎 and, for a permutation 𝜎 ∈ 𝔖𝑛.

𝑃𝑖𝑛,𝜎 =
𝑑𝑡𝜎(1)

𝑡𝜎(1)
∧⋯ ∧

𝑑𝑡𝜎(𝑖)

𝑡𝜎(𝑖)
∧
𝑑𝑡𝜎(𝑖+1)

𝑡𝜎(𝑖+1)
∧⋯ ∧

𝑑𝑡𝜎(𝑛)

𝑡𝜎(𝑛)
.
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We now use that

[𝑃𝑖𝑛,𝜎] = −[𝑃𝑛𝑛,𝜎] + boundaries + currents in 𝐵𝑋,

(−1)𝜎𝑃𝑛𝑛,𝜎 =

𝑛⋀
𝑖=1

𝑑𝑡𝑖
𝑡𝑖
,

that
𝑛∑
𝑖=0

𝑛!(−1)𝑛(𝜖 + 1)𝑖(𝜖 − 1)𝑛−𝑖(−1)𝑛−𝑖

2𝑛𝑖!(𝑛 − 𝑖)!
=
(−1)𝑛

2𝑛
(𝜖 + 1 − (𝜖 − 1))𝑛 = (−1)𝑛,

and that the form 𝜃𝑍 vanishes on 𝐵𝑋 to deduce that the current (3.22) is cohomologous to

(−1)𝑛(𝜋𝑋)∗

[
𝜃𝑍 ∧

𝑛⋀
𝑖=1

𝑑𝑡𝑖
𝑡𝑖

]
= Ψ(𝜃𝑍).

□

Corollary 3.9. Let 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00, be a cycle such that its real regulator class is zero. Then we can
choose g𝑍 , 𝜂𝑍 and 𝜃𝑍 as in Proposition 3.6 with the additional property 𝜃𝑍 = 0. Therefore,

𝑑g𝑍 =
1

2
(𝜂𝑍 − 𝜂𝑍).

Proof. Let g ′
𝑍
, 𝜂′

𝑍
and 𝜃′

𝑍
a choice of forms as in Proposition 3.6. If the real regulator class of 𝑍 is

zero, then Proposition 3.8 implies that the cohomology class of 𝜃′
𝑍
belongs to

𝐹0𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) + 𝐻2𝑝−1(𝑋 × (ℙ1)𝑛 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)ℝ.

Hence, there exist differential forms

ℎ1 ∈ 𝐹0Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝),

ℎ2 ∈ Σ𝐵𝑋𝐸
2𝑝−1

𝑋×(ℙ1)𝑛,ℝ
(log𝐴𝑋; 𝑝),

𝛾 ∈ Σ𝐵𝑋𝐸
2𝑝−2

𝑋×(ℙ1)𝑛
(log𝐴𝑋; 𝑝),

with ℎ1 and ℎ2 closed, such that

𝜃′𝑍 = ℎ1 + ℎ2 + 𝑑𝛾.

We write 𝛾1 = (𝛾 − 𝛾)∕2 and we decompose

𝛾1 = 𝛾
𝑝−1,𝑝−1
1

+ 𝐹0𝛾1 + 𝐹
0
𝛾1.

Then 𝐹
0
𝛾1 = −𝐹0𝛾1. Moreover, since 𝜃′𝑍 = −𝜃′

𝑍
,

𝑑𝛾
𝑝−1,𝑝−1
1

= 𝜃′𝑍 −
1

2

(
(ℎ1 + 2𝑑𝐹0𝛾1) − (ℎ1 + 2𝑑𝐹0𝛾1)

)
.
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Thus, if we write

g𝑍 = g ′𝑍 + 𝛾
𝑝−1,𝑝−1
1

, 𝜂𝑍 = 𝜂′𝑍 − ℎ1 − 2𝐹0𝛾1, 𝜃𝑍 = 0,

then it is easy to verify that the triple 𝜂𝑍, 𝜃𝑍, 𝛾𝑍 satisfies the properties of Proposition 3.6. □

Remark 3.10. When the real regulator class of a higher cycle 𝑍 ∈ 𝑍𝑝(𝑍, 𝑛)00 is zero, and the forms
𝜂𝑍 and g𝑍 are as in Corollary 3.9, then 𝜂𝑍 = 2𝜕g𝑍 .

3.5 Comparison with [12]

This subsection acts as a bridge between theHodge theoretic forms obtained above, and the higher
Green forms and currents used in [12]. We will use it later to connect the higher archimedean
height pairing to the height of a mixed Hodge structure associated to a pair of higher cycles. We
will follow the notations of [12].
For each 𝑛, consider the complex given by

𝜏𝔇∗,−𝑠
TW,𝔸

(𝑋, 𝑝) = 𝜏⩽2𝑝𝔇
∗
TW(𝐸

∗
𝑋×(ℙ1)𝑠

(log 𝐵), 𝑝).

It has a cubical structure and we can form the associated refined normalizes double com-
plex 𝜏𝔇∗,∗

TW,𝔸,log
(𝑋, 𝑝)00 and the corresponding total complex 𝜏𝔇∗

TW,𝔸,log
(𝑋, 𝑝)00; see [12, 5.2] for

more details.
There is a quasi-isomorphism

𝜏⩽2𝑝𝔇
∗
TW(𝑋, 𝑝) ↪ 𝜏𝔇∗

TW,𝔸,log
(𝑋, 𝑝)00

that is given by the inclusion as the column 𝑛 = 0.
Let 𝑍, 𝜃𝑍,TW and g𝑍,TW be as in the previous section and write

𝜃𝑍 = (𝜋𝑋)∗[𝜃𝑍,TW ⋅𝑊𝑛] ∈ 𝔇
2𝑝−𝑛
TW

(𝑋, 𝑝) = 𝔇
2𝑝−𝑛,0

TW,𝔸,log
(𝑋, 𝑝)00.

In the complex 𝜏𝔇∗
TW,𝔸,log

(𝑋, 𝑝)00, the forms 𝜃𝑍,TW and 𝜃𝑍 are cohomologous as both represent
the class {(𝑍)}. Therefore, we obtain an element

(𝛼𝑛, … , 𝛼0) ∈ 𝔇
2𝑝−𝑛−1

TW,𝔸,log
(𝑋, 𝑝)00,

satisfying

(0, … , 𝜃𝑍) − (𝜃𝑍,TW, 0, … , 0) = 𝑑(𝛼𝑛, … , 𝛼0). (3.23)

We obtain an 𝑛-tuple of forms

𝔤𝑍 ∶= (g𝑍,TW + 𝛼𝑛, … , 𝛼0).
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Lemma 3.11. The 𝑛-tuple of forms

𝔤𝑍 ∈

0⨁
𝑖=𝑛

𝔇
2𝑝−𝑛+𝑖−1
TW

(𝐸∗
𝑋×(ℙ1)𝑖

(log𝐴 ∪ |𝑍|𝑖), 𝑝)00
is a refined Green form for 𝑍, as in [12, Definition 6.5].

Proof. Equations (3.23) and (3.21) when written componentwise, imply the conditions of [12, Def-
inition 6.5]. □

Remark 3.12. Note that in the Green form 𝔤𝑍 only the component over𝑋 × (ℙ1)𝑛 has singularities
along |𝑍|, while the rest are smooth on 𝑋 ×□𝑖 , with logarithmic singularities along 𝐴𝑋 .

After constructing a higher Green form out of g𝑍,TW we also construct a Green current. Let
g𝑍 ∶= (𝜋𝑋)∗[g𝑍 ⋅𝑊𝑛] ∈ 𝔇

2𝑝−𝑛−1
TW,𝐷

(𝑋, 𝑝). Then, in the complex𝔇2𝑝−𝑛−1
TW,𝐷

(𝑋, 𝑝) the equation

𝑑g𝑍 = −(𝑍) + 𝜃𝑍,

is satisfied. Hence, g𝑍 is a Green current for the cycle 𝑍 as in [12, Definition 6.1].
Let now𝑊 be a cycle in 𝑍𝑞(𝑋,𝑚)00, which intersects 𝑍 properly and g𝑊 a Green current for

𝑊 in the Thom–Whitney complex. We now can give a second (and simplified) definition of star
product:

Definition 3.13. Let g𝑍,TW, g𝑍 and g𝑊 be as before. Then we define the product

g𝑍 ∗2 g𝑊 = (−1)𝑛(𝜋𝑋)∗
(
𝛿𝑍,TW ⋅𝑊𝑚 ⋅ g𝑊,TW ⋅𝑊𝑛

)
+ g𝑍 ⋅ 𝜃𝑊

We note here that the products are taking place in the ambient space 𝑋 × (ℙ1)𝑚 × (ℙ1)𝑛, and
the notations should be interpreted accordingly. For example, gTW,𝑍 really means the pullback of
this form to the ambient space. We avoid the pullback notations to simplify the exposition. This
note will hold true whenever we take products between elements in a priori different spaces.
We next show that the star product ∗2 is compatible with the star product ∗ in [12, Section 6.4].

Proposition 3.14. Let 𝔤′
𝑊
be a Green form for𝑊 in the Thom–Whitney complex, such that g𝑊∼ =

[𝔤𝑊]
∼. Then for any Green current g𝑍 of 𝑍, we have(

g𝑍 ∗2 g𝑊
)∼

= (g𝑍 ∗ 𝔤
′
𝑊)

∼.

Proof. Since the product (g𝑍 ∗ 𝔤′𝑊)
∼ is independent on the choice of 𝔤′

𝑊
we canmake a particular

choice. We consider the elements (𝛼𝑚,… , 𝛼0) satisfying (3.23). We write

𝛼 =

𝑚∑
𝑖=0

(𝜋𝑋)∗(𝛼𝑖 ⋅𝑊𝑖).
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Then 𝛼 is closed. Indeed by (3.23) and [12, (5.7)]

𝑑𝛼 =

𝑚∑
𝑖=0

(𝜋𝑋)∗(𝑑𝛼𝑖 ⋅𝑊𝑖) +

𝑚∑
𝑖=0

(−1)2𝑝−𝑖−1(𝜋𝑋)∗(𝛼𝑖 ⋅ 𝑑𝑊𝑖) = −(𝜋𝑋)∗(𝜃𝑊,TW ⋅𝑊𝑛) + 𝜃𝑊 = 0.

We define

𝔤′𝑊 = (g𝑊,TW + 𝛼𝑚, 𝛼𝑚−1, … , 𝛼1, 𝛼0 − 𝛼).

With this choice

[𝔤′𝑊] = (𝜋𝑋)∗(g𝑊,TW ⋅𝑊𝑛) +

𝑚∑
𝑖=0

(𝜋𝑋)∗(𝛼𝑖 ⋅𝑊𝑖) − 𝛼 = g𝑊.

Moreover,

(−1)𝑛(g𝑍 ∗ 𝔤
′
𝑊 − g𝑍 ∗2 g𝑊) =

𝑚∑
𝑖=0

(𝜋𝑋)∗(𝛿𝑍,TW ⋅𝑊𝑚 ⋅ 𝛼𝑖 ⋅𝑊𝑖) − (𝜋𝑋)∗(𝛿𝑍,TW ⋅𝑊𝑚 ⋅ 𝛼) = 0.

proving the proposition. □

As a consequence we obtain the following formula for the higher archimedean height pairing
of Definition 1.35.

Corollary 3.15. If 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00 and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 be two higher cycles whose real regulator
classes are zero with 2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚, then

⟨𝑍,𝑊⟩Arch = (−1)𝑛(𝑝)∗
(
𝛿𝑍,TW ⋅𝑊𝑚 ⋅ g𝑊,TW ⋅𝑊𝑛

)∼
,

where 𝑝∶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 → Spec(ℂ) is the structural morphism.

Proof. The key point is that we can use the second definition of Green current using Proposi-
tion 3.14 for the particular choice of Green form for𝑊, since higher archimedean height pairing
is independent of the choice of Green form for a higher cycle. Next, the real regulator class of𝑊
being zero allows us to choose 𝜃𝑊 = 0 by Corollary 3.9. This concludes the proof. □

3.6 The dual extension

Let now 𝑞 ⩾ 0 and𝑚 ⩾ 1 be integers and let𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00 be a cycle.We apply the construction
of Sections 3.2 and 3.3 to this setting, obtaining an extension𝐸𝑊 and the corresponding differential
forms. We can dualize the extension 𝐸𝑊 to get a dual extension

𝐸∨𝑊 = Hom𝐌𝐇𝐒(𝐸𝑊,ℚ(0)).

This extension is given by the short exact sequence

0⟶ ℚ(0)⟶ 𝐸∨𝑊 ⟶𝐻2𝑑−2𝑞+𝑚+1(𝑋; 𝑑 − 𝑝)⟶ 0,



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 115

dual to (3.9). By construction 𝐸𝑊 is a sub-mixed Hodge structure of

𝐻2𝑞−1(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋 ∪ |𝑊|, 𝐵𝑋; 𝑝). (3.24)

By duality, we would like to see 𝐸∨
𝑊
as a quotient mixed Hodge structure. A naive idea would be

to think that 𝐸∨
𝑊
should be a quotient of

𝐻2𝑑−2𝑞+𝑚+1(𝑋 × (ℙ1)𝑚 ⧵ 𝐵𝑋,𝐴𝑋 ∪ |𝑊|; 𝑑 + 𝑚 − 𝑞).

But the problem is that the above group does not need to be the dual to (3.24) because𝐵𝑋 and𝐴𝑋 ∪|𝑊|may fail to be in a local product situation. To remedy this situation, we consider a composition
of blow-ups as in the next lemma.

Lemma 3.16. There exists a proper transform

𝜋∶ 𝑊 → 𝑋 × (ℙ1)𝑚,

which is a composition of blow-ups with smooth centers whose image in 𝑋 × (ℙ1)𝑚 is contained in|𝑊| ∩ 𝐵𝑋 , such that if we denote by𝑊, 𝐴𝑋 and 𝐵𝑋 the strict transforms of |𝑊|, 𝐴𝑋 and 𝐵𝑋 , respec-
tively, and by 𝐷 the exceptional divisor, then

(i) the strict transforms𝑊 and 𝐵𝑋 do not meet; and
(ii) the divisor 𝐴𝑋 ∪ 𝐷 ∪ 𝐵𝑋 is a simple normal crossing divisor.

The previous conditions imply that the pair of closed subsets 𝐴𝑋 ∪ 𝐷 and 𝐵𝑋 are in local product
situation and the same is true for the pair 𝐴𝑋 ∪ 𝐷 ∪𝑊 and 𝐵𝑋 .

Proof. Let 𝑊 be the ideal sheaf of |𝑊| and 𝐵 the ideal sheaf of 𝐵𝑋 by blowing up 𝑊 + 𝐵
we obtain a proper transform 𝑋1 → 𝑋 × (ℙ1)𝑚 such that the strict transform of |𝑊| and 𝐵𝑋 do
not meet [24, Chapter II, Exercise 7.12]. This proper transform is an isomorphism outside |𝑊| ∩
𝐵𝑋 but 𝑋1 is possibly singular. By using strong resolution of singularities in the elimination of
indeterminacies, there is a proper transform

𝜋∶ 𝑊 → 𝑋 × (ℙ1)𝑚,

which is a composition of blow-ups with smooth centers whose image in 𝑋 × (ℙ1)𝑚 is contained
in |𝑊| ∩ 𝐵𝑋 , with a map 𝑊 → 𝑋1, making the diagram

commutative and satisfying the conditions of the lemma. □

Let 𝜋∶ 𝑊 → 𝑋 × (ℙ1)𝑚 be a map provided by Lemma 3.16.



116 BURGOS GIL et al.

Notation 3.17. In the sequel we will use the following shorthands:

□𝑚 = (ℙ1)𝑚 ⧵ 𝐴, □□𝑚 = ((ℙ1)𝑚 ⧵ 𝐴, 𝐵),

□𝑚
𝑋 = 𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋, □□𝑚

𝑋 = (𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋, 𝐵𝑋)

□̃𝑚
𝑋
= 𝑊 ⧵ 𝐴𝑋, □̃□𝑚

𝑋
= (𝑊 ⧵ 𝐴𝑋, 𝐵𝑋),

and the dual ones

𝐺𝑚 = (ℙ1)𝑚 ⧵ 𝐵, 𝔾𝑚 = ((ℙ1)𝑚 ⧵ 𝐵,𝐴),

𝐺𝑚𝑋 = 𝑋 × (ℙ1)𝑚 ⧵ 𝐵𝑋, 𝔾𝑚𝑋 = (𝑋 × (ℙ1)𝑚 ⧵ 𝐵𝑋,𝐴𝑋)

𝐺𝑚
𝑋
= 𝑊 ⧵ 𝐵𝑋, 𝔾𝑚

𝑋
= (𝑊 ⧵ 𝐵𝑋,𝐴𝑋).

Moreover, in the relative schemes like□□𝑚
𝑋
, the notation (□□𝑚

𝑋
⧵ 𝑆, 𝑇) will mean

(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋 ∪ 𝑆, 𝐵𝑋 ∪ 𝑇).

We have the following.

Lemma 3.18. The cohomology of 𝑊 satisfies

(i) the morphism

𝐻𝑟(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋 ∪ |𝑊|, 𝐵𝑋) 𝜋∗

--→ 𝐻𝑟(𝑊 ⧵ 𝐴𝑋 ∪ 𝐷 ∪𝑊,𝐵𝑋),

is an isomorphism for all 𝑟 ⩾ 0;
(ii) the morphism

𝐻𝑟(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋, 𝐵𝑋)⟶ 𝐻𝑟(𝑊 ⧵ 𝐴𝑋 ∪ 𝐷, 𝐵𝑋)

is an isomorphism for 𝑟 ⩽ 2𝑞, and injective for 𝑟 = 2𝑞 + 1.

Proof. Since the map 𝜋 gives isomorphisms

𝑊 ⧵ 𝐴𝑋 ∪ 𝐷 ∪𝑊 ≅ 𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋 ∪ |𝑊|
𝐵𝑋 ⧵ 𝐴𝑋 ∪ 𝐷 ∪𝑊 ≅ 𝐵𝑋 ⧵ 𝐴𝑋 ∪ |𝑊|,

we get (i) immediately.
For (ii), let𝐶 be the center of the blow-ups. by the same reason as before,𝜋∗ gives isomorphisms

𝐻𝑟(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋 ∪ 𝐶, 𝐵𝑋)
≅
-→ 𝐻𝑟(𝑊 ⧵ 𝐴𝑋 ∪ 𝐷, 𝐵𝑋).

Moreover, using Notation 3.17 we have a diagram of mixed Hodge structures with exact rows and
commutative squares
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Since 𝐶 has codimension at least 𝑞 + 1 in 𝑋 × (ℙ1)𝑚 and 𝐶 ∩ 𝐵𝑋 has codimension at least 𝑞 + 1

in 𝐵𝑋 , the arrows ①, ②, ④ and ⑤ are isomorphisms. Hence, the arrow ③ is also an isomorphism
for 𝑟 ⩽ 2𝑞. For 𝑟 = 2𝑞 + 1, the arrows ① and ② are isomorphisms, while the arrow ④ is injective.
Hence, the arrow ③ is also injective. □

Corollary 3.19. The morphism

𝐻𝑟(□□𝑚
𝑋 )⟶ 𝐻𝑟(□̃□𝑚

𝑋
⧵ 𝐷)

is an isomorphism for 𝑟 ⩽ 2𝑞 and injective for 𝑟 = 2𝑞 + 1. Dually, the map

𝐻𝑠(𝔾𝑚
𝑋
, 𝐷)⟶ 𝐻𝑠(𝔾𝑚𝑋 )

is an isomorphism for 𝑠 ⩾ 2𝑑 + 2𝑚 − 2𝑞 and surjective for 𝑠 = 2𝑑 + 2𝑚 − 2𝑞 − 1.

We now consider the commutative diagram with exact rows

where the vertical arrows are isomorphisms thanks to Lemma 3.18,
In the bottom row of the above diagram, all the relevant relative schemes are in a local prod-

uct situation. Hence, the dual to this bottom row, after twisting by ℚ(−𝑑 −𝑚) to make the
twist disappear, writing 𝑑𝑊 = dim(𝑊) = 𝑑 +𝑚 − 𝑞 and taking into account that 𝐻2𝑑𝑊(𝑊) =

𝐻2𝑑𝑊(𝑊,𝑊 ∩ (𝐷 ∪ 𝐴𝑋)), reads

𝐻2𝑑𝑊(𝔾𝑚
𝑋
, 𝐷) → 𝐻2𝑑𝑊(𝑊) → 𝐻2𝑑𝑊+1(𝔾𝑚

𝑋
, 𝐷 ∪𝑊) ↠ 𝐻2𝑑𝑊+1(𝔾𝑚

𝑋
, 𝐷).

After unfolding Notation 3.17 we obtain

𝐻2𝑑𝑊(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷) → 𝐻2𝑑𝑊(𝑊)

→ 𝐻2𝑑𝑊+1(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷 ∪𝑊) → 𝐻2𝑑𝑊+1(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷) → 0. (3.25)

Just as a sanity check, note that in this exact sequence the first arrow is well defined because
𝑊 ∩ 𝐵𝑋 = ∅ and there is a zero at the end because dim𝑊 = 𝑑𝑊 . We now use that

𝐻2𝑑𝑊(𝑊,𝑊 ∩ (𝐴𝑋 ∪ 𝐷)) ≅ 𝐻2𝑑𝑊(𝑊),

since dim(𝑊 ∩ (𝐴𝑋 ∪ 𝐷)) < 𝑑𝑊 .
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The class of𝑊 produces a morphism of mixed Hodge structure

𝜙∨𝑊 ∶ 𝐻2𝑑𝑊(𝑊; 𝑑𝑊)⟶ ℚ(0), (3.26)

which is the dual of the map (3.8). The fact that the image of the class [𝑊] in 𝐻2𝑞(𝑋 × (ℙ1)𝑚 ⧵

𝐴𝑋, 𝐵𝑋; 𝑝) is zero implies that

𝜙∨𝑊

(
𝐻2𝑑𝑊(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷; 𝑑𝑊)

)
= 0.

Hence, taking the push-forward through 𝜙∨
𝑊
of the exact sequence (3.25), we obtain a short exact

sequence

0 → ℚ(0) → 𝐸∨𝑊 → 𝐻2𝑑𝑊+1(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷; 𝑑𝑊) → 0.

ByLemma 3.18 (ii), the fact that𝐵𝑋 and𝐴𝑋 ∪ 𝐷 are in local product situation and the isomorphism
(3.5) we have

𝐻2𝑑𝑊+1(𝑊 ⧵ 𝐵𝑋,𝐴𝑋 ∪ 𝐷; 𝑑𝑊) = 𝐻2𝑞−1(𝑊 ⧵ 𝐴𝑋 ∪ 𝐷, 𝐵𝑋; 𝑝)
∨

= 𝐻2𝑞−1(𝑋 × (ℙ1)𝑚 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝)
∨

= 𝐻2𝑑𝑊+1(𝑋 × (ℙ1)𝑚 ⧵ 𝐵𝑋,𝐴𝑋; 𝑑𝑊)

= 𝐻2𝑑−(2𝑞−𝑚−1)(𝑋; 𝑑 − 𝑞).

Therefore, the above short exact sequence can be written as

0 → ℚ(0) → 𝐸∨𝑊 → 𝐻2𝑑−(2𝑞−𝑚−1)(𝑋; 𝑑 − 𝑞) → 0. (3.27)

By construction this exact sequence is the dual sequence to 3.9. We denote by

𝑒∨𝑊 ∈ Ext1𝐌𝐇𝐒

(
𝐻2𝑑+𝑚−2𝑞+1(𝑋; 𝑑 − 𝑞), ℚ(0)

)
,

to be the class of this extension.

3.7 Oriented MHS attached to a pair of higher cycles

Let 𝑛,𝑚 ⩾ 1, and 𝑝, 𝑞 ⩾ 0 be integers with

2(𝑝 + 𝑞 − 𝑑 − 1) = 𝑛 + 𝑚. (3.28)

Let 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00, and𝑊 ∈ 𝑍𝑞(𝑋,𝑚)00, be two cycles in the refined normalized complex inter-
secting properly. We want to attach an oriented rational mixed Hodge structure to this pair. This
mixed Hodge structure is similar to the one constructed by Hain in [22], with one significant dif-
ference: In the case for usual cycles homologous to zero, proper intersection and the numerical
relation𝑝 + 𝑞 = 𝑑 + 1mean that the supports of the cycles are disjoint, which is no longer the case



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 119

here. So one should expect the newmixedHodge structure to reflect this phenomenon.Moreover,
the use of proper modification in order to use duality will add another technical difficulty.
Let

𝜋1 ∶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 ⟶ 𝑋 × (ℙ1)𝑛

𝜋2 ∶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 ⟶ 𝑋 × (ℙ1)𝑚

be the two projections. Then the fact that 𝑍 and𝑊meet properly means precisely that 𝑝−1
1
(|𝑍|) ∩

𝑝−1
2
(|𝑊|) ∩ 𝑋 ×□𝑛+𝑚 has codimension 𝑝 + 𝑞 and intersects properly all the faces of □𝑛+𝑚.

Hence, there is a well-defined intersection pre-cycle

𝑍 ⋅𝑊 ∈ 𝑍𝑝+𝑞(𝑋, 𝑛 + 𝑚)0.

Since 𝑍 and𝑊 are cycles in the refined normalized complex, the same is true for 𝑍 ⋅𝑊.
Let 𝜋∶ 𝑊 → 𝑋 × (ℙ1)𝑚 be a proper modification as in Lemma 3.16 applied to𝑊. Let 𝐶 ⊂ |𝑊|

be the support of the center of 𝜋. Then 𝜋 is an isomorphism outside 𝐶. On 𝑊 ,𝑊,𝐴𝑋 and 𝐵𝑋 are
the strict transforms of |𝑊|, 𝐴𝑋 and 𝐵𝑋 and 𝐷 is the exceptional divisor.
We will assume the following technical conditions.

Assumption 3.20. The intersection 𝜋−1
1
(|𝑍|) ∩ 𝜋−1

2
(𝐶) = ∅.

Remark 3.21. Assumption 3.20 is more and more restrictive for bigger values of 𝑛 and 𝑚. In the
case 𝑛 = 𝑚 = 1, this condition is satisfied generically but it is not the case for higher values of 𝑛
and𝑚.

The sought mixed Hodge structure will appear in a diagram that contains at the same time the
exact sequence (3.9) for the cycle 𝑍 and the dual exact sequence (3.27) for the cycle 𝑊. For the
main diagram to fit in one page, we need to complement Notation 3.17.

Notation 3.22. We have already introduced the projections 𝜋1 and 𝜋2 and consider also the pro-
jection

𝜋3 ∶ 𝑊 × (ℙ1)𝑛 ⟶ 𝑊.
Moreover, we also consider the proper transform

𝜋′ ∶ 𝑊 × (ℙ1)𝑛 ⟶ 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚.

Note that this map involves a change in the order of the variables. We write

𝐴1 = 𝜋−11 𝐴𝑋, 𝐴2 = 𝜋−12 𝐴𝑋,

𝐵1 = 𝜋−11 𝐵𝑋, 𝐵2 = 𝜋−12 𝐵𝑋,

𝐴2 = 𝜋−13 𝐴𝑋, 𝐵2 = 𝜋−13 𝐵𝑋,

𝐴1 = (𝜋′)−1𝐴1, 𝐵1 = (𝜋′)−1𝐵1,
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F IGURE 1 The main diagram

𝐷 = 𝜋−13 𝐷, 𝐶2 = 𝜋−12 (𝐶),

𝑍 = |𝑍| × (ℙ1)𝑚, 𝑊 = 𝜋−13 𝑊.

Note that the spaces marked with an overline are subsets of 𝑊 × (ℙ1)𝑛 while the others are sub-
sets of 𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚. We will also consider the relative schemes

□□𝑛,𝑚
𝑋

= □□𝑛
𝑋 ×𝑋 𝔾𝑚𝑋 = (𝑋 × (ℙ1)𝑛 × (ℙ1)𝑚 ⧵ 𝐴1 ∪ 𝐵2, 𝐵1 ∪ 𝐴2),

□̃□𝑛,𝑚
𝑋

= □□𝑛
𝑋 ×𝑋 𝔾𝑚

𝑋
= (𝑊 × (ℙ1)𝑛 ⧵ 𝐴1 ∪ 𝐵2, 𝐵1 ∪ 𝐴2).

𝑍 = (𝑍 ⧵ 𝐴1 ∪ 𝐵2, 𝐵1 ∪ 𝐴2) ⊂ □̃□𝑛,𝑚
𝑋

,

𝑊 = (𝑊 ⧵ 𝐴1, 𝐵1 ∪ 𝐴2) ⊂ □̃□𝑛,𝑚
𝑋

.

The relative schemes will always be denoted, either with a double-line typography or with an
underline. Finally, we write 𝑆 = 𝑍 ∩𝑊. Note that by Assumption 3.20, the relative schemes 𝑍
and 𝑆 can be seen as subschemes of either□□𝑛,𝑚

𝑋
or □̃□𝑛,𝑚

𝑋
. Note also that in the definition of𝑊,

the divisor 𝐵2 does not appears because𝑊 and 𝐵𝑋 are disjoint.

We consider the commutative diagram with exact rows and columns of Figure 1. In that
diagram, we have omitted 𝐷 in the last column because, by Assumption 3.20, it is disjoint
with 𝑍.
We now analyze the different terms in that diagram for 𝑟 = 2𝑝 + 𝑚 − 1. We start with the top

left corner:

𝐻2𝑝+𝑚−1(□̃□𝑛,𝑚
𝑋

, 𝐷) = 𝐻2𝑝+𝑚−1((𝔾𝑚
𝑋
, 𝐷) ×□□𝑛)

= 𝐻2𝑝+𝑚−𝑛−1(𝔾𝑚
𝑋
, 𝐷)
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= 𝐻2𝑝+𝑚−𝑛−1(𝔾𝑚𝑋 )

= 𝐻2𝑝−𝑛−1(𝑋;−𝑚).

The first equality is true at the level of relative schemes. The second equality follows from (3.4) and
Künneth formula. Since by (3.28), 2𝑝 + 𝑚 − 𝑛 − 1 = 2𝑑 + 2𝑚 − 2𝑞 + 1, the third equality follows
from Corollary 3.19. The last one follows from (3.5). This computation means in particular that
the composition

𝐻2𝑝+𝑚−1(□̃□𝑛,𝑚
𝑋

, 𝐷)
≅
←- 𝐻2𝑝+𝑚−1(□□𝑛,𝑚

𝑋
, 𝐶2)⟶ 𝐻2𝑝+𝑚−1(□□𝑛,𝑚

𝑋
) (3.29)

is an isomorphism. The fact that the composition (3.29) is an isomorphism, together with the fact
that 𝐷 and 𝑍 are disjoint by Assumption 3.20 imply that the compositions

𝐻2𝑝+𝑚−1(□̃□𝑛,𝑚
𝑋

⧵ 𝑍, 𝐷)
≅
←- 𝐻2𝑝+𝑚−1(□□𝑛,𝑚

𝑋
⧵ 𝑍, 𝐶2)

⟶ 𝐻2𝑝+𝑚−1(□□𝑛,𝑚
𝑋

⧵ 𝑍)
≅
-→ 𝐻2𝑝−1(□□𝑛

𝑋 ⧵ 𝑍;−𝑚) (3.30)

and

𝐻
2𝑝
𝑍
(□□𝑛

𝑋; −𝑚)⟶𝐻
2𝑝+𝑚
𝑍

(□□𝑛,𝑚
𝑋

)⟶ 𝐻
2𝑝+𝑚
𝑍

(□̃□𝑛,𝑚
𝑋

) (3.31)

are isomorphisms. So, we can identify the top row of the diagramwith the exact sequence (3.7). In
fact this argument also implies that ④ is zero and that the image of the class of 𝑍 in ⑤ is also zero.
Since 2𝑑𝑊 = 2𝑑 + 2𝑚 − 2𝑞 = 2𝑝 − 2 + 𝑚 − 𝑛, using the isomorphisms

𝐻2𝑑𝑊+1((𝔾𝑚
𝑋
,𝑊 ∪ 𝐷)),

≅
-→ 𝐻2𝑝+𝑚−1((𝔾𝑚

𝑋
,𝑊 ∪ 𝐷) ×□□𝑛) = 𝐻2𝑝+𝑚−1(□̃□𝑛,𝑚

𝑋
,𝑊 ∪ 𝐷)

and

𝐻2𝑑𝑊(𝑊,𝑊 ∩ 𝐷) = 𝐻2𝑑𝑊(𝑊)
≅
-→ 𝐻2𝑝+𝑚−2((𝑊,𝑊 ∩ 𝐷) ×□□𝑛) = 𝐻2𝑝+𝑚−2(𝑊,𝑊 ∩ 𝐷)

we can identify the first column of the diagram with the exact sequence (3.25). By dimension
reasons, these identifications also imply that ① is zero and that the image of 10© twisted by ℚ(𝑑𝑊)
under the map 𝜙∨

𝑊
in (3.26) is zero.

Note that the group ⑨ agrees with ① and the group 12© agrees with ④ so they both vanish.
Next we face the technical problem that, in general, the groups 𝐻∗

𝑆
(𝑊) are difficult to control.

Even if 𝑆 is one point, if𝑊 is singular, it can be very complicated. So in order to proceedwe need to
add another technical assumption. Afterward, we will give an example of geometrical conditions
that assure the fulfillment of the technical assumption.

Assumption 3.23. Assume that the main diagram satisfies the following conditions:

(i) the image of the class of 𝑍 in 𝐻2𝑝+𝑚
𝑆

(𝑊) is zero;

(ii) the map 𝜙∨
𝑊
sends the image of𝐻2𝑝+𝑚−2

𝑆
(𝑊; 𝑑𝑊) to zero;

(iii) the mixed Hodge structure 𝐻2𝑝+𝑚−1
𝑆

(𝑊) has weights contained in the interval [2𝑝 + 𝑚 −

𝑛 − 1, 2𝑝 + 2𝑚 − 1].
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F IGURE 2 Oriented mixed Hodge structure diagram

Proposition 3.24. Let 𝑆0 be the union of components of 𝑆 that are not contained in 𝐴1 ∪ 𝐴2. If the
conditions,

(i) the subset 𝑆0 is contained in𝑊sm, the open subset of smooth points;
(ii) the pair of subsets 𝑆0 and𝑊 ∩ (𝐵1 ∪ 𝐷 ∪ 𝐴2) are in local product situation inside𝑊;
(iii) we are in the symmetric situation 𝑛 = 𝑚;

are satisfied, then the conditions of Assumption 3.23 are also satisfied.

Proof. By resolving singularities of𝑊 and using Lemma 1.11, conditions (i) and (ii) of the propo-
sition imply that

𝐻𝑟
𝑆(𝑊) = 𝐻2𝑑+2𝑛+2𝑚−2𝑞−𝑟(𝑆0 ⧵ 𝐵1 ∪ 𝐷 ∪ 𝐴2,𝐴1; 𝑑 + 𝑛 + 𝑚 − 𝑞)∨.

Since dim𝑆0 = (𝑛 + 𝑚)∕2 − 1, by [21, Chapter IV, Proposition 3.5] the cohomology of 𝑆 has
weights in the interval [0, 𝑛 + 𝑚 − 2]. Therefore, the weights of𝐻𝑟

𝑆
(𝑊) are contained in the inter-

val [2𝑝, 2𝑝 + 𝑛 +𝑚 − 2]. If we add the condition 𝑛 = 𝑚, then this interval is contained in the
interval of Assumption 3.23(iii).
The class of 𝑍 in 𝐻

2𝑝+𝑚
𝑍

(□̃□𝑛,𝑚
𝑋

) has weight 2𝑝 + 2𝑚 (recall the isomorphism (3.5)) since

𝐻
2𝑝+𝑚
𝑆

(𝑊)hasweight atmost 2𝑝 + 2𝑚 − 2 (here aswell we are using 𝑛 = 𝑚) condition 3.23(i) fol-
lows.
Using again 𝑛 = 𝑚, the group 𝐻2𝑝+𝑚−2

𝑆
(𝑊; 𝑑𝑊) has weights in the interval [2, 2𝑚]. Since the

image of the map 𝜙∨
𝑊
has weight zero, we deduce condition 3.23(ii). □

Definition 3.25. Let 𝑛 = 𝑚 ⩾ 1 and 𝑝, 𝑞 ⩾ 0 satisfying 𝑝 + 𝑞 = 𝑑 + 𝑛 + 1 and let 𝑍 ∈ 𝑍𝑝(𝑋, 𝑛)00
and 𝑊 ∈ 𝑍𝑞(𝑋, 𝑛)00 be cycles satisfying Assumptions 3.20 and 3.23. Then the oriented mixed
Hodge structure diagram associated to 𝑍,𝑊 is the diagram obtained from the main diagram in
Figure 1 by first twisting by ℚ(𝑝 + 𝑛), then taking the pullback by 𝜙𝑍 and then the push-forward
by 𝜙∨

𝑊
twisted by ℚ(𝑛 + 1). This diagram is depicted in Figure 2.
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Remark 3.26. In general, if we switch 𝑍 and 𝑊, we do not obtain the dual of the diagram in
Figure 2. The first problem is obvious: Assumption 3.20 is not symmetric. But even if Assumptions
3.20, 3.23 and the symmetric assumptions are satisfied, the two obtained diagramsmay not be dual
of each other if 𝑍 and𝑊 are not in local product situation. Later, we will investigate inmore detail
the duality of this diagram in a particular case.

3.8 The case 𝒏 = 𝒎 = 𝟏

Due to the technical difficulties arising from the intersection 𝜋−1
1
(|𝑍|) ∩ 𝜋−1

2
(|𝑊|) we will con-

centrate on the case 𝑛 = 𝑚 = 1. Then Equation (3.28) reads

𝑝 + 𝑞 = 𝑑 + 2. (3.32)

Proper intersection means that the intersection 𝜋−1
1
(|𝑍|) ∩ 𝜋−1

2
(|𝑊|) ∩ 𝑋 ×□2 is a finite set

of points.
To ease the analysis, we make the following stronger assumption.

Assumption 3.27. We assume that 𝑛 = 𝑚 = 1 and that the whole intersection 𝑆 = 𝜋−1
1
(|𝑍|) ∩

𝜋−1
2
(|𝑊|) ⊂ 𝑋 × (ℙ1)2 is a finite set of points. Moreover,

(i) the subsets 𝑆 and 𝐴1 ∪ 𝐴2 ∪ 𝐵1 ∪ 𝐵2 are disjoint;
(ii) the subset 𝑆 is contained in 𝜋−1(|𝑍|sm) ∩ 𝜋−12 (|𝑊|sm) and the intersection 𝜋−1(|𝑍|) ∩

𝜋−1
2
(|𝑊|) is transverse at every point of 𝑆.

In particular 𝜋−1(|𝑍|) and 𝜋−1
2
(|𝑊|) are in local product situation.

Assumption 3.27 implies that we can define the diagram in Figure 2 and also the same diagram
with 𝑍 and𝑊 swapped.

Proposition 3.28. Assumption 3.27 implies Assumptions 3.20 and 3.23 for the pair 𝑍,𝑊 and for
the reversed pair𝑊, 𝑍.

Proof. By condition 3.27(i) 𝜋−1
1
(|𝑍|) and 𝜋−1

2
(|𝑊| ∩ 𝐵𝑋) are disjoint. Therefore, Assumption 3.20

is satisfied. Since 𝑆 is a finite set of points contained in the smooth part of𝑊, the dimension of𝑊
is 𝑑 + 2 − 𝑞 = 𝑝, and 2𝑝 + 𝑚 − 1 = 2𝑝, we deduce that

𝐻
2𝑝+𝑚
𝑆

(𝑊) = 𝐻
2𝑝+𝑚−2
𝑆

(𝑊) = 0,

and that𝐻2𝑝+𝑚−1
𝑆

(𝑊) is pure of weight 2𝑝. Hence, Assumption 3.23 is also satisfied.
Since Assumption 3.27 is symmetric with respect to the swap of 𝑍 and𝑊, we deduce Assump-

tions 3.20 and 3.23 for the pair reversed. □

Next, we modify the main diagram in Figure 1 to achieve two goals. First, we want it to be
symmetric under the swap of 𝑍 and𝑊, and second, we want the strict transforms of 𝑍 and𝑊 to
be smooth in order to easily use differential forms on them.
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Using the same method as in Lemma 3.16. we can find a proper transform 𝜋𝑍 ∶  ′
𝑍
→ 𝑋 × ℙ1,

with centers contained in |𝑍|sing ∪ (|𝑍| ∩ 𝐵𝑋), with exceptional divisor 𝐷𝑍 such that
(i) the strict transform 𝑍 of |𝑍| is smooth and does not meet 𝐵𝑋 ;
(ii) the divisor 𝐴𝑋 ∪ 𝐷𝑍 ∪ 𝐵𝑋 is a simple normal crossing divisor.

Similarly, we construct the proper transform 𝜋𝑊 ∶  ′
𝑊
→ 𝑋 × ℙ1 and define

𝑍,𝑊 ∶=  ′
𝑍 ×𝑋  ′

𝑊,

which is smooth under Assumption 3.27. We denote the union of the centers of blow-ups for  ′
𝑊

and  ′
𝑍
to be 𝐶𝑊 and 𝐶𝑍 , respectively. Let

𝜋′ ∶ 𝑍,𝑊 → 𝑋 × ℙ1 × ℙ1

be the proper morphism induced by the maps 𝜋𝑍 and 𝜋𝑊 , and let

𝜋′1 ∶ 𝑍,𝑊 →  ′
𝑍, 𝜋′2 ∶ 𝑍,𝑊 →  ′

𝑊

be the projections. We summarize the different maps in the following diagram.

(3.33)

We adapt Notation 3.22 to this case, and introduce

Notation 3.29.

𝐴1 = 𝜋−11 𝐴𝑋, 𝐴2 = 𝜋−12 𝐴𝑋,

𝐵1 = 𝜋−11 𝐵𝑋, 𝐵2 = 𝜋−12 𝐵𝑋,

𝐴1 = (𝜋′1)
−1𝐴𝑋, 𝐵1 = (𝜋′1)

−1𝐵𝑋,

𝐴2 = (𝜋′2)
−1𝐴𝑋, 𝐵2 = (𝜋′2)

−1𝐵𝑋,

𝐷𝑍 = (𝜋′1)
−1𝐷𝑍, 𝐷𝑊 = (𝜋′2)

−1𝐷𝑊,
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F IGURE 3 A symmetric version of the main diagram for 𝑛 = 𝑚 = 1

𝐶1 = 𝜋−11 (𝐶𝑍), 𝐶2 = 𝜋−12 (𝐶𝑊),

𝑍 = (𝜋′1)
−1𝑍, 𝑊 = (𝜋′2)

−1𝑊.

Here we have denoted by𝐴𝑋 and 𝐵𝑋 the strict transforms of𝐴𝑋 and 𝐵𝑋 in both blow-ups,𝑍 and𝑊 . Note that the spacesmarked with an overline are subsets of𝑍,𝑊 while the others are subsets
of 𝑋 × ℙ1 × ℙ1. As before, we will consider the relative schemes

□□𝑋 = □□𝑋 ×𝑋 𝔾𝑋 = (𝑋 × ℙ1 × ℙ1 ⧵ 𝐴1 ∪ 𝐵2, 𝐵1 ∪ 𝐴2),

𝑍,𝑊 = (𝑍,𝑊 ⧵ 𝐴1 ∪ 𝐵2 ∪ 𝐷𝑍, 𝐵1 ∪ 𝐴2 ∪ 𝐷𝑊),

𝑍 = (𝑍 ⧵ 𝐴1 ∪ 𝐵2 ∪ 𝐷𝑍,𝐴2) ⊂ 𝑍,𝑊,
𝑊 = (𝑊 ⧵ 𝐴1, 𝐵1 ∪ 𝐴2 ∪ 𝐷𝑊) ⊂ 𝑍,𝑊.

Finally, wewrite 𝑆 = 𝑍 ∩𝑊. Note that, byAssumption 3.27, the subset 𝑆 can be seen as the relative
scheme 𝑆 ∶= (𝑆 ⧵ ∅, ∅) that is a relative subscheme of either□□𝑋 or 𝑍,𝑊 . As before, 𝐵2 does not
appear in the definition of𝑊 because𝑊 and 𝐵𝑋 are disjoint. Similarly, 𝐵1 does not appear in the
definition of 𝑍.

In Figure 3, there is a more symmetric version of the main diagram in Figure 1. The analysis
of the main diagram carries through, with small modifications to the diagram in Figure 3. For
instance, using Lemma 1.12, the fact that codim𝐶1 ⩾ 𝑝 + 1 and dim𝐶2 ⩽ 𝑝 − 1, yield

𝐻2𝑝(𝑍,𝑊) = 𝐻2𝑝(□□𝑋 ⧵ 𝐶1, 𝐶2)

= 𝐻2𝑝(□□𝑋)

= 𝐻2𝑝−2(𝑋;−1).
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F IGURE 4 The biextension diagram for 𝑛 = 𝑚 = 1

As in the proof of Proposition 3.28, the group𝐻2𝑝
𝑆
(𝑊) is pure of weight 2𝑝. In fact more is true.

If 𝑠 = #𝑆 is the number of points in the intersection, then there is a canonical isomorphism

𝐻
2𝑝
𝑆
(𝑊) ≅ ℚ(−𝑝)⊕𝑠.

Thus, after pulling back through the class of 𝑍, taking the push-forward with respect to the class
of𝑊 and twisting by ℚ(𝑝 + 1), we obtain, from Figure 3, the particular case of Figure 2 depicted
in Figure 4.

Proposition 3.30. With Assumption 3.27, the dual of the diagram of Figure 4, twisted by ℚ(2),
agrees with the similar diagram with the role of 𝑍 and𝑊 reversed. In particular

𝐵𝑊,𝑍 = 𝐵∨𝑍,𝑊(2), 𝐶𝑊,𝑍 = 𝐷∨
𝑍,𝑊(2), 𝐷𝑊,𝑍 = 𝐶∨𝑍,𝑊(2).

Proof. Since, by condition (3.32), we have (𝑝 + 1) + (𝑞 + 1) − 2 = 𝑑 + 2 = dim(𝑍,𝑊), and by
Assumption 3.27 all the subspaces appearing in the diagram in Figure 3 are in local product sit-
uation, if we take that diagram, twist it by ℚ(𝑝 + 1), then take the dual and finally twist by ℚ(2),
we obtain the analogous diagram, with 𝑍 and𝑊 swapped and twisted by ℚ(𝑞 + 1). For instance,
the central term of the first diagram twisted by ℚ(𝑝 + 1) is

𝐻2𝑝(𝑍,𝑊 ⧵ 𝑍,𝑊; 𝑝 + 1), (3.34)

and 𝐵𝑍,𝑊 as a sub-quotient this mixed Hodge structure. The dual of this cohomology group,
twisted by ℚ(2) is

𝐻2𝑞(𝑍,𝑊 ⧵𝑊,𝑍; 𝑞 + 1).

From this the sought duality follows easily. □

From Figure 4, and the fact that all the maps there are morphisms of mixed Hodge structures,
we deduce the next result.



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 127

Corollary 3.31. If Assumption 3.27 is satisfied, then the mixed Hodge structure 𝐵𝑍,𝑊 has weights
−4, −2 and 0 and the graded pieces are

Gr𝑊0 𝐵𝑍,𝑊 = ℚ(0),

Gr𝑊−2 𝐵𝑍,𝑊 = 𝐻2𝑝−2(𝑋,ℚ(𝑝)) ⊕ ℚ(1)⊕𝑠 ,

Gr𝑊−4 𝐵𝑍,𝑊 = ℚ(2).

Therefore, it is a generalized biextension.Moreover, if𝐻2𝑝−2(𝑋,ℚ(𝑝)) is of Hodge–Tate type, the same
is true for 𝐵𝑍,𝑊 .

Remark 3.32. In the case 𝑛 = 𝑚 = 1, the duality in Proposition 3.30 is not only a duality of mixed
Hodge structures, as we will see in the proof of the next proposition, this duality preserves the
orientation. This is in contrast with the case 𝑛 = 𝑚 = 0 as shown in [22, Proposition 3.3.4].

Proposition 3.33. With Assumption 3.27, we have

ht(𝐵𝑍,𝑊) = −ht(𝐵𝑊,𝑍).

Proof. By Proposition 2.12 we only need to show that the duality between𝐵𝑍,𝑊 and𝐵𝑊,𝑍 preserves
the orientation. The mixed Hodge structure 𝐵𝑍,𝑊 is a subquotient of 𝐻2𝑝(𝑍,𝑊 ⧵ 𝑍,𝑊; 𝑝 + 1),
Hence, its elements can be represented by differential forms in

𝐸1 = Σ
𝐵1∪𝐴2∪𝐷𝑊∪𝑊

𝐸
2𝑝
𝑍,𝑊 (log𝐴1 ∪ 𝐵2 ∪ 𝐷𝑍 ∪ 𝑍; 𝑝 + 1),

while the elements in 𝐵𝑊,𝑍 can be represented by forms in

𝐸2 = Σ
𝐴1∪𝐵2∪𝐷𝑍∪𝑍

𝐸
2𝑞
𝑍,𝑊 (log 𝐵1 ∪ 𝐴2 ∪ 𝐷𝑊 ∪𝑊; 𝑞 + 1).

The duality is given by the map

⟨𝛼, 𝛽⟩ = ∫𝑍,𝑊 𝛼 ∧ 𝛽.

The class of𝑍 is represented by a differential form 𝜈𝑍 ∈ 𝐸1 and its dual class can be represented by
a differential form 𝜇𝑍 ∈ 𝐸2. Similarly, we have differential forms 𝜈𝑊 and 𝜇𝑊 . These forms satisfy

∫𝑍,𝑊 𝜈𝑍 ∧ 𝜇𝑍 = ∫𝑍,𝑊 𝜈𝑊 ∧ 𝜇𝑊.

The orientation of 𝐵𝑍,𝑊 is given by the classes (𝜈𝑍, 𝜇𝑊) and the orientation of 𝐵𝑊,𝑍 by the classes
(𝜈𝑊, 𝜇𝑍). Since

⟨𝜈𝑍, 𝜇𝑍⟩ = ∫𝑍,𝑊 𝜈𝑍 ∧ 𝜇𝑍 = 1
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and

⟨𝜇𝑊, 𝜈𝑊⟩ = ∫𝑍,𝑊 𝜇𝑊 ∧ 𝜈𝑊 = (−1)4𝑝𝑞 = 1, (3.35)

we obtain that the duality preserves orientations and hence the result. Note that in Equation (3.35)
we are using that 𝑛 = 𝑚 = 1, that implies that the forms 𝜇𝑊 and 𝜈𝑊 have even degree. In the
case 𝑛 = 𝑚 = 0 the differential forms have odd degree, hence the similar duality would not be
compatible with the orientations. □

4 INVARIANTS ATTACHED TO THEMIXED HODGE STRUCTURE
𝑩𝒁,𝑾

In this section, we suppose that Assumption 3.27 is satisfied and compute the Deligne splitting 𝛿
of 𝐵𝑍,𝑊 (see (2.6)). This map characterizes 𝐵𝑍,𝑊 as a real mixed Hodge structure.

4.1 A decomposition of the Deligne splitting of 𝑩𝒁,𝑾

Since we will be considering different mixed Hodge structures we will use the following variant
of the notation in Section 2 to keep track of them.

Notation 4.1. For a MHS 𝐻, we will denote the Deligne bigrading as 𝐻ℂ =
⨁

𝑟,𝑠 𝐼
𝑟,𝑠
𝐻
, and will

denote the various projections to the individual 𝐼𝑟,𝑠
𝐻
by Π𝐼𝑟,𝑠

𝐻
. Similarly, the projection to the piece⨁

𝑝+𝑞=𝑘 𝐼
𝑝,𝑞
𝐻

of pureweight 𝑘will be denotedΠ𝐻,𝑘. Also, theDeligne splitting of𝐻will be denoted
𝛿𝐻 .

After Corollary 3.31, the Deligne bigrading of 𝐵 ∶= 𝐵𝑍,𝑊 (see (2.1)) has the shape

𝐵ℂ = 𝐼0,0
𝐵

⊕
(⨁

𝑎+𝑏=−2 𝐼
𝑎,𝑏
𝐵

)
⊕ 𝐼−2,−2

𝐵
.

Similarly, the bigradings of 𝐶 ∶= 𝐶𝑍,𝑊 , 𝐷 ∶= 𝐷𝑍,𝑊 , 𝐸𝑍 and 𝐸∨𝑊 are given by

𝐶ℂ = 𝐼0,0
𝐶

⊕ 𝐼−1,−1
𝐶

, 𝐷ℂ = 𝐼−1,−1
𝐷

⊕ 𝐼−2,−2
𝐷

,

𝐸𝑍,ℂ = 𝐼0,0
𝐸𝑍

⊕
⨁

𝑎+𝑏=−2

𝐼𝑎,𝑏
𝐸𝑍
, 𝐸∨𝑊,ℂ(2) =

⨁
𝑎+𝑏=−2

𝐼𝑎,𝑏
𝐸∨
𝑊
(2)
⊕ 𝐼−2,−2

𝐸∨
𝑊
(2)
.

Since𝐻2𝑝−2(𝑋,ℚ(𝑝)) andℚ(1)𝑠 are pure Hodge structures of weight−2, their Deligne bigradings
are given by

𝐻2𝑝−2(𝑋,ℚ(𝑝))ℂ =
⨁

𝑎+𝑏=−2

𝐼𝑎,𝑏
1
, ℚ(1)𝑠

ℂ
= 𝐼−1,−1

2
.
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The functoriality of the Deligne bigrading and the diagram of Figure 4, give us canonical identifi-
cations

𝐼0,0
𝐵

= 𝐼0,0
𝐶

= 𝐼0,0
𝐸𝑍
,

𝐼𝑎,𝑏
𝐸𝑍

= 𝐼𝑎,𝑏
𝐸∨
𝑊
(2)

= 𝐼𝑎,𝑏
1
, for 𝑎 + 𝑏 = −2,

𝐼−1,−1
𝐶

= 𝐼−1,−1
𝐷

= 𝐼−1,−1
2

,

𝐼−1,−1
𝐵

= 𝐼−1,−1
𝐶

⊕ 𝐼−1,−1
𝐸𝑍

,

𝐼𝑎,𝑏
𝐵

= 𝐼𝑎,𝑏
𝐸𝑍
, for 𝑎 + 𝑏 = −2, 𝑎 ≠ −1,

𝐼−2,−2
𝐵

= 𝐼−2,−2
𝐷

= 𝐼−2,−2
𝐸∨
𝑊
(2)
.

(4.1)

In terms of the graded pieces of the weight filtration we obtain identifications

Gr𝑊0 𝐵 = Gr𝑊0 𝐶 = Gr𝑊0 𝐸𝑍 = ℚ(0),

Gr𝑊−2 𝐵 = Gr𝑊−2 𝐶 ⊕ Gr𝑊−2 𝐸𝑍

= Gr𝑊−2 𝐷 ⊕ Gr𝑊−2 𝐸
∨
𝑊(2) = 𝐻2𝑝−2(𝑋,ℚ(𝑝)) ⊕ ℚ(1)𝑠

ℂ
,

Gr𝑊−4 𝐵 = Gr𝑊−4 𝐷 ⊕ Gr𝑊−4 𝐸
∨
𝑊(2) = ℚ(2).

(4.2)

As in the proof of Lemma 2.6 there is a decomposition

𝛿𝐵 = 𝛿1 + 𝛿2 + 𝛿3,

with

𝛿1 ∶ Gr𝑊0 𝐵 → Gr𝑊−2 𝐵, 𝛿2 ∶ Gr𝑊−2 𝐵 → Gr𝑊−4 𝐵, 𝛿3 ∶ Gr𝑊0 𝐵 → Gr𝑊−4 𝐵.

Using the identifications (4.2), we can write

𝛿1 = 𝛿𝐸𝑍 + 𝛿𝐶, 𝛿2 = 𝛿𝐸∨
𝑊
(2) + 𝛿𝐷.

Moreover, 𝛿3 = 𝛿−2,−2
𝐵

as in Definition 2.3. Therefore, if 𝑒 and 𝑒∨ are the generators of 𝐼0,0
𝐵

and
𝐼−2,−2
𝐵

given by the orientation of 𝐵𝑍,𝑊 , then the height of 𝐵 is determined by the equation

𝛿3(𝑒) = ht(𝐵)𝑒∨.

In conclusion, the Deligne splitting 𝛿𝐵 is characterized by the invariants 𝛿𝐸𝑍 , 𝛿𝐶𝑍,𝑊 , 𝛿𝐸∨𝑊(2), 𝛿𝐷𝑍,𝑊
andht(𝐵). By duality, the invariant 𝛿𝐸∨

𝑊
(2) is determined by 𝛿𝐸𝑊 and 𝛿𝐷𝑍,𝑊 by 𝛿𝐶𝑊,𝑍

. Sowewill con-
centrate in the computation of the invariants 𝛿𝐸𝑍 , 𝛿𝐶 andht(𝐵). By Lemma 2.6 andEquation (2.16),
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we get

𝛿𝐸𝑍 (𝑒) =
𝑖

2
Π𝐸𝑍,−2

(
𝑒 − 𝑒
)
=
𝑖

2
Π𝐸𝑍,−2

(
𝑒
)
, (4.3)

𝛿𝐶(𝑒) =
𝑖

2
Π
𝐼−1,−1
𝐶

(
𝑒 − 𝑒
)
=
𝑖

2
Π
𝐼−1,−1
𝐶

(
𝑒
)
, (4.4)

ht(𝐵)𝑒∨ = −
1

2
Im
(
Π
𝐼−2,−2
𝐵

(
𝑒
))
. (4.5)

In this section we will concentrate in the computation of 𝛿𝐸𝑍 (𝑒), 𝛿𝐶𝑊,𝑍
(𝑒) and ht(𝐵). Moreover, we

will show that, when the regulators of 𝑍 and𝑊 are zero, the height ht(𝐵) is given by the higher
archimedean height pairing.

4.2 Computation of 𝜹𝑬𝒁 (𝒆)

We first compute 𝛿𝐸𝑍 (𝑒) using the mixed Hodge structure arising from (3.9). To this end, we will
find an element 𝑒 ∈ 𝐼0,0

𝐸𝑍
that is mapped to the standard generator of ℚ(0). Most of the job has

been done in Section 3.3. Let 𝜂𝑍 , g𝑍 and 𝜃𝑍 be the differential forms provided by Proposition 3.6.
In particular,

𝜂𝑍 ∈ 𝐹0Σ𝐵𝑋𝐸
2𝑝−1

𝑋×ℙ1
(log𝐴𝑋 ∩ |𝑍|; 𝑝),

with 𝑑𝜂𝑍 = 0. We claim that the class of 𝜂𝑍 ,

{𝜂𝑍} ∈ 𝐻2𝑝−1(𝑋 × ℙ1 ⧵ 𝐴𝑋 ∪ |𝑍|, 𝐵𝑋; 𝑝)
gives us the sought element 𝑒.
By Proposition 3.6, the pair (0, 𝜂𝑍) is a cycle in the simple complex associated to the morphism

(3.12), representing the cohomology class of 𝑍. By the construction of 𝐸𝑍 , this implies that {𝜂𝑍}
belongs to 𝐸𝑍 and that it is mapped to the standard generator of ℚ(0). We still need to show that
this class belongs to 𝐼0,0

𝐸𝑍
. By (2.2) and the shape of 𝐸𝑍 ,

𝐼0,0
𝐸,𝑍

= 𝐹0 ∩
(
𝐹0 + 𝐹−1 ∩𝑊−2

)
.

By the construction of 𝜂𝑍 , the class {𝜂𝑍} belongs to 𝐹0. From the equation

𝑑g𝑍 =
1

2
(𝜂𝑍 − 𝜂𝑍) − 𝜃𝑍, (4.6)

with 𝜃𝑍 ∈ 𝐹−1Σ𝐵𝑋𝐸
2𝑝−1

𝑋×ℙ1
(log𝐴𝑋; 𝑝), and the fact that 𝐻2𝑝−1(𝑋 × ℙ1 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) = 𝐻2𝑝−2(𝑋; 𝑝)

is pure of weight −2, we conclude that the cohomology class {𝜂𝑍} belongs to 𝐹0 + 𝐹−1 ∩𝑊−2.
Hence, 𝑒 ∶= {𝜂𝑍} ∈ 𝐼0,0

𝐸𝑍
is the generator we are looking for.

Using again Equation (4.6) and the fact that the class {𝜃𝑍} of 𝜃𝑍 belongs to𝑊−2, we deduce that

𝛿𝐸𝑍 (𝑒) =
𝑖

2
Π𝐸𝑍,−2

(𝑒 − 𝑒) = −𝑖𝜃𝑍 = −𝑖Ψ̃(𝜃𝑍), (4.7)
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where, in the last equation, we are using the map Ψ from Definition 3.2 to identify 𝐻2𝑝−1(𝑋 ×

ℙ1 ⧵ 𝐴𝑋, 𝐵𝑋; 𝑝) with 𝐻2𝑝−2(𝑋; 𝑝). Recall that, by Proposition 3.8, the class Ψ̃(𝜃𝑍) represents the
Goncharov regulator of 𝑍. So, essentially, the invariant 𝛿𝐸𝑍 (𝑒) is the regulator of 𝑍. Note that the
factor 𝑖 comes from the fact that in the chosen normalization, the regulator is purely imaginary,
while the map 𝛿 is chosen to be real.

Remark 4.2. Although we have written the above computation for 𝑛 = 1 to keep parity with the
rest of Section 4.1, since Section 3.3 is valid for general 𝑛 ⩾ 1, the same is true for the above com-
putation.

We now make the computation in the mixed Hodge structure 𝐵𝑍,𝑊 as the techniques involved
will be used latter in the computations of the other invariants. As before, the key point is to find
the generator 𝑒 of 𝐼0,0

𝐵
. We see 𝐵𝑍,𝑊 as a subquotient of

𝐻2𝑝(𝑍,𝑊 ⧵ 𝑍,𝑊; 𝑝 + 1).

Hence, we will work on the smooth projective variety 𝑍,𝑊 introduced in Section 3.8.

Notation 4.3. We choose (𝑡1, 𝑡2) affine coordinates of□2. We denote

𝑑𝑡1
𝑡1
,
𝑑𝑡2
𝑡2

∈ 𝐹0Σ𝐴𝐸
1
(ℙ1)2

(log 𝐵; 1).

Recall, as in Example 1.7, that this implies

(
𝑑𝑡1
𝑡1

)
= −

𝑑𝑡1
𝑡1

(4.8)

Moreover, whenworkingwith differential forms on the smooth projective variety𝑍,𝑊 , that come
from other spaces in diagram (3.33), we will not write down explicitly the pullback map. For
instance we will denote by 𝜂𝑍 the differential form (𝜋𝑍 ◦𝜋

′
1
)∗𝜂𝑍 . Similarly 𝑑𝑡1∕𝑡1 and 𝑑𝑡2∕𝑡2 will

also denote differential forms on 𝑍,𝑊 .
We have the following characterization of 𝐼0,0

𝐵
.

Lemma 4.4. An element 𝜉 ∈ 𝐵𝑍,𝑊 belongs to 𝐼0,0
𝐵

if and only if

∙ condition 𝜉 ∈ 𝐹0𝐵𝑍,𝑊 holds;
∙ the image of 𝜉 in 𝐸𝑍 belongs to 𝐼

0,0
𝐸𝑍
.

Proof. The implication ‘only if’ is clear from the fact that 𝜉 ∈ 𝐼0,0
𝐵

implies that 𝜉 ∈ 𝐹0𝐵𝑍,𝑊 , and
that 𝜌∶ 𝐵𝑍,𝑊 → 𝐸𝑍 is a morphism of mixed Hodge structures. To show the if part, we note first
that ker(𝜌) = 𝐷𝑍,𝑊 . Since 𝐷𝑍,𝑊 is an extension of ℚ(1)𝑠 by ℚ(2), we get

𝐷𝑍,𝑊 ⊂ 𝐹−2 ∩𝑊−4𝐵𝑍,𝑊 + 𝐹−1 ∩𝑊−2𝐵𝑍,𝑊 ⊂ 𝐹−2 ∩𝑊−3𝐵𝑍,𝑊 + 𝐹−1 ∩𝑊−2𝐵𝑍,𝑊.
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By assumption, 𝜉 ∈ 𝐹0𝐵𝑍,𝑊 , and we need to check that

𝜉 ∈ 𝐹0𝐵𝑍,𝑊 + 𝐹−1 ∩𝑊−2𝐵𝑍,𝑊 + 𝐹−2 ∩𝑊−3𝐵𝑍,𝑊.

Now since also by assumption, 𝜌(𝜉) ∈ 𝐼0,0
𝐸𝑍
, we obtain a 𝜉′ ∈ 𝐼0,0

𝐵
, such that 𝜌(𝜉′) = 𝜌(𝜉). Hence,

𝜌(𝜉 − 𝜉′) = 0. Since 𝜌 is a real map, we get 𝜌(𝜉 − 𝜉′) = 0. Thus 𝜉 − 𝜉′ ∈ ker(𝜌) = 𝐷𝑍,𝑊 and

𝜉 ∈ 𝜉′ + 𝐷𝑍,𝑊 ⊂ 𝐹0𝐵𝑍,𝑊 + 𝐹−1 ∩𝑊−2𝐵𝑍,𝑊 + 𝐹−2 ∩𝑊−3𝐵𝑍,𝑊,

as required. Hence, 𝜉 ∈ 𝐼0,0
𝐵
, and the lemma follows. □

Now we have the following:

Proposition 4.5. Let 𝜂𝑍 be as above, and write, using Notation 4.3:

𝜈𝑍 ∶= −𝜂𝑍 ∧
𝑑𝑡2
𝑡2

∈ 𝐸
2𝑝
𝑍,𝑊 (log𝐴2 ∪ 𝐵1 ∪ 𝐷𝑍 ∪ 𝑍; 𝑝 + 1).

Then the cohomology class {𝜈𝑍} is the generator 𝑒 of 𝐼
0,0
𝐵

that is sent to the canonical generator of
ℚ(0).

Proof. We first have to show that 𝜈𝑍 belongs to

𝐹0Σ
𝐴1∪𝐵2∪𝐷𝑊∪𝑊

𝐸
2𝑝
𝑍,𝑊 (log𝐴2 ∪ 𝐵1 ∪ 𝐷𝑍 ∪ 𝑍; 𝑝 + 1).

For this, the only point that has to be checked is that 𝜈𝑍|𝑊 vanishes. As differential form 𝜈𝑍 belongs
to 𝐹𝑝+1, but

dim(𝑊) = 𝑑 + 2 − 𝑞 = 𝑝.

Therefore, 𝜈𝑍|𝑊 = 0. Since 𝜂𝑍 is closed, the same is true for 𝜈𝑍 . By the explicit description of
the isomorphism (3.2), we see that the class {𝜈𝑍} is sent to {𝜂𝑍}. In particular to the canonical
generator of ℚ(0). It remains to be shown that it belongs to 𝐼0,0

𝐵
. The map 𝐵𝑍,𝑊 → 𝐸𝑍 sends that

class {𝜈𝑍} to the class {𝜂𝑍} that belongs to 𝐼
0,0
𝐸𝑍
. By Lemma 4.4, {𝜈𝑍} belongs to 𝐼

0,0
𝐵

completing the
proof. □

To compute 𝛿𝐸𝑍 (𝑒) using 𝜈𝑍 , it is easier to first project to the cohomology group

𝐻2𝑝(𝑍,𝑊 ⧵ 𝑍; 𝑝 + 1),

that is, we remove the condition of vanishing along𝑊. In the complex

Σ
𝐴1∪𝐵2

𝐸∗𝑍,𝑊 (log𝐴2 ∪ 𝐵1 ∪ 𝐷𝑍 ∪ 𝑍; 𝑝 + 1),



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 133

Equations (4.6) and (4.8), and the fact that 𝜂𝑍 has odd degree, imply that

1

2
(𝜈𝑍 − 𝜈𝑍) −

(
−𝜃𝑍 ∧

𝑑𝑡2
𝑡2

)
= 𝑑

(
−g𝑍 ∧

𝑑𝑡2
𝑡2

+
1

2
(log(𝑡2𝑡2))𝜂𝑍

)
. (4.9)

From this equation, we conclude again that the invariant 𝛿𝐸𝑍 (𝑒) is given by Equation (4.7).

4.3 Computation of 𝜹𝑪(𝒆)

Since the form 𝜈𝑍 represents the generator 𝑒 ∈ 𝐼0,0
𝐵

its image in 𝐶𝑍,𝑊 represents the generator
𝑒 ∈ 𝐼0,0

𝐶
. To compute this image, we project to the cohomology group 𝐻2𝑝+1

𝑍
(𝑍,𝑊,𝑊). The class

of 𝜈𝑍 is sent to the class of (0, 𝜈𝑍). We know that the class of

𝜆𝑍 ∶=
𝑖

2
(0, 𝜈𝑍 − 𝜈𝑍) (4.10)

is sent to zero in the cohomology group 𝐻2𝑝+1
𝑍

(𝑍,𝑊). Therefore, according to Equation (4.4),

in order to compute 𝛿𝐶(𝑒), we need to find a preimage of the class of 𝜆𝑍 in the group 𝐻
2𝑝
𝑆
(𝑊).

Using Proposition 1.14, the fact that𝑊 is smooth and the standard description of the connection
morphism associated to a short exact sequence, the method to find this preimage is the following.
First, we find a primitive of 𝜆𝑍 in the complex that computes the cohomology 𝐻∗

𝑍
(𝑍,𝑊), then

we restrict this primitive to the relative scheme𝑊 and the class of this restriction will agree with
𝛿𝐶(𝑒). By Equation (4.9), we have

𝜆𝑍 = 𝑑

(
𝑖𝜃𝑍 ∧

𝑑𝑡2
𝑡2
, −𝑖g𝑍 ∧

𝑑𝑡2
𝑡2

+
𝑖

2
log(𝑡2𝑡2)𝜂𝑍

)
.

Therefore, by the previous discussion, the class 𝛿𝐶(𝑒) is represented by(
𝑖𝜃𝑍 ∧

𝑑𝑡2
𝑡2
, −𝑖g𝑍 ∧

𝑑𝑡2
𝑡2

+
𝑖

2
log(𝑡2𝑡2)𝜂𝑍

)|||||𝑊. (4.11)

In order to compute explicitly the cohomology class represented by this form, we use that 𝑆 is
disjoint with 𝐴1 ∪ 𝐵1 ∪ 𝐴2 ∪ 𝐷𝑊 , therefore

𝐻∗
𝑆(𝑊) = 𝐻∗

𝑆(𝑊). (4.12)

We write 𝑆 = {(𝑥𝑗, 𝑡1,𝑗, 𝑡2,𝑗)}𝑗=1,…,𝑠 and denote by 𝑒𝑗 the Betti generator of the term ℚ(1)ℚ corre-
sponding to the point (𝑥𝑗, 𝑡1,𝑗, 𝑡2,𝑗), for 𝑗 = 1,… , 𝑠. We also denote by 𝜇𝑍,𝑗 the multiplicity of the
cycle 𝑍 in the component of 𝑍 containing (𝑥𝑗, 𝑡1,𝑗). Using Equation (3.14), we have the residue
computation

𝑑

[(
−𝑖g𝑍 ∧

𝑑𝑡2
𝑡2

+
𝑖

2
log(𝑡2𝑡2)𝜂𝑍

)|||||𝑊
]
=

[
𝑖𝜃𝑍 ∧

𝑑𝑡2
𝑡2

||||𝑊
]
−
𝑖

2

𝑠∑
𝑗=1

log(𝑡2,𝑗𝑡2,𝑗)𝜇𝑍,𝑗𝛿(𝑥𝑗,𝑡1,𝑗 ,𝑡2,𝑗).
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Since𝑊 is smooth, we can compute the cohomology (4.12) using currents. From the residue com-
putation it follows that

𝛿𝐶(𝑒) =
𝑖

2

𝑠∑
𝑗=1

log(𝑡2,𝑗𝑡2,𝑗)𝜇𝑍,𝑗𝛿(𝑥𝑗,𝑡1,𝑗 ,𝑡2,𝑗) =
1

4𝜋

𝑟∑
𝑗=1

𝜇𝑍,𝑗 log(𝑡2,𝑗𝑡2,𝑗)𝑒𝑗. (4.13)

In the second equality we are using the implicit de Rham generator carried by log(𝑡2,𝑗𝑡2,𝑗):

log(𝑡2,𝑗𝑡2,𝑗) = log(𝑡2,𝑗𝑡2,𝑗) ⊗ 𝟙(1)ℂ =
1

2𝜋𝑖
log(𝑡2,𝑗𝑡2,𝑗) ⊗ 𝟙(1)ℚ.

As expected, the invariant 𝛿𝐶(𝑒) is real.

4.4 Computation of ht(𝑩)

Since wewill need to consider also the dual construction, we denote by 𝑒𝑍,𝑊 the generator of 𝐼0,0
𝐵𝑍,𝑊

previously denoted by 𝑒 and by 𝑒∨
𝑍,𝑊

the generator of 𝐼−2,−2
𝐵𝑍,𝑊

. By Proposition 4.5, we know that 𝑒𝑍,𝑊
is represented by 𝜈𝑍 . By Equation (4.5) we have that

ht(𝐵)𝑒∨𝑍,𝑊 = −
1

2
Im
(
Π
𝐼−2,−2
𝐵

(
𝑒𝑍,𝑊
))
. (4.14)

We consider the dual mixed Hodge structure 𝐵𝑊,𝑍(−2) = 𝐵∨
𝑍,𝑊

with decomposition,

𝐵𝑊,𝑍(−2)ℂ = 𝐽2,2 ⊕

(⨁
𝑙+𝑠=2

𝐽𝑙,𝑠

)
⊕ 𝐽0,0.

Let 𝑒𝑊,𝑍(−2) be the generator of 𝐽2,2 that is mapped to the generator 𝟙(−2)ℚ of ℚ(−2)ℚ. It is
constructed as in Section 4.2 with 𝑍 and𝑊 swapped. It satisfies conditions

⟨𝑒𝑊,𝑍(−2), 𝑒
∨
𝑍,𝑊⟩ = 1, (4.15)

𝑒𝑊,𝑍(−2) ∈

( ⨁
𝑎+𝑏=−2

𝐼𝑎,𝑏
𝐵

⊕ 𝐼0,0
𝐵

)⟂
. (4.16)

Equations (4.14), (4.15) and (4.16) imply that

ht(𝐵) = −
1

2
Im⟨𝑒𝑊,𝑍(−2), 𝑒𝑍,𝑊⟩.

The class 𝑒𝑍,𝑊 is represented by the form

𝜈𝑍 ∈ 𝐹0Σ
𝐴1∪𝐵2∪𝐷𝑊∪𝑊

𝐸
2𝑝
𝑍,𝑊 (log𝐴2 ∪ 𝐵1 ∪ 𝐷𝑍 ∪ 𝑍; 𝑝 + 1).
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while the class 𝑒𝑊,𝑍 is represented by

𝜈𝑊 = −𝜂𝑊 ∧
𝑑𝑡1
𝑡1

∈ 𝐹0Σ
𝐴2∪𝐵1∪𝐷𝑍∪𝑍

𝐸
2𝑞
𝑍,𝑊 (log𝐴1 ∪ 𝐵2 ∪ 𝐷𝑊 ∪𝑊; 𝑞 + 1).

Note that the subset where 𝜈𝑍 may have logarithmic singularities agrees with the subset where 𝜈𝑊
vanishes and reciprocally. Therefore, the differential form 𝜈𝑍 ∧ 𝜈𝑊 is locally integrable in 𝑍,𝑊 ,
and the duality pairing is given by

⟨𝑒𝑊,𝑍(−2), 𝑒𝑍,𝑊⟩ = 1

(2𝜋𝑖)2
(𝑝𝑍,𝑊 )∗[𝜈𝑊 ∧ 𝜈𝑍] =

1

(2𝜋𝑖)𝑑+4 ∫𝑍,𝑊 𝜈𝑊 ∧ 𝜈𝑍,

where 𝑝𝑍,𝑊 ∶ 𝑍,𝑊 → Spec(ℂ) is the structural map. In consequence, the height of 𝐵𝑍,𝑊 is given
by

ht(𝐵) = −
1

2
Im

1

(2𝜋𝑖)𝑝+𝑞+2 ∫𝑊,𝑍

𝜈𝑊 ∧ 𝜈𝑍

=
1

2
Im

1

(2𝜋𝑖)𝑝+𝑞+2 ∫𝑊,𝑍

𝜂𝑊 ∧
𝑑𝑡1
𝑡1

∧ 𝜂𝑍 ∧
𝑑𝑡2

𝑡2
. (4.17)

Recall for the last equality that

𝜈𝑍 = −𝜂𝑍 ∧
𝑑𝑡2
𝑡2

= 𝜂𝑍 ∧
𝑑𝑡2
𝑡2
.

Using the fact that g𝑍|𝑡1=0 = g𝑍|𝑡1=∞ = 0 and that 𝜂𝑊|𝑡2=0 = 𝜂𝑊|𝑡2=∞ = 0, the residue theorem,
and the relations

𝑑[g𝑍] =
[
1

2
(𝜂𝑍 − 𝜂𝑍) − 𝜃𝑍

]
, 𝑑[𝜂𝑊] = −𝛿𝑊,

we have

𝑑

[
𝜂𝑊 ∧

𝑑𝑡1
𝑡1

∧ g𝑍 ∧
𝑑𝑡2

𝑡2

]
= −𝛿𝑊 ∧

𝑑𝑡1
𝑡1

∧ g𝑍 ∧
𝑑𝑡2

𝑡2
+
1

2

[
𝜂𝑊 ∧

𝑑𝑡1
𝑡1

∧ 𝜂𝑍 ∧
𝑑𝑡2

𝑡2

]

−
1

2

[
𝜂𝑊 ∧

𝑑𝑡1
𝑡1

∧ 𝜂𝑍 ∧
𝑑𝑡2

𝑡2

]
−

[
𝜂𝑊 ∧

𝑑𝑡1
𝑡1

∧ 𝜃𝑍 ∧
𝑑𝑡2

𝑡2

]
.

For type reasons, the second term on the right-hand side is zero (as differential form, 𝜂𝑍 is in 𝐹𝑝,
𝜂𝑊 is in 𝐹𝑞, so the term is in 𝐹𝑝+𝑞+1, but 𝑝 + 𝑞 + 1 = 𝑑 + 3 > 𝑑 + 2). Hence, by Stokes’ theorem,

ht(𝐵) = Im
−1

(2𝜋𝑖)𝑝+2 ∫𝑊
𝑑𝑡1
𝑡1

∧ g𝑍 ∧
𝑑𝑡2

𝑡2
+ Im

−1

(2𝜋𝑖)𝑝+𝑞+2 ∫𝑊,𝑍

𝜂𝑊 ∧
𝑑𝑡1
𝑡1

∧ 𝜃𝑍 ∧
𝑑𝑡2

𝑡2
. (4.18)
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The first term on the right-hand side of the above equation resembles the higher height pairing,
and in fact, it agrees with the higher height pairing, in case the real regulators of the cycles are
zero.

Remark 4.6. Although to define the extension 𝐵𝑍,𝑊 , we needed to go to the blow-up𝑍,𝑊 in order
to be in local product situation and use duality, in the actual computation of ht(𝐵)we can remain
in 𝑋 × ℙ1 × ℙ1.

4.5 Connection to the higher height pairing when the regulators are
zero

In this subsectionwewant to compare ht(𝐵) to the higher archimedean height pairing ⟨𝑍,𝑊⟩Arch,
when the real regulator classes of 𝑍 and𝑊 are both zero and Assumption 3.27 is satisfied. This
can be seen as a generalization of Hain’s result [22] relating the archimedean height pairing for
the usual cycles homologous to zero with biextensions of mixed Hodge structures.
Before comparison, we need to put both invariants in the same place. Recall that

⟨𝑍,𝑊⟩Arch ∈ 𝐻1
𝔇
(Spec(ℂ); ℝ(2)) = ℚ(2)ℂ∕ℚ(2)ℝ,

while

ht(𝐵) ∈ ℝ.

We denote by 𝜌2 ∶ ℚ(2)ℂ∕ℚ(2)ℝ → ℝ the isomorphism given by

𝜌2(𝑣) = Im

(
𝑣

(2𝜋𝑖)2

)
. (4.19)

Theorem 4.7. If the real regulators of 𝑍 and𝑊 are zero, then

𝜌2(⟨𝑍,𝑊⟩Arch) = ht(𝐵).

Proof. Since the real regulators of𝑍 and𝑊 are zero, byCorollary 3.9, we can choose g𝑍 and 𝜂𝑍 with
𝜃𝑍 = 0 and the same for𝑊.With this choice, after changing the order of the terms, Equation (4.17)
can be written as

ht(𝐵) = Im

(
1

(2𝜋𝑖)2
(𝑝)∗

(
𝛿𝑊 ∧

𝑑𝑡2

𝑡2
∧ g𝑍 ∧

𝑑𝑡1
𝑡1

))
.

Since 𝑛 = 𝑚 = 1 and the ∗-product is graded commutative, we have that

⟨𝑍,𝑊⟩Arch = −⟨𝑊,𝑍⟩Arch.
By Corollary 3.15, for 𝑛 = 𝑚 = 1 we have

⟨𝑍,𝑊⟩Arch = −⟨𝑊,𝑍⟩Arch = (𝑝)∗
(
𝛿𝑊,TW ⋅𝑊1(𝑡2) ⋅ g𝑍,TW ⋅𝑊1(𝑡1)

)∼
,
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as an element in 𝐻1
𝔇
(Spec(ℂ), ℝ(2)). Here

𝑊1(𝑡2) ∶= −1

2

(
(𝜖 + 1) ⊗

𝑑𝑡2
𝑡2
+ (𝜖 − 1) ⊗

𝑑𝑡2
𝑡2
+ 𝑑𝜖 ⊗ log(𝑡2𝑡2)

)
,

𝑊1(𝑡1) ∶= −1

2

(
(𝜖 + 1) ⊗

𝑑𝑡1
𝑡1
+ (𝜖 − 1) ⊗

𝑑𝑡1
𝑡1
+ 𝑑𝜖 ⊗ log(𝑡1𝑡1)

)
,

while

g𝑍,TW =
𝜖 + 1

2
⊗ 𝜂𝑍 −

𝜖 − 1

2
⊗ 𝜂𝑍 + 𝑑𝜖 ⊗ g𝑍.

In order to prove the proposition, we need to unwrap the product in the TW-complex and use
Stokes’ theorem. Since the pullback of𝑊 in 𝑋 × (ℙ1)2 has dimension 𝑝, we get

⟨𝑍,𝑊⟩Arch = (𝑝)∗(𝑓(𝜖)𝑑𝜖 ⊗ 𝛿𝑊 ∧ (Ω1 + Ω2 + Ω3)),

where 𝑓(𝜖) = 1

4
(𝜖2 − 1) and

Ω1 = −
𝑑𝑡2

𝑡2
∧ g𝑍 ∧

𝑑𝑡1
𝑡1

−
𝑑𝑡2
𝑡2

∧ g𝑍 ∧
𝑑𝑡1

𝑡1
,

Ω2 =
𝑑𝑡2

𝑡2
∧
𝜂𝑍
2
log(𝑡1𝑡1) −

𝑑𝑡2
𝑡2

∧
𝜂𝑍
2
log(𝑡1𝑡1),

Ω3 = log(𝑡2𝑡2)
𝜂𝑍
2
∧
𝑑𝑡1

𝑡1
− log(𝑡2𝑡2)

𝜂𝑍
2
∧
𝑑𝑡1
𝑡1
.

In the computation above one has to take into account that 𝑑𝜖 anticommutes with forms of odd
degree. Now let

Λ1 ∶= 𝛿𝑊 ∧ 𝑑(log(𝑡2𝑡2)) ∧ g𝑍 log(𝑡1𝑡1),

Λ2 ∶= 𝛿𝑊 ∧ log(𝑡2𝑡2)g𝑍 ∧ 𝑑(log(𝑡1𝑡1)).

Then one can easily see that

𝑑Λ1 = 𝛿𝑊 ∧ (Ω1 − Ω2), 𝑑Λ2 = 𝛿𝑊 ∧ (Ω3 − Ω1).

Since our higher height pairing is an element of the Deligne cohomology group, we conclude

⟨𝑍,𝑊⟩Arch = (𝑝)∗(𝑓(𝜖)𝑑𝜖 ⊗ 𝛿𝑊 ∧ (Ω1 + Ω1 + Ω1))

= 3𝑓(𝜖)𝑑𝜖 ⊗ (𝑝)∗(𝛿𝑊 ∧ Ω1).

After integrating 𝑓(𝜖) from 0 to 1, we arrive at

⟨𝑍,𝑊⟩Arch = −
1

2
(𝑝)∗(𝛿𝑊 ∧ Ω1).
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Finally, using (remember Notation 1.3)

𝛿𝑊 ∧
𝑑𝑡2

𝑡2
∧ g𝑍 ∧

𝑑𝑡1
𝑡1

= −𝛿𝑊 ∧
𝑑𝑡2
𝑡2

∧ g𝑍 ∧
𝑑𝑡1

𝑡1
,

we conclude

1

2
(𝑝)∗(𝛿𝑊 ∧ Ω1) = −𝑖 Im(𝑝)∗

(
𝛿𝑊 ∧

𝑑𝑡2

𝑡2
∧ g𝑍 ∧

𝑑𝑡1
𝑡1

)
.

Hence, we get

𝜌2(⟨𝑍,𝑊⟩Arch) = Im

(
1

(2𝜋𝑖)2
(𝑝)∗

(
𝛿𝑊 ∧

𝑑𝑡2

𝑡2
∧ g𝑍 ∧

𝑑𝑡1
𝑡1

))
= ht(𝐵). □

5 EXAMPLES OF HIGHER HEIGHT PAIRING

5.1 The case of dimension 0

As a starter we discuss the case when 𝑋 = Spec(ℂ), so 𝑑 = 0, and 𝑛 = 𝑚 = 𝑝 = 𝑞 = 1. Let 𝑎, 𝑏 ∈
ℂ ⧵ {0, 1} then 𝑎 and 𝑏 define cycles in 𝑍1(𝑋, 1)00 that we denote 𝑍 and𝑊. Moreover, these cycles
always have proper intersection and satisfy Assumption 3.27. A choice of differential forms satis-
fying the conditions of Proposition 3.6 for the cycle 𝑍 are

𝜂𝑍 =
𝑑𝑡

𝑡 − 1
−

𝑑𝑡

𝑡 − 𝑎
∈ 𝐹0Σ𝐵𝐸

1
ℙ1
(log𝐴 ∪ |𝑍|; 1)

g𝑍 = log |𝑡 − 1| − log |𝑡 − 𝑎| + log |𝑎| 1

1 + 𝑡𝑡
∈ Σ𝐵𝐸

0
ℙ1
(log𝐴 ∪ |𝑍|; 1)

𝜃𝑍 = −𝑑

(
log |𝑎| 1

1 + 𝑡𝑡

)
= log |𝑎| 𝑡𝑑𝑡 + 𝑡𝑑𝑡

(1 + 𝑡𝑡)2
∈ 𝐹−1Σ𝐵𝐸

1
ℙ1
(log𝐴; 1).

Note that the third term in the definition of g𝑍 is added to satisfy condition g𝑍(0) = 0 and is the
responsible for the presence of 𝜃𝑍 . Recall also Notation 1.3. With this notation the complex con-
jugate of 𝜂𝑍 is

𝜂𝑍 = −
𝑑𝑡

𝑡 − 1
−

𝑑𝑡

𝑡 − 𝑎
.

We denote by 𝜂𝑊 , g𝑊 and 𝜃𝑊 the corresponding differential forms for𝑊 obtained by replacing 𝑏
for 𝑎.
Since 𝑋 = Spec(ℂ), the relative products over 𝑋 are just absolute products. Therefore, there

should not be any non-trivial interaction between 𝑍 and𝑊. As we will see, this is indeed the case.
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We can choose 𝑍,𝑊 = ℙ1 × ℙ1. The intersection 𝑊 ∩ 𝑍 is reduced to the point (𝑎, 𝑏). Since
𝐻0(𝑋; 1) = ℚ(1), the biextension 𝐵𝑍,𝑊 has the middle graded piece

Gr𝑊−2 𝐵𝑍,𝑊 = ℚ(1) ⊕ ℚ(1).

The first factor comes from the cohomology of 𝑋 and the second from the intersection point.
The different invariants are easy to compute. We start with 𝛿𝐸𝑍 (𝑒). This has to be a real element

of 𝐻0(𝑋; 1). For clarity, as in Definition 1.3, we will use explicitly the generator 𝟙(1)ℂ and write
𝜃𝑍 = 𝜃′

𝑍
⊗ 𝟙(1)ℂ with

𝜃′𝑍 ∈ 𝐹0Σ𝐵𝐸
1
ℙ1
(log𝐴)

given by the same formula as 𝜃𝑍 . Then, by Equation (4.7),

𝛿𝐸𝑍 (𝑒) = −𝑖Ψ(𝜃𝑍) = 𝑖
1

2𝜋𝑖 ∫ 𝑑

(
− log |𝑎| 1

1 + 𝑡𝑡

)
∧
𝑑𝑡

𝑡
⊗ 𝟙(1)ℂ

= 𝑖 log |𝑎|⊗ 𝟙(1)ℂ =
1

2𝜋
log |𝑎|⊗ 𝟙(1)ℚ.

This element is real as expected.
The invariant 𝛿𝐶(𝑒) is given by Equation (4.13):

𝛿𝐶(𝑒) =
1

2𝜋
log |𝑏|⊗ 𝟙(1)ℚ ∈ ℚ(1)ℂ.

Finally we compute the height ht(𝐵). According to (4.17), it is given by

ht(𝐵) =
1

2

1

(2𝜋𝑖)4
Im∫(ℙ1)2

(
𝑑𝑡2
𝑡2 − 1

−
𝑑𝑡2
𝑡2 − 𝑏

)
∧
𝑑𝑡1
𝑡1

∧

(
𝑑𝑡1

𝑡1 − 1
−

𝑑𝑡1

𝑡1 − 𝑎

)
∧
𝑑𝑡2

𝑡2
.

This integral can be computed separately in each variable. Since

1

2𝜋𝑖 ∫ℙ1
(

𝑑𝑡

𝑡 − 1
−

𝑑𝑡

𝑡 − 𝑏

)
∧
𝑑𝑡

𝑡
= − log |𝑏|

and

1

2𝜋𝑖 ∫ℙ1
𝑑𝑡

𝑡
∧

(
𝑑𝑡

𝑡 − 1
−

𝑑𝑡

𝑡 − 𝑎

)
= − log |𝑎|,

we obtain

ht(𝐵) =
1

2(2𝜋𝑖)2
Im(log |𝑎| log |𝑏|) = 0

as we were expecting.
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5.2 An example in dimension 2

Wenext compute an example inℙ2. In this example 𝑑 = 2,𝑝 = 𝑞 = 2 and 𝑛 = 𝑚 = 1. So condition
(3.28) is satisfied.
In this subsection we will present the setting, in the next one we will develop the tools needed

to perform the computation using currents and in the last one wewill compute themain invariant
associated with the biextension.
Let 𝑋 = ℙ2 and let [𝑥0 ∶ 𝑥1 ∶ 𝑥2] be homogeneous coordinates of ℙ2 and let

𝑠0 = 𝑎0𝑥0 + 𝑎1𝑥1 + 𝑎2𝑥2,

𝑠1 = 𝑏0𝑥0 + 𝑏1𝑥1 + 𝑏2𝑥2,

𝑠2 = 𝑐0𝑥0 + 𝑐1𝑥1 + 𝑐2𝑥2

be three linear global sections of ℙ2(1) in general position. Let 𝓁𝑖 = div(𝑠𝑖), 𝑖 = 0, 1, 2 be the
corresponding reduced divisors that we identify with their support. By general position we mean
that the lines 𝓁1, 𝓁2 and 𝓁3 form a non-degenerate triangle.
For 𝑖 = 0, 1, 2(mod 3) we write

𝑓𝑖 =
𝑠𝑖+1
𝑠𝑖+2

for the rational function and 𝑝𝑖 = 𝓁𝑖+1 ∩ 𝓁𝑖+2 for the intersection point. Note the equation 𝑓0 ⋅
𝑓1 ⋅ 𝑓2 = 1, which will be used later.

Definition 5.1. Given a line 𝓁 and a rational function 𝑓 whose divisor does not contain 𝓁, we
denote by (𝓁, 𝑓) ∈ 𝑍2(𝑋, 1) the pre-cycle given as the graph of 𝑓|𝓁 . Let 𝑠0, 𝑠1 and 𝑠2 be sections as
before. We denote by

𝑍(𝑠0, 𝑠1, 𝑠2) =

2∑
𝑖=0

(𝓁𝑖 , 𝑓𝑖) −
2∑
𝑖=0

𝜋∗𝑋(𝑝𝑖).

Moreover, if 𝛼 ∈ ℂ×, we write

𝑍(𝑠0, 𝑠1, 𝑠2; 𝛼) = (𝓁0, 𝛼𝑓0) + (𝓁1, 𝑓1) + (𝓁2, 𝑓2) −
2∑
𝑖=0

𝜋∗𝑋(𝑝𝑖).

In particular 𝑍(𝑠0, 𝑠1, 𝑠2) = 𝑍(𝑠0, 𝑠1, 𝑠2; 1).

The following lemma is an easy verification.

Lemma 5.2. For 𝑠0, 𝑠1 and 𝑠2 in general position and 𝛼 ∈ ℂ×, the pre-cycle 𝑍(𝑠0, 𝑠1, 𝑠2; 𝛼) is a cycle
and belongs to 𝑍2(𝑋, 1)00.

Proof. The fact that 𝑍(𝑠0, 𝑠1, 𝑠2; 𝛼) is a cycle follows directly from condition
∑

𝑖 div(𝑓𝑖) = 0. The
degenerate components

∑2
𝑖=0 𝜋

∗
𝑋
(𝑝𝑖) are subtracted precisely in order to fulfill the condition that

𝑍(𝑠1, 𝑠2, 𝑠3; 𝛼) belongs to the refined normalized complex. □
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We define

𝑊𝛽 ∶= 𝑍(𝑥0, 𝑥1, 𝑥2; 𝛽)

and choose sections 𝑠0, 𝑠1 and 𝑠2 that are in general position with respect to {𝑥0, 𝑥1, 𝑥2} so that, for
any complex number 𝛼 ∈ ℂ×, if we write 𝑍𝛼 = 𝑍(𝑠0, 𝑠1, 𝑠2; 𝛼) then 𝑍𝛼 and𝑊𝛽 satisfy Assumption
3.27. We will also write 𝑍 = 𝑍1 and𝑊 = 𝑊1.
The real regulator of 𝑍𝛼 is easy to compute.

Proposition 5.3. The real regulator class of 𝑍𝛼 in

𝐻3
𝔇
(ℙ2, ℝ(2)) = 𝐻2(ℙ2; 2)ℂ∕𝐻

2(ℙ2; 2)ℝ

is represented by the closed current− log |𝛼|𝛿𝓁 , for any line 𝓁 in ℙ2. In particular, if |𝛼| = 1 then the
regulator class is zero.

Proof. In the Thom–Whitney complex, the regulator of the cycle 𝑍𝛼 is represented by (𝜋𝑋)∗(𝛿𝑍 ⋅
𝑊1). After taking the direct image and integrate with respect to 𝜖 we obtain

(𝑍𝛼) = −
1

2

((
log |𝛼|2 + log |𝑓0|2)𝛿𝓁0 + log |𝑓1|2𝛿𝓁1 + log |𝑓2|2𝛿𝓁2).

Since each 𝛿𝓁𝑖 is cohomologous to 𝛿𝓁 and, by construction 𝑓0𝑓1𝑓2 = 1 we deduce the result. □

Let 𝓁𝑖 , 𝑓𝑖 and 𝑝𝑖 , 𝑖 = 0, 1, 2 be the lines, rational functions and intersection points constructed
as before for the sections 𝑠0, 𝑠1, 𝑠2 and let 𝓁′𝑖 , 𝑓

′
𝑖
and 𝑝′

𝑖
, 𝑖 = 0, 1, 2 be the ones corresponding to the

sections 𝑥0, 𝑥𝑖 and 𝑥2. For instance 𝓁′0 = {𝑥0 = 0}, 𝑝′
0
= [1 ∶ 0 ∶ 0] and 𝑓′

0
= 𝑥1∕𝑥2.

For 𝑖 = 0, 1, 2 and 𝑗 = 0, 1, 2 we write 𝑝𝑖,𝑗 = 𝓁𝑖 ∩ 𝓁′
𝑗
,

𝛼𝑖 =

{
𝛼, if 𝑖 = 0,

1, otherwise,
𝛽𝑗 =

{
𝛽, if 𝑗 = 0,

1, otherwise,

and

𝑞𝑖,𝑗 = (𝑝𝑖,𝑗.𝛼𝑖𝑓𝑖(𝑝𝑖,𝑗), 𝛽𝑗𝑓
′
𝑗(𝑝𝑖,𝑗)) ∈ 𝑋 × ℙ1 × ℙ1.

By the generality assumption, the set 𝑆 consist of the nine points 𝑞𝑖,𝑗 . Moreover, 𝐻2𝑝−2(𝑋; 𝑝) =

𝐻2(ℙ2; 2) = ℚ(1). Therefore, the biextension 𝐵 = 𝐵𝑍𝛼,𝑊𝛽
has the shape

Gr0 𝐵 = ℚ(0),

Gr−2 𝐵 = ℚ(1) ⊕ ℚ(1)⊕9 ,

Gr−4 𝐵 = ℚ(2).

From the description of the real regulator of 𝑍𝛼 above, the invariant 𝛿𝐸𝑍𝛼 is given by

𝛿𝐸𝑍𝛼
(𝑒) = 𝑖

(
(log |𝛼| + log |𝑓0|)𝛿𝑙0 + log |𝑓1|𝛿𝑙1 + log |𝑓2|𝛿𝑙2)∼,



142 BURGOS GIL et al.

while from Equation (4.13) the invariant 𝛿𝐶(𝑒) is given by

𝛿𝐶(𝑒) =
1

2𝜋

∑
𝑖,𝑗

log |𝛽𝑗𝑓′𝑗(𝑝𝑖𝑗)|𝑒𝑖,𝑗,
where 𝑒𝑖,𝑗 is the generator of the cohomology with support on the point 𝑞𝑖,𝑗 . The remaining invari-
ant ht(𝐵)will be computed in Section 5.4 after we discuss how to use currents to ease the compu-
tation.

5.3 Computation using currents

In the classical Arakelov geometry, it is usually simpler to write down explicitly a Green current
for a cycle than to write a Green form with logarithmic singularities for the cycle. Although in
general, inverse images and products of currents are not defined, the theory of wave front sets
sketched in Section 1.6 allows us, in some situations, to work with currents with the same ease as
with differential forms. We will use the notations and results of Section 1.6.
For simplicity we make the following enhancement of Assumption 3.27.

Assumption 5.4. To Assumption 3.27 we add the condition that |𝑍| and |𝑊| are both union of
smooth subvarieties that intersect 𝐴𝑋 and 𝐵𝑋 transversely.

Note that Assumption 5.4 is satisfied in the example presented in Section 5.2.
Hence, we assume 5.4 and we consider first the situation of 𝑍 in 𝑋 × ℙ1. We denote by 𝑡 the

absolute coordinate of ℙ1, and, for shorthand, 𝐴 = 𝐴𝑋 and 𝐵 = 𝐵𝑋 . Since |𝑍| = ⋃𝑍𝑖 is a union
of smooth components, we write 𝑁∨

0
|𝑍| = ⋃𝑁∨

0
𝑍𝑖 . Let 𝜄 ∶ 𝐴 ↪ 𝑋 × ℙ1 be the inclusion and  =

𝜄∗𝜄
∗𝑁∨

0
|𝑍|. Then  is saturated with respect to 𝜄 by construction. The fact that the 𝑍𝑖 intersect 𝐵

transversely readily implies that and𝐵𝑋 are in good position. So, the hypothesis of Theorem 1.30
is satisfied.
Let g𝑍 , 𝜂𝑍 and 𝜃𝑍 be the differential forms obtained in Proposition 3.6, They define currents

[𝜂𝑍] ∈ 𝐹0Σ𝐵𝐷
2𝑝−1

𝑋×ℙ1∕𝐴; (𝑝)

[𝜃𝑍] ∈ 𝐹−1Σ𝐵𝐷
2𝑝−1

𝑋×ℙ1∕𝐴; (𝑝)

[g𝑍] ∈ 𝐹−1 ∩ 𝐹
−1
Σ𝐵𝐷

2𝑝−2

𝑋×ℙ1∕𝐴; (𝑝)

satisfying the differential equations

𝑑[𝜂𝑍] = −𝛿𝑍

𝑑[g𝑍] =
1

2
([𝜂𝑍] − [𝜂𝑍]) − [𝜃𝑍].

In fact, in our situation, as the following result implies, any choice of currents satisfying the above
properties is enough to compute the regulator of 𝑍 and the invariant ht(𝐵).
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Lemma 5.5. Let  ⊂ 𝑇∨
0
𝑋 be a closed conical subset that is saturated with respect to 𝜄 and is in good

position with respect to 𝐵. Let

𝜂′𝑍 ∈ 𝐹0Σ𝐵𝐷
2𝑝−1

𝑋×ℙ1∕𝐴; (𝑝)

𝜃′𝑍 ∈ 𝐹−1Σ𝐵𝐷
2𝑝−1

𝑋×ℙ1∕𝐴; (𝑝)

g ′𝑍 ∈ 𝐹−1 ∩ 𝐹
−1
Σ𝐵𝐷

2𝑝−2

𝑋×ℙ1∕𝐴; (𝑝)

be currents satisfying the differential equations

𝑑𝜂′𝑍 = −𝛿𝑍 (5.1)

𝑑g ′𝑍 =
1

2
(𝜂′𝑍 − 𝜂′𝑍) − 𝜃′𝑍. (5.2)

Then 𝜃′
𝑍
is closed and there are currents

𝑣1 ∈ Σ𝐵𝐷
2𝑝−2

𝑋×ℙ1∕𝐴; (𝑝)

𝑣2 ∈ 𝐹0Σ𝐵𝐷
2𝑝−2

𝑋×ℙ1∕𝐴; (𝑝)

satisfying

𝑑𝑣1 = [𝜃𝑍] − 𝜃′𝑍, 𝑑𝑣2 = [𝜂𝑍] − 𝜂′𝑍.

In particular 𝜃′
𝑍
represents the class of the regulator of 𝑍.

Proof. By the properties of the involved forms and currents is easy to see that [𝜂𝑍] − 𝜂𝑍 and 𝜃′𝑍
are both closed. Moreover, the current

([𝜂𝑍] − 𝜂′𝑍)∕2 − ([𝜃𝑍] − 𝜃′𝑍) − ([𝜂𝑍] − 𝜂′
𝑍
)∕2

is exact. By Theorem 1.30, the cohomology group

𝐻2𝑝−1(Σ𝐵𝐷
∗
𝑋×ℙ1∕𝐴; (𝑝))

is the de Rham part of a pure Hodge structure𝐻 of weight −2. Moreover,

([𝜂𝑍] − 𝜂′𝑍)∕2 ∈ 𝐹0, ([𝜃𝑍] − 𝜃′𝑍) ∈ 𝐹−1 ∩ 𝐹
−1
, and ([𝜂𝑍] − 𝜂′

𝑍
)∕2 ∈ 𝐹

0
.

Since𝐻 is pure of weight −2, there is a direct sum decomposition

𝐻 = 𝐹0𝐻 ⊕ 𝐹−1 ∩ 𝐹
−1
𝐻 ⊕ 𝐹

0
𝐻.
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Therefore, the three terms [𝜂𝑍] − 𝜂′
𝑍
, [𝜃𝑍] − 𝜃′

𝑍
and [𝜂𝑍] − 𝜂′

𝑍
are exact. In particular we obtain

the current 𝑣1 in the statement. By Theorems 1.19 and 1.30, the differential of the above complex
is strict with respect to the Hodge filtration. Therefore, we can find a primitive 𝑣2 of [𝜂𝑍] − 𝜂𝑍
belonging to 𝐹0, completing the proof of the result. □

Remark 5.6. Since WF(𝛿𝑍) = 𝑁∨
0
|𝑍| and the differential does not increase the wave front set,

Equation (5.1) implies that, for the currents in the lemma to exist, a necessary condition is that
𝑁∨
0
|𝑍| ⊂  . Clearly 𝜄∗𝜄∗𝑁∨

0
|𝑍| ⊂  is a sufficient condition for the currents to exist. In the explicit

computation of next section it will be handy to have the freedom to enlarge  .
We now put together 𝑍 and𝑊 to obtain the next result. Recall that we are implicitly taking the

pullbacks to 𝑋 × (ℙ1)2. Let 𝑍,𝑊 ⊂ 𝑇∨∗𝑋 × ℙ1 be closed conical subsets that are saturated with
respect to 𝐴, in good position with respect to 𝐵 and such that 𝜋∗

1
𝑍 ∩ 𝜋∗2𝑊 = ∅.

Corollary 5.7. Assuming 5.4, let 𝜂′
𝑍
, 𝜃′

𝑍
and g ′

𝑍
(respectively, 𝜂′

𝑊
, 𝜃′

𝑊
and g ′

𝑊
) be currents satisfying

the hypothesis of Lemma 5.5 for the cycle 𝑍 and the set 𝑍 (respectively,𝑊 and the set 𝑊). Then

ht(𝐵) =
1

2
Im

1

(2𝜋𝑖)2
𝑝∗

(
𝜂′𝑊 ∧

𝑑𝑡1
𝑡1

∧ 𝜂
′
𝑍 ∧

𝑑𝑡2

𝑡2

)

= − Im
1

(2𝜋𝑖)2
𝑝∗

(
𝛿𝑊 ∧

𝑑𝑡1
𝑡1

∧ g ′𝑍 ∧
𝑑𝑡2

𝑡2
+ 𝜂′𝑊 ∧

𝑑𝑡1
𝑡1

∧ 𝜃′𝑍 ∧
𝑑𝑡2

𝑡2

)
,

where 𝑝∶ 𝑋 × (ℙ1)2 → Spec(ℂ) is the structural map.

Proof. That the product current is well defined follows from the fact that the wave front sets of
the involved currents are disjoint. By (4.17), we have

ht(𝐵) =
1

2
Im

1

(2𝜋𝑖)2
𝑝∗

(
[𝜂𝑊] ∧

𝑑𝑡1
𝑡1

∧ [𝜂𝑍] ∧
𝑑𝑡2

𝑡2

)
. (5.3)

By Lemma 5.5 there are currents

𝑣𝑍 ∈ 𝐹0Σ𝐵𝐷
2𝑝−2

𝑋∕𝐴; (𝑝), 𝑣𝑊 ∈ 𝐹0Σ𝐵𝐷
2𝑞−2

𝑋∕𝐴; (𝑞),

such that

𝑑𝑣𝑍 = [𝜂𝑍] − 𝜂′𝑍, 𝑑𝑣𝑊 = [𝜂𝑊] − 𝜂′𝑊. (5.4)

Since 𝑣𝑍 belongs to 𝐹0 it has at least 𝑝 holomorphic differentials. As 𝑊 × ℙ1 ⊂ 𝑋 × (ℙ1)2 has
dimension 𝑝, we obtain

𝛿𝑊 ∧
𝑑𝑡1
𝑡1

∧ 𝑣𝑍 ∧
𝑑𝑡2

𝑡2
= 0. (5.5)
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Similarly

𝑣𝑊 ∧
𝑑𝑡1
𝑡1

∧ 𝛿𝑍 ∧
𝑑𝑡2

𝑡2
= 0. (5.6)

Then the result follows from Stokes’ theorem using Equations (5.3)–(5.6) and the fact that the
forms 𝑣𝑍 and 𝜂𝑍 vanish for 𝑡1 = 0 and 𝑡1 = ∞, while the forms 𝑣𝑊 and 𝜂𝑊 vanish for 𝑡2 = 0 and
𝑡2 = ∞. □

5.4 The invariant 𝐡𝐭(𝑩) of the example in dimension 2

Now that we have set up the theory, we are ready to compute the remaining invariant ht(𝐵) for
the pair of higher cycles 𝑍𝛼 and𝑊𝛽 described in 5.2.
The first task is to compute a set of currents satisfying the conditions of Lemma 5.5 for the cycle

𝑍𝛼. The currents for the cycle𝑊𝛽 will be constructed in a similar way. Since, for the moment we
work with a single cycle we denote by 𝑡 the absolute coordinate of ℙ1 and we omit any needed
pullback to 𝑋 × ℙ1 from the formulas.
We start with a classical Green current for the cycle 𝑍𝛼 in 𝑋 ×□:

g𝑍𝛼,0 ∶= −

2∑
𝑖=0

(
log
|𝑡 − 𝛼𝑖𝑓𝑖||𝑡 − 1|

)
𝛿𝓁𝑖 ∈ 𝐹−1𝐷2

𝑋×ℙ1
(2).

Then one can check that

2𝜕�̄�g𝑍𝛼,0 =
2∑
𝑖=0

𝛿(𝓁𝑖 ,𝛼𝑖𝑓𝑖) − 𝛿𝑝𝑖 − 𝛿𝓁𝑖×{1}.

Hence,

2𝜕�̄�g𝑍𝛼,0|𝑋×□ = 𝛿𝑍𝛼 . (5.7)

Moreover, g𝑍𝛼,0|𝑡=∞ = 0. But in general g𝑍,0|𝑡=0 ≠ 0. In fact,

g𝑍𝛼,0|𝑡=0 = −
∑

log |𝑓𝑖|𝛿𝓁𝑖 − log |𝛼|𝛿𝓁0 . (5.8)

The two terms appearing in this decomposition have a different nature. The first one, the sum, is
a boundary, hence we will be able to get rid of it without altering Equation (5.7), while the second
one is responsible for the real regulator of 𝑍𝛼 therefore will force us a non-zero current 𝜃𝑍𝛼 .
To see that the first term is a boundary, we introduce the current

𝑢𝑍 = [log |𝑓0|𝜕 log |𝑓1| − log |𝑓1|𝜕 log |𝑓0|] ∈ 𝐹−1𝐷1
𝑋(2). (5.9)

This current does not depend on the choice of 𝛼. Using the fact that 2𝜕𝜕[log |𝑓𝑖|] = 𝛿𝓁𝑖+2 − 𝛿𝓁𝑖+1 ,
we get

𝜕𝑢𝑍 − 𝜕𝑢𝑍 = − log |𝑓0|𝛿𝓁0 − log |𝑓1|𝛿𝓁1 + (log |𝑓0| + log |𝑓1|)𝛿𝓁2 .
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Finally, using the relation 𝑓0 ⋅ 𝑓1 ⋅ 𝑓2 = 1, we get

𝜕𝑢𝑍 − 𝜕𝑢𝑍 = −

2∑
𝑖=0

log |𝑓𝑖|𝛿𝓁𝑖 . (5.10)

Let ℎ be the function

ℎ(𝑡) =
1

1 + |𝑡|2 .
It is smooth in the whole ℙ1 and satisfies

ℎ(0) = 1, ℎ(∞) = 1. (5.11)

We define the currents

g𝑍𝛼,1 = −

2∑
𝑖=0

(
log
|𝑡 − 𝛼𝑖𝑓𝑖||𝑡 − 1|

)
𝛿𝓁𝑖 −
(
𝜕(ℎ(𝑡)𝑢𝑍) − 𝜕(ℎ(𝑡)𝑢𝑍)

)
,

g𝑍𝛼,2 = ℎ(𝑡) log |𝛼|𝛿𝓁0 ,
g𝑍𝛼 = g𝑍𝛼,1 + g𝑍𝛼,2.

By Equations (5.8), (5.10) and (5.11),

g𝑍𝛼 |𝑡=0 = g𝑍𝛼 |𝑡=∞ = 0.

We also write

𝜂𝑍𝛼 = 2𝜕g𝑍𝛼,1,

𝜃𝑍𝛼 = −𝑑g𝑍𝛼,2.

Let 𝜄 ∶ 𝐴𝑋 → 𝑋 × ℙ1 denote the inclusion and  = 𝜄∗𝜄
∗WF(g𝑍𝛼 ).

Proposition 5.8. The set  and the currents g𝑍𝛼 , 𝜃𝑍𝛼 and 𝜂𝑍𝛼 satisfy the hypothesis of Lemma 5.5.

Proof. By construction the set  is saturated by respect to 𝐴𝑋 . By examining the singularities of
the different functions, the wave front set of g𝑍𝛼 is given by

WF(g𝑍𝛼 ) =
2⋃
𝑖=0

(
𝑁∨
0 (𝓁𝑖 × ℙ1) ∪ 𝑁∨

0 (𝓁𝑖 × {1})
)
∪ 𝑁∨

0 |𝑍𝛼|.
Therefore, if 𝜄′ ∶ 𝐵𝑋 → 𝑋 × ℙ1 is the inclusion, then

(𝜄′)∗ =

2⋃
𝑖=0

𝑁∨
0 (𝓁𝑖 × {0}) ∪ 𝑁

∨
0 (𝓁𝑖 × {∞}).



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 147

Here the conormal bundle is computed in 𝐵𝑋 . Let 𝑟0 be the retraction to𝑋 × {0} and 𝑟∞ the retrac-
tion to 𝑋 × {∞}. Since, for 𝑖 = 0, 1, 2 and 𝑗 = 0,∞,

𝑠∗𝑗𝑁
∨
0 (𝓁𝑖 × {𝑗})𝑁

∨
0 (𝓁𝑖 × ℙ1)

we deduce that  and 𝐵𝑋 are in good position.
By construction, for 𝑗 = ∅, 0, 1, 2, g𝑍𝛼,𝑗 = −g𝑍𝛼,𝑗 . Therefore,

2�̄�g𝑍𝛼,1 = −𝜕g𝑍𝛼,1 = −𝜂𝑍𝛼 .

Therefore,

𝑑g𝑍𝛼 = 𝜕g𝑍𝛼,1 + �̄�g𝑍𝛼,1 + 𝑑g𝑍𝛼,2 =
1

2

(
𝜂𝑍𝛼 − 𝜂𝑍𝛼

)
− 𝜃𝑍𝛼 .

The remaining hypothesis follow directly from the construction of the different currents. □

By Corollary 5.7, the height of 𝐵𝑊𝛽,𝑍𝛼
is given by

ht(𝐵) = −
1

(2𝜋𝑖)2
Im𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ g𝑍𝛼 ∧
𝑑𝑡2

𝑡2
+ 𝜂𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ 𝜃𝑍𝛼 ∧
𝑑𝑡2

𝑡2

)
,

The support of the current g𝑍𝛼,0 is the union of the threefold 𝓁𝑖 × (ℙ
1)2. Since we are assuming

that the intersection of 𝑍𝛼 and𝑊𝛽 is proper, the intersection of𝑊𝛽 with this support is the union

of the lines 𝑝𝑖𝑗 × ℙ1 × {𝛽𝑗𝑓
′
𝑗
(𝑝𝑖𝑗)} (see Section 5.2 for the notation). Since the pullback of

𝑑𝑡2
𝑡2

to
these lines is zero, we obtain

𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ g𝑍𝛼,0 ∧
𝑑𝑡2

𝑡2

)
= 0.

We next compute

𝐼1 = 𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ 𝜕�̄�𝑍 ∧
𝑑𝑡2

𝑡2

)
.

Using that𝑊 × ℙ1 has dimension 2, that 𝛿𝑊𝛽
vanishes when restricted to 𝑡2 = 0 and 𝑡2 = ∞ and

that 𝑢𝑍 vanishes when restricted to 𝑡1 = ∞, we obtain

𝐼1 = 𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ 𝑑�̄�𝑍 ∧
𝑑𝑡2

𝑡2

)
= (𝑝2)∗

(
𝛿𝑊𝛽

∧ �̄�𝑍 ∧
𝑑𝑡2

𝑡2

)
,

where now 𝑝2 is the structural morphism of the product𝑋 × ℙ1 where𝑊𝛽 lives. Since the support
of𝑊𝛽 consist of lines and �̄�𝑍 contains one anti-holomorphic differential we deduce 𝐼1 = 0.
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Next we consider

𝐼2 = 𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ �̄�𝑢𝑍 ∧
𝑑𝑡2

𝑡2

)
.

By the same argument as before

𝐼2 = (𝑝2)∗

(
𝛿𝑊𝛽

∧ 𝑢𝑍 ∧
𝑑𝑡2

𝑡2

)
.

This time the integral may be non-zero and we will compute it later. The last piece to consider is

𝐼3 = 𝑝∗

(
𝛿𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ g𝑍𝛼,2 ∧
𝑑𝑡2

𝑡2
+ 𝜂𝑊𝛽

∧
𝑑𝑡1
𝑡1

∧ 𝜃𝑍𝛼 ∧
𝑑𝑡2

𝑡2

)
.

Using that 𝛿𝑊𝛽
= −𝑑𝜂𝑊𝛽

, that 𝑑g𝑍𝛼,2 = −𝜃𝑍𝛼 , and that

𝛿𝑊𝛽
|𝑡2=0 = 𝛿𝑊𝛽

|𝑡2=∞ = 0, g𝑍𝛼 |𝑡1=0 = log |𝛼|𝛿𝓁0 ,
𝜂𝑊𝛽
|𝑡2=0 = 𝜂𝑊𝛽

|𝑡2=∞ = 0, g𝑍𝛼 |𝑡1=∞ = 0,

𝜃𝑍𝛼 |𝑡1=0 = 𝜃𝑍𝛼 |𝑡1=∞ = 0,

we obtain

𝐼3 = (𝑝2)∗

(
𝜂𝑊𝛽

∧ log |𝛼|𝛿𝓁0 ∧ 𝑑𝑡2

𝑡2

)
.

Using 𝜂𝑊𝛽
= 2𝜕g𝑊𝛽,1

, 𝛿𝓁0 is closed, Stokes’ theorem, and the fact that 𝜕g𝑊𝛽,1
∧ 𝛿𝑙0 ∧

𝑑𝑡2
𝑡2
is of type

(3,3), we deduce

𝐼3 = − log |𝛼|(𝑝2)∗(g𝑊𝛽,1
∧ 𝛿𝓁0 ∧ 𝑑

[
𝑑𝑡2

𝑡2

])

= log |𝛼|(− 2∑
𝑗=0

log |𝛽𝑗𝑓′𝑗(𝑝0𝑗)| − 2∑
𝑗=0

log |𝑓′𝑗(𝑝0𝑗)|
)

= − log |𝛼| log |𝛽|,
using 𝑓′

0
𝑓′
1
𝑓′
2
= 1. So Im(𝐼3) = 0, and we are reduced to the expression

ht(𝐵) =
1

(2𝜋𝑖)2
Im

(
(𝑝2)∗

(
𝛿𝑊𝛽

∧ 𝑢𝑍 ∧
𝑑𝑡2

𝑡2

))
.
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Recall that the cycle𝑊 has six components. The three degenerate vertical components 𝑉 ∶=∑2
𝑗=0 𝑝

∗(𝑞′
𝑗
) and the three lines

∑2
𝑗=0(𝓁

′
𝑗
, 𝛽𝑗𝑓

′
𝑗
). Since 𝑢𝑍|𝑞′

𝑗
= 0, we obtain 𝛿𝑉 ∧ 𝑢𝑍 ∧

𝑑𝑡

𝑡
= 0.

Hence, we arrive at

ht(𝐵) =
1

(2𝜋𝑖)2

2∑
𝑗=0

Im

(
𝑝𝓁′

𝑗
,∗

[
𝑢𝑍 ∧

𝑑𝑡2

𝑡2

])
,

where 𝑝𝓁′
𝑗
∶ 𝓁′

𝑗
→ Spec(ℂ) is the structural morphism, To compute the contribution of each line

we use that 𝓁′
𝑗
= 𝑉(𝑥𝑗) and 𝑓′𝑗 =

𝑥𝑗+1

𝑥𝑗+2
to obtain the parametrizations

(𝓁′0, 𝛽0𝑓
′
0) = {(0 ∶ 1 ∶ 𝑡), (1 ∶ 𝛽0𝑡)} ≅ ℙ1; 𝑡2 = 𝛽0𝑡,

(𝓁′1, 𝛽1𝑓
′
1) = {(𝑡 ∶ 0 ∶ 1), (1 ∶ 𝛽1𝑡)} ≅ ℙ1; 𝑡2 = 𝛽1𝑡,

(𝓁′2, 𝛽2𝑓
′
2) = {(1 ∶ 𝑡 ∶ 0), (1 ∶ 𝛽2𝑡)} ≅ ℙ1; 𝑡2 = 𝛽2𝑡.

By symmetry we need only to compute the contribution of (𝓁′
0
, 𝛽0𝑓

′
0
) as the other two terms will

be obtained by a cyclic permutation of {0, 1, 2}. Restricting to this line we obtain

𝑓0|(𝓁′
0
,𝛽0𝑓

′
0
)(𝑡) =

𝑏1 + 𝑏2𝑡

𝑐1 + 𝑐2𝑡
=

(
𝑏2
𝑐2

) 𝑡 − (−
𝑏1
𝑏2
)

𝑡 − (−
𝑐1
𝑐2
)
,

𝑓1|(𝓁′
0
,𝛽0𝑓

′
0
)(𝑡) =

𝑐1 + 𝑐2𝑡

𝑎1 + 𝑎2𝑡
=

(
𝑐2
𝑎2

) 𝑡 − (−
𝑐1
𝑐2
)

𝑡 − (−
𝑎1
𝑎2
)
,

𝑑𝑡2

𝑡2
|(𝓁′

0
,𝛽0𝑓

′
0
) =

𝑑𝑡

𝑡
.

For shorthand we write

𝛾 ∶=
𝑏2
𝑐2
, 𝜌 ∶=

𝑐2
𝑎2
, 𝜃1 ∶= −

𝑏1
𝑏2
, 𝜃2 ∶= −

𝑐1
𝑐2
, 𝜃3 ∶= −

𝑎1
𝑎2
,

and

𝑓0(𝑡) =
𝑡 − 𝜃1
𝑡 − 𝜃2

, 𝑓1(𝑡) ∶=
𝑡 − 𝜃2
𝑡 − 𝜃3

.

The differential form 𝑢𝑍|(𝓁′
0
,𝛽0𝑓

′
0
) splits up into

𝑢𝑍|(𝓁′
0
,𝛽0𝑓

′
0
) = 𝑢1,𝑍 + 𝑢2,𝑍,

where

𝑢1,𝑍 = log |𝛾|𝜕 log |𝑓1(𝑡)| − log |𝜌|𝜕 log |𝑓0(𝑡)|,
𝑢2,𝑍 = log |𝑓0(𝑡)|𝜕(log |𝑓1(𝑡)|) − log |𝑓1(𝑡)|𝜕(log |𝑓0(𝑡)|).
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The current 𝑝𝓁′
0
,∗[𝑢1,𝑍 ∧

𝑑𝑡

𝑡
] is simple to compute:

𝑝𝓁′
0
,∗

[
𝑢1,𝑍 ∧

𝑑𝑡

𝑡

]
= log |𝛾|𝑝𝓁′

0
,∗

(
𝑑

[
log |𝑓1|𝑑𝑡

𝑡

])
− log |𝜌|𝑝𝓁′

0
,∗

(
𝑑

[
log |𝑓0|𝑑𝑡

𝑡

])
= log |𝛾| log |𝜃2||𝜃3| − log |𝜌| log |𝜃1||𝜃2| .

Since this expression is purely real, it does not contribute to the height of 𝐵𝑊𝛽,𝑍𝛼
. To compute

𝑝𝓁′
0
,∗(𝑢2,𝑍(𝑡) ∧

𝑑𝑡

𝑡
), we have to make a slight digression to the theory of Bloch–Wigner dilogarithm

function. For details the reader is referred to [37]. The dilogarithm function is the holomorphic
function defined, over the disk 𝔻 ∶= {𝑡 ∈ ℂ∶ |𝑡| < 1} as

Li2(𝑡) =
∑
𝑛⩾1

𝑡𝑛

𝑛2
.

This function can be extended as a holomorphic function to ℂ ⧵ [1,∞) with jumps 2𝜋𝑖 log |𝑡|.
Thus, the function Li2,arg(𝑡) ∶= Li2(𝑡) + 𝑖arg(1 − 𝑡) log |𝑡| is continuous. The Bloch–Wigner dilog-
arithm is defined by taking the imaginary part of Li2,arg:

𝐷2(𝑡) = Im(Li2(𝑡)) + arg(1 − 𝑡) log |𝑡|
=

1

2𝑖
(Li2(𝑡) − Li2(𝑡)) +

1

4𝑖
(log(1 − 𝑡) − log(1 − 𝑡))(log(𝑡) + log(𝑡)).

We take the branch−𝜋 ⩽ arg(𝑡) < 𝜋. The Bloch–Wigner dilogarithm satisfies the following partial
differential equation.

𝜕𝑖𝐷2(𝑡) = log |𝑡|𝜕 log |1 − 𝑡| − log |1 − 𝑡|𝜕 log |𝑡|.
For any two linear rational functions 𝑓, g in ℂ(ℙ1), we define

𝑆(𝑓, g) ∶= log |𝑓|𝜕(log |g|) − log |g|𝜕(log |𝑓|).
We make the following observations: Let 𝑓, g , ℎ be three linear rational functions. Then

∙ 𝑆(𝑓, g) = −𝑆(g , 𝑓)
∙ 𝑆(𝑓, gℎ) = 𝑆(𝑓, g) + 𝑆(𝑓, ℎ)
∙ 𝑆(𝑓, 1 − 𝑓) = 𝑆(𝑓, 𝑓 − 1) = 𝜕𝑖𝐷2(𝑓).

Using the above observations, we can find a boundary formula for 𝑆(𝑓0, 𝑓1). First for rational
functions of the forms 𝑡−𝑎

𝑏−𝑎
and 𝑡−𝑏

𝑏−𝑎
we get

𝑆

(
𝑡 − 𝑎

𝑏 − 𝑎
,
𝑡 − 𝑏

𝑏 − 𝑎

)
= 𝑆
(
𝑡 − 𝑎

𝑏 − 𝑎
,
𝑡 − 𝑎

𝑏 − 𝑎
− 1
)
= 𝜕𝑖𝐷2

(
𝑡 − 𝑎

𝑏 − 𝑎

)
.
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Hence,

𝑆(𝑡 − 𝑎, 𝑡 − 𝑏) = 𝜕𝑖𝐷2

(
𝑡 − 𝑎

𝑏 − 𝑎

)
+ 𝑆

(
𝑏 − 𝑎,

𝑡 − 𝑏

𝑡 − 𝑎

)
= 𝜕

(
𝑖𝐷2

(
𝑡 − 𝑎

𝑏 − 𝑎

)
+ log |𝑏 − 𝑎| log |𝑡 − 𝑏||𝑡 − 𝑎|

)
.

Since 𝑢2,𝑍 = 𝑆(𝑓0, 𝑓1), we obtain

𝑢2,𝑍 = 𝑆(𝑡 − 𝜃1, 𝑡 − 𝜃2) − 𝑆(𝑡 − 𝜃1, 𝑡 − 𝜃3)

− 𝑆(𝑡 − 𝜃2, 𝑡 − 𝜃2) + 𝑆(𝑡 − 𝜃2, 𝑡 − 𝜃3)

= 𝑆(𝑡 − 𝜃1, 𝑡 − 𝜃2) + 𝑆(𝑡 − 𝜃2, 𝑡 − 𝜃3) + 𝑆(𝑡 − 𝜃3, 𝑡 − 𝜃1)

= 𝜕(𝐺(𝑡)),

where 𝐺(𝑡) is given by

𝐺(𝑡) = 𝑖

(
𝐷2

(
𝑡 − 𝜃1
𝜃2 − 𝜃1

)
+ 𝐷2

(
𝑡 − 𝜃2
𝜃3 − 𝜃2

)
+ 𝐷2

(
𝑡 − 𝜃3
𝜃1 − 𝜃3

))
+ log |𝜃2 − 𝜃1| log |𝑡 − 𝜃2||𝑡 − 𝜃1| + log |𝜃3 − 𝜃2| log |𝑡 − 𝜃3||𝑡 − 𝜃2| + log |𝜃1 − 𝜃3| log |𝑡 − 𝜃1||𝑡 − 𝜃3| .

Putting everything in place, we obtain

𝑝𝓁′
0,∗

[
𝑢2,𝑍 ∧

𝑑𝑡

𝑡

]
= 𝑝𝓁′

0,∗

([
𝑑𝐺(𝑡)

𝑑𝑡

𝑡

])
= 𝐺(0) − 𝐺(∞).

Noting that 𝐺(∞) = 0 since 𝐷2(∞) = log 1 = 0, and using the sixfold symmetry of Bloch–Wigner
dilogarithm functions, we deduce

𝑝𝓁′
0,∗

[
𝑢2,𝑍(𝑡) ∧

𝑑𝑡

𝑡

]
= 𝑖

(
𝐷2

(
𝜃2
𝜃1

)
+ 𝐷2

(
𝜃3
𝜃2

)
+ 𝐷2

(
𝜃1
𝜃3

))
+

(
log |𝜃1| log |𝜃1 − 𝜃3||𝜃1 − 𝜃2| + log |𝜃2| log |𝜃2 − 𝜃1||𝜃2 − 𝜃3| + log |𝜃3| log |𝜃3 − 𝜃2||𝜃3 − 𝜃1|

)
.

After plugging in the values of 𝜃1, 𝜃2 and 𝜃3 and taking the imaginary part,

Im𝑝𝓁′
0,∗

[
𝑢𝑍(𝑡) ∧

𝑑𝑡

𝑡

]
= 𝐷2

(
𝑏2𝑐1
𝑏1𝑐2

)
+ 𝐷2

(
𝑐2𝑎1
𝑐1𝑎2

)
+ 𝐷2

(
𝑎2𝑏1
𝑎1𝑏2

)
.

Similarly, for 𝓁′
1
and 𝓁′

2
, we have

Im𝑝𝓁′
1,∗

[
𝑢𝑍(𝑡) ∧

𝑑𝑡

𝑡

]
= 𝐷2

(
𝑏0𝑐2
𝑏2𝑐0

)
+ 𝐷2

(
𝑐0𝑎2
𝑐2𝑎0

)
+ 𝐷2

(
𝑎0𝑏2
𝑎2𝑏0

)
,
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Im𝑝𝑙′
2,∗

[
𝑢𝑍(𝑡) ∧

𝑑𝑡

𝑡

]
= 𝐷2

(
𝑏1𝑐0
𝑏0𝑐1

)
+ 𝐷2

(
𝑐1𝑎0
𝑐0𝑎1

)
+ 𝐷2

(
𝑎1𝑏0
𝑎0𝑏1

)
.

Summing up, the height of 𝐵𝑍𝛼,𝑊𝛽
is given by

ht(𝐵) =
1

(2𝜋𝑖)2

∑
(0,1,2)
(𝑎,𝑏,𝑐)

𝐷2

(
𝑎2𝑏1
𝑎1𝑏2

)
,

where the sum is over all cyclic permutations of (0,1,2) and (𝑎, 𝑏, 𝑐) for a total of nine terms.
The expression above can be reduced to an expression containing six dilogarithms, using the

five-term relation for Bloch–Wigner dilogarithm. As a prototype, we show the simplification for
the first component of the above sum. Taking

𝑢 ∶=
𝑏2𝑐1
𝑏1𝑐2

, 𝑣 ∶=
𝑐2𝑎1
𝑐1𝑎2

, 𝑤 ∶=
𝑎2𝑏1
𝑎1𝑏2

,

we observe that 𝑢𝑣𝑤 = 1. Hence,𝐷2(𝑤) = 𝐷2(1 −
1

𝑤
) = 𝐷2(1 − 𝑢𝑣). Now using the five-term rela-

tion, we conclude

𝐷2(𝑢) + 𝐷2(𝑣) + 𝐷2(𝑤) = 𝐷2

(
1 − 𝑢𝑣

1 − 𝑢

)
+ 𝐷2

(
1 − 𝑢𝑣

1 − 𝑣

)
.

Plugging back the values of 𝑢, 𝑣 and 𝑤, we get

𝐷2

(
𝑏2𝑐1
𝑏1𝑐2

)
+ 𝐷2

(
𝑐2𝑎1
𝑐1𝑎2

)
+ 𝐷2

(
𝑎2𝑏1
𝑎1𝑏2

)
𝐷2

(
𝑎2𝑏1 − 𝑎1𝑏2
𝑏1𝑐2 − 𝑏2𝑐1

(
𝑐2
𝑎2

))
+ 𝐷2

(
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2𝑐1 − 𝑎1𝑐2

(
𝑐1
𝑏1

))
.

Finally, putting everything together, we get a reduced expression

ht(𝐵) =
1

(2𝜋𝑖)2

∑
(0,1,2)

𝐷2

(
𝑎2𝑏1 − 𝑎1𝑏2
𝑏1𝑐2 − 𝑏2𝑐1

(
𝑐2
𝑎2

))
+ 𝐷2

(
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2𝑐1 − 𝑎1𝑐2

(
𝑐1
𝑏1

))
,

where the sum is over the cyclic permutations of (0,1,2) only, giving us six terms.

Remark 5.9. From the formula for ht(𝐵) we can derive two conclusions.

(i) Since 𝐷2(𝑟) = 0, ∀𝑟 ∈ ℝ, we deduce that if the triangles are defined over ℝ the height pairing
is zero. In fact this is a general phenomenon as the Proposition 5.10 shows.

(ii) Since the function 𝐷2 can be extended to a continuous function on ℙ1(ℂ), the above height
can be extended by continuity to any degenerate situation.We see in the next section that this
is a very general phenomenon.

Proposition 5.10. Let 𝑋 be a smooth projective variety defined over ℝ and 𝑋ℂ the corresponding
complex variety. Let 𝑍 ∈ 𝑍𝑝(𝑋ℂ, 1) and𝑊 ∈ 𝑍𝑞(𝑋ℂ, 1) be two higher cycles defined also over ℝ sat-
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isfying Assumption 3.27. Then

ht(𝐵𝑍,𝑊) = 0.

Proof. The short proof is that, under the hypothesis of the proposition

ht(𝐵𝑍,𝑊) ∈ 𝜌2(𝐻
1
𝔇
(Spec(ℝ); ℝ(2)))

and𝐻1
𝔇
(Spec(ℝ); ℝ(2)) = 0.

In more down-to-earth terms, let 𝜎∶ 𝑋ℂ → 𝑋ℂ be the antilinear involution defined by the real
structure of 𝑋. Assume for the moment that 𝑍 and𝑊 are not necessarily defined over ℝ. By the
functoriality of the construction of mixed Hodge structures, we deduce that 𝐵𝜎∗𝑍,𝜎∗𝑊 = 𝐵𝑍,𝑊 ,
where, for a mixed Hodge structure 𝐻, we denote by 𝐻 the mixed Hodge structure obtained by
sending 𝑖 to −𝑖.
Let now 𝐵 be any generalized biextension. Let 𝑟 = 𝓁(𝐵)∕2. Then the operation 𝐵 ↦ 𝐵 sends a

generator 𝑒 of ℚ(𝑎) to (−1)𝑎𝑒 (see Remark 1.1) and the map Im is sent to − Im. Therefore,

ht(𝐵) = (−1)𝑟+1 ht(𝐵).

In our case

𝓁(𝐵𝑍,𝑊)∕2 =
𝑛 +𝑚

2
+ 1 = 2.

Therefore,

ht(𝐵𝜎∗𝑍, 𝜎
∗𝑊) = −ht(𝐵𝑍,𝑊).

But if 𝑍 and𝑊 are defined over ℝ we also have

ht(𝐵𝜎∗𝑍,𝜎∗𝑊) = ht(𝐵𝑍,𝑊),

from which the proposition follows. □

6 ASYMPTOTIC BEHAVIOR

In this section, we begin the study of the asymptotic behavior of the height of families of higher
cycles. In Section 6.1 we prove the height extends continuously whenever the associated variation
of mixed Hodge structure is of Hodge–Tate type. In Section 6.2 we give a definition of limit height
for arbitrary admissible variations of mixedHodge structures over the punctured disk with unipo-
tentmonodromy. In Section 6.3 we give three examples of heights coming from (i) the dilogarithm
variation, (ii) a particular family of triangles inℙ2 and (iii) a nilpotent orbit. The first two examples
in Section 6.3 can be read independent of the rest of this section. By definition, an oriented varia-
tion of mixed Hodge structure is a variation equipped with a choice of flat, global sections which
induce an orientation on each fiber.
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6.1 Hodge–Tate limits

Theorem 6.1. Let 𝑆 be a Zariski open subset of a complex manifold �̄� such that 𝐷 = �̄� − 𝑆 is a
normal crossing divisor. Let → 𝑆 be an orientedHodge–Tate variation (graded polarized) such that
the length 𝓁() ⩾ 4. Assume  is admissible with respect to �̄� and has unipotent local monodromy
about 𝐷. Let 𝑝 ∈ 𝐷. Then, the limit mixed Hodge structure 𝑝 of  at 𝑝 is an oriented Hodge–Tate
structure with the same weight filtration as  . Moreover,

lim
𝑠→𝑝

ht(𝑠) = ht(𝑝). (6.1)

To set up themachinery to prove Theorem6.1, let𝑝 ∈ �̄� − 𝑆. Thenwe can find a polydiskΔ𝑟 ⊂ �̄�

containing 𝑝 and local holomorphic coordinates (𝑠1, … , 𝑠𝑟) vanishing at 𝑝 such that

(i) the image of Δ𝑟 under (𝑠1, … , 𝑠𝑟) is the unit polydisk (coordinate norm < 1) in ℂ𝑟; and
(ii) 𝐷 ∩ Δ𝑟 is given by the local equation 𝑠1⋯ 𝑠𝑘 = 0.

Therefore,

Δ𝑟 − 𝐷 ∩ Δ𝑟 = Δ∗𝑘 × Δ𝑟−𝑘 = {𝑠 ∣ 𝑠1⋯ 𝑠𝑘 ≠ 0}.

As Theorem 6.1 concerns the asymptotic behavior of the variation, it is sufficient work onΔ∗𝑘 ×
Δ𝑟−𝑘. We therefore recall the theory of period maps of admissible variations of graded-polarized
mixed Hodge structures in this setting following the conventions of [30].
Pick 𝑏 ∈ Δ∗𝑘 × Δ𝑟−𝑘 and let 𝑉 = 𝑏 be the fiber of  at 𝑏. Let 𝑇𝑗 denote the local monodromy

of  about 𝑠𝑗 = 0. We assume 𝑇𝑗 to be unipotent and write 𝑇𝑗 = 𝑒𝑁𝑗 . Note the [𝑁𝑎,𝑁𝑏] = 0 since
the fundamental group of Δ∗𝑘 × Δ𝑟−𝑘 is abelian.
In analogy with the pure case, we can represent  by a period map

𝜑∶ Δ𝑟 − 𝐷 → Γ∖,

where  the classifying space of mixed Hodge structure attached to  with reference fiber 𝑉
andmonodromy group Γ generated by 𝑇1, … , 𝑇𝑘 . As with variations of pure Hodge structures, the
classifying space is a complex manifold and the period map 𝜑 is holomorphic, horizontal and
locally liftable.
Let𝑊 denote the weight filtration of  and define

GL(𝑉ℂ)
𝑊 = {g ∈ GL(𝑉ℂ) ∣ g(𝑊𝑘) ⊆ 𝑊𝑘, ∀𝑘}.

Let 𝑗 denote the graded polarization of Gr𝑊𝑗 and define

𝐺 = {g ∈ GL(𝑉𝑊
ℂ
) ∣ Gr𝑊(g) ∈ Autℝ(∙) }.

Then (see [30, Section 3]) 𝐺 acts transitively on by biholomorphic transformations.
Let 𝐺ℝ = 𝐺 ∩ GL(𝑉ℝ) and 𝐺ℂ be the complexification of 𝐺ℝ. The classifying space is a com-

plex analytic open subset of a complexmanifold ̌ uponwhich𝐺ℂ acts transitively by biholomor-
phisms. Let 𝔤ℂ be the Lie algebra of 𝐺ℂ and 𝔤𝐹ℂ denote the isotopy subalgebra of elements which
preserve 𝐹 ∈ ̌. Let 𝔮 be a vector space complement to 𝔤𝐹

ℂ
in 𝔤ℂ. Then, by the implicit function
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theorem, there exists a neighborhood of 0 ∈ 𝔮 such that the map

𝑢 ∈  ⟼𝑒𝑢 ⋅ 𝐹 ∈ ̌
is a biholomorphism onto its image.
Let (𝑧1, … , 𝑧𝑘) denote the standard Euclidean coordinates onℂ𝑘 and𝑈𝑘 ⊂ ℂ denote the product

of upper half-planes where Im(𝑧1), … , Im(𝑧𝑘) > 0. Let Δ𝑟−𝑘 ⊂ Δ𝑟 be the locus where 𝑠1, … , 𝑠𝑘 = 0

and

(𝑧, 𝑠) = (𝑧1, … , 𝑧𝑘, 𝑠𝑘+1, … , 𝑠𝑟)

be the corresponding coordinate system of 𝑈𝑘 × Δ𝑟−𝑘.
Let 𝑈𝑘 × Δ𝑟−𝑘 → Δ∗𝑘 × Δ𝑟−𝑘 be the covering map

(𝑧1, … , 𝑧𝑘, 𝑠𝑘+1, … , 𝑠𝑟)⟶ (𝑒2𝜋𝑖𝑧1 , … , 𝑒2𝜋𝑖𝑧𝑘 , 𝑠𝑘+1, … , 𝑠𝑟),

that is, 𝑠𝑗 = 𝑒2𝜋𝑖𝑧𝑗 for 𝑗 = 1,… , 𝑘. Let 𝜂𝑗 be the covering transformation 𝜂𝑗(𝑧, 𝑠) = (𝑧 + 𝑒𝑗, 𝑠)where
𝑒𝑗 is the 𝑗’th unit coordinate vector in ℂ𝑘. Set

𝑁(𝑧) = 𝑧1𝑁1 +⋯ + 𝑧𝑘𝑁𝑘.

By the local liftability of 𝜑 there exists a holomorphic map 𝐹∶ 𝑈𝑘 × Δ𝑟−𝑘 →  such that
𝐹(𝜂𝑗(𝑧, 𝑠)) = 𝑇𝑗 ⋅ 𝐹(𝑧, 𝑠) which makes the following diagram commute:

Accordingly, the formula �̃�(𝑧, 𝑠) = 𝑒−𝑁(𝑧) ⋅ 𝐹(𝑧, 𝑠) defines a map �̃� ∶ 𝑈𝑘 × Δ𝑟−𝑘 → ̌ such that
�̃� ◦ 𝜂𝑗(𝑧, 𝑠) = �̃�(𝑧, 𝑠). Therefore, �̃� descends to a holomorphic map 𝜓∶ Δ∗𝑘 × Δ𝑟−𝑘 → ̌. By
admissibility [28, 36], 𝜓 extends to a holomorphic map Δ𝑟 → ̌ with limit Hodge filtration

𝐹∞ = lim
𝑠→0

𝜓(𝑠) ∈ ̌. (6.2)

Let 𝑁 be an element of the monodromy cone

 =

{∑
𝑗

𝑎𝑗𝑁𝑗

||||𝑎1, … , 𝑎𝑘 > 0

}
.

By admissibility, it follows that the relative weight filtration𝑀 = 𝑀(𝑁,𝑊) of𝑁 and𝑊 exists, and
together with 𝐹∞ define a graded-polarizable mixed Hodge structure (𝐹∞,𝑀).
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The mixed Hodge structure (𝐹∞,𝑀) induces a mixed Hodge structure on 𝔤ℂ with associated
Deligne bigrading

𝔤ℂ =
⨁
𝑎+𝑏⩽0

𝔤𝑎,𝑏
ℂ
.

In particular,

𝔤
𝐹∞
ℂ

=
⨁
𝑎⩾0

𝑎+𝑏⩽0

𝔤𝑎,𝑏
ℂ

and hence

𝔮∞ ∶=
⨁
𝑎<0
𝑎+𝑏⩽0

𝔤𝑎,𝑏
ℂ

(6.3)

is a vector space complement to 𝔤𝐹∞
ℂ

in 𝔤ℂ. Therefore, it follows from Equation (6.2) that for 𝑠 ∼ 0

we can write

𝜓(𝑠) = 𝑒Γ(𝑠) ⋅ 𝐹∞,

where Γ(𝑠) is a holomorphic function with values in 𝔮∞ which vanishes at 𝑠 = 0. Thus,

𝐹(𝑧, 𝑠) = 𝑒𝑁(𝑧)𝑒Γ(𝑠) ⋅ 𝐹∞. (6.4)

See [30, Section 6] for a complete account of the constructions outlined in the previous paragraphs.
The final preliminary result we need is the following [25, Lemma 5.7]

[𝑁𝑗, Γ(𝑠)
||𝑠𝑗=0] = 0, (6.5)

which follows from a straightforward consequence of horizontality and the results established
above. Accordingly,

[𝑁𝑗, Γ(𝑠)] = [𝑁𝑗, Γ(𝑠) − Γ(𝑠)||𝑠𝑗=0]. (6.6)

Considering the power series expansion of Γ(𝑠) about 𝑠 = 0we see that Γ(𝑠) − Γ(𝑠)|𝑠𝑗=0 is divisible
by 𝑠𝑗 . Thus,

𝑠𝑗|[𝑁𝑗, Γ(𝑠)] (6.7)

in (Δ𝑟).
By induction one has the following result [25, 8.11]): Given a multi-index 𝐽 = (𝑎1, … , 𝑎𝑘) with

non-negative entries define

𝐴𝐽 =
∏
𝑗

Ad(𝑁𝑗)
𝑎𝑗



HEIGHT PAIRING ON HIGHER CYCLES ANDMIXED HODGE STRUCTURES 157

and

𝑠|𝐽| = ∏
{𝑗∣𝑎𝑗≠0}

𝑠𝑗.

Then

𝑠|𝐽||𝐴𝐽Γ. (6.8)

Let 𝑀(𝑧, �̄�) be a monomial in 𝑧1, … , 𝑧𝑘 and �̄�1, … , �̄�𝑘. Let 𝛼(𝑠, 𝑠) be a real analytic 𝔤ℂ-valued
function on Δ𝑟 in the variables 𝑠1, … , 𝑠𝑟 and 𝑠1, … , 𝑠𝑟 which vanishes at 𝑠 = 0. Motivated by (6.8)
we say that the product 𝑀(𝑧, �̄�)𝛼(𝑠, 𝑠) is a tame monomial if, whenever 𝑧𝑗 or �̄�𝑗 divide 𝑀, then
either 𝑠𝑗 or 𝑠𝑗 divides 𝛼 (note: if 𝑓 is any 𝔤ℂ valued real analytic function, then 𝑧𝑗𝑠𝑗𝑓, 𝑧𝑗𝑠𝑗𝑓, �̄�𝑗𝑠𝑗𝑓,
�̄�𝑗𝑠𝑗𝑓 are all tamemonomials). A tame polynomial is a finite sumof tamemonomials. Let  denote
the set of all tame polynomials.

 is a complex vector space which is closed under complex conjugation and taking Hodge
components with respect to a fixedmixed Hodge structure. If 𝛽 ∈ 𝔤ℂ and 𝜏 ∈  then [𝛽, 𝜏] clearly
belongs to  . By Equation (6.8), the application of any polynomial in Ad(𝑁(𝑧)) and Ad(𝑁(�̄�)) to
Γ(𝑠) is tame.
To see that  is closed under Lie bracket, note that if𝑚1𝛼1 and𝑚2𝛼2 are tamemonomials then

[𝑚1𝛼1,𝑚2𝛼2] = 𝑚1𝑚2[𝛼1, 𝛼2].

If 𝑧𝑗 or �̄�𝑗 divides 𝑚1𝑚2 then 𝑧𝑗 or �̄�𝑗 must divide either 𝑚1 or 𝑚2. If 𝑧𝑗 or �̄�𝑗 divides 𝑚1 then
either 𝑠𝑗 or 𝑠𝑗 divides 𝛼1. As such 𝑠𝑗 or 𝑠𝑗 divides [𝛼1, 𝛼2]. The same argument applies to the case
where 𝑧𝑗 or �̄�𝑗 divides𝑚2.
Finally, if 𝜏 ∈  then

lim
Im(𝑧)→∞

𝑠→0

𝜏(𝑧, 𝑠) = 0, (6.9)

where the limit is taken along sequences (𝑧(𝑚), 𝑠(𝑚)) ∈ 𝑈𝑘 × Δ𝑘−𝑟 such that 𝑠(𝑚) → 0,
Im(𝑧1(𝑚)), … , Im(𝑧𝑘(𝑚)) → ∞ and Re(𝑧1(𝑚)), … , Re(𝑧𝑘(𝑚)) is constrained to a finite interval.
Wenow specialize to the casewhere isHodge–Tate. By themonodromy theorem [33, Theorem

6.1], it follows that 𝑁 ∈ 𝐶 acts trivially on each Gr𝑊
2𝓁 as Gr

𝑊
2𝓁 is pure of type (𝓁,𝓁). Therefore, by

admissibility and [36, Proposition 2.14] it follows that the relative weight filtration𝑀 = 𝑀(𝑁,𝑊)

exists and equals𝑊. Accordingly, the limit Hodge filtration 𝐹∞ of  belongs to. Therefore, the
image of 𝜓 is contained in.

Remark 6.2. Since every element 𝑁 ∈ 𝐶 acts trivially on Gr𝑊 , the same holds for every

𝑁 ∈ �̄� = {
∑
𝑗

𝑎𝑗𝑁𝑗 ∣ 𝑎1, … , 𝑎𝑘 ⩾ 0}

and hence𝑁 ∈ �̄� implies that𝑀(𝑁,𝑊) = 𝑊. Therefore, (𝜓(𝑠),𝑊) is the limit Hodge structure at
𝑠 ∈ 𝐷 ∩ Δ𝑟.
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Before continuing, we note that 𝐹∞ depends on the choice of local coordinates (𝑠1, … , 𝑠𝑟). The
permissible changes of coordinates which are compatible with the divisor structure result in the
limit Hodge filtration 𝐹∞ only being well defined up to transformation of the form

𝐹∞ ↦ 𝑒𝑁(𝜆) ⋅ 𝐹∞, 𝑁(𝜆) =
∑
𝑗

𝜆𝑗𝑁𝑗, (6.10)

for some complex numbers 𝜆1, … , 𝜆𝑘 . Since  is Hodge–Tate, Gr𝑊
𝑘
= 0 for odd 𝑘. Since 𝓁() ⩾ 4,

by Corollary 2.11 we have

ht(𝑒𝜆𝑁 ⋅ 𝐹∞,𝑊) = ht(𝐹∞,𝑊).

We conclude this section with the proof of Theorem 6.1.

Proof of Theorem 6.1. By Remark 6.2 and the fact that 𝐹∞ ∈  we deduce that the limit mixed
Hodge structure (𝐹∞,𝑀(𝑁,𝑊)) = (𝐹∞,𝑊) is Hodge–Tate and has the same weight filtration. So
it only remains to be shown the continuity condition (6.1).
Returning to the subspace (6.3), we see that since is Hodge–Tate and𝐹∞ ∈ , it follows that

𝔮∞ =
⨁
𝑎<0

𝔤𝑎,𝑎
ℂ

= Λ−1,−1
(𝐹∞,𝑊)

in this case. Accordingly, by (6.4) and Lemma 2.2 we have

𝑌(𝐹(𝑧,𝑠),𝑊) = 𝑌(𝑒𝑁(𝑧)𝑒Γ(𝑠)⋅𝐹∞,𝑊) = 𝑒𝑁(𝑧)𝑒Γ(𝑠) ⋅ 𝑌(𝐹∞,𝑊)

and hence

𝑌(𝐹(𝑧,𝑠),𝑊) = 𝑒𝑁(�̄�)𝑒Γ̄(𝑠) ⋅ 𝑌(𝐹∞,𝑊).

Let 𝛿 = 𝛿(𝐹∞,𝑊) and 𝛿(𝑧, 𝑠) = 𝛿(𝐹(𝑧,𝑠),𝑊) as in (2.6). Then,

𝑌(𝐹(𝑧,𝑠),𝑊) = 𝑒𝑁(�̄�)𝑒Γ̄(𝑠)𝑒−2𝑖𝛿 ⋅ 𝑌(𝐹∞,𝑊).

On the other hand, by definition

𝑌(𝐹(𝑧,𝑠),𝑊) = 𝑒−2𝑖𝛿(𝑧,𝑠) ⋅ 𝑌(𝐹(𝑧,𝑠),𝑊) = 𝑒−2𝑖𝛿(𝑧,𝑠)𝑒𝑁(𝑧)𝑒Γ(𝑠) ⋅ 𝑌(𝐹∞,𝑊).

Comparing these two equations, it follows that

𝑒𝑁(�̄�)𝑒Γ̄(𝑠)𝑒−2𝑖𝛿 ⋅ 𝑌(𝐹∞,𝑊) = 𝑒−2𝑖𝛿(𝑧,𝑠)𝑒𝑁(𝑧)𝑒Γ(𝑠) ⋅ 𝑌(𝐹∞,𝑊). (6.11)

By [17, Proposition 2.2], the group exp(𝑊−1𝔤𝔩(𝑉)) acts simply transitively on the set of gradings
of𝑊. Therefore, Equation (6.11) implies that

𝑒𝑁(�̄�)𝑒Γ̄(𝑠)𝑒−2𝑖𝛿 = 𝑒−2𝑖𝛿(𝑧,𝑠)𝑒𝑁(𝑧)𝑒Γ(𝑠). (6.12)
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TheHodge components of𝛼 ∈ 𝔤ℂ relative to (𝐹∞,𝑊)will be denoted𝛼−𝑏,−𝑏. For the remainder
of this proof, we constrain Re(𝑧1), … , Re(𝑧𝑘) to a finite interval.
By the Campbell–Baker–Hausdorff (CBH) formula,

𝑒𝑁(�̄�)𝑒Γ̄(𝑠) = 𝑒𝑁(�̄�)+Γ̄(𝑠)+𝐴(𝑧,𝑠), (6.13)

where 𝐴(𝑧, 𝑠) is a Lie polynomial with terms 𝑋 = Ad(𝑋1) ◦ Ad(𝑋𝑚−1)𝑋𝑚 where at least one
𝑋𝑗 = Γ̄(𝑠) and the other 𝑋𝑖 are either 𝑁(�̄�) or Γ̄(𝑠). Therefore, by the discussion following (6.8),
𝐴(𝑧, 𝑠) belongs to  . For future use, we observe that𝐴−1,−1(𝑧, 𝑠) = 0 since𝐴(𝑧, 𝑠) is a sum of terms
containing at least two elements from 𝔮∞ = ⊕𝑘>1 𝔤

−𝑘,−𝑘
ℂ

.
Before continuing, observe that because each 𝑁𝑗 = 𝑁−1,−1

𝑗
and 𝛿 =

∑
𝑘>0 𝛿

−𝑘,−𝑘 the equa-
tion [𝑁𝑗, 𝛿] = 0 implies [𝑁(�̄�), 𝛿−𝑘,−𝑘] = 0 for all 𝑘 > 0. In particular,

Ad(𝐿1) ◦ … ◦ Ad(𝐿𝑚−1)𝐴(𝑧, 𝑠) ∈  (6.14)

if each 𝐿𝑗 is either−2𝑖𝛿 or𝑁(�̄�) since [𝑁(�̄�), 𝛿] = 0 and𝐴(𝑧, 𝑠) is itself constructed from Lie poly-
nomials in Ad(𝑁(�̄�)) and Γ̄(𝑠).
More generally, any Lie polynomial 𝑈 = Ad(𝑈1) ◦ … ◦ Ad(𝑈𝑚−1)𝑈𝑚 where each 𝑈𝑗 is either

𝑁(�̄�), Γ̄(𝑠), 𝐴(𝑧, 𝑠) and −2𝑖𝛿 again belongs to  . Indeed, bracketing Γ̄(𝑠) or 𝐴(𝑧, 𝑠) with −2𝑖𝛿 pro-
duces another element of  . By the remarks of the previous paragraph, if Γ̄(𝑠) does not appear the
result belongs to  . Finally, Γ̄(𝑠) belongs to  , and  is closed under Lie brackets. Application of
the Jacobi identity now shows that 𝑈 belongs to  .
Continuing, by the CBH,

𝑒𝑁(�̄�)+Γ̄(𝑠)+𝐴(𝑧,𝑠)𝑒−2𝑖𝛿 = 𝑒𝑁(�̄�)+Γ̄(𝑠)+𝐴(𝑧,𝑠)−2𝑖𝛿+𝐵(𝑧,𝑠), (6.15)

where 𝐵(𝑧, 𝑠) is a Lie polynomial with terms 𝑋 = Ad(𝑋1) ◦ Ad(𝑋𝑚−1)𝑋𝑚 where at least one 𝑋𝑗 =
−2𝑖𝛿 and the other𝑋𝑖 are either𝑁(�̄�) + Γ̄(𝑠) + 𝐴(𝑧, 𝑠) or−2𝑖𝛿. Expanding out𝑋 as a sum of terms
𝑈 = Ad(𝑈1) ◦ … ◦ Ad(𝑈𝑟−1)𝑈𝑟 where each𝑈𝑗 is either𝑁(�̄�), Γ̄(𝑠),𝐴(𝑧, 𝑠) and−2𝑖𝛿 it follows that
𝐵(𝑧, 𝑠) belongs to  by the previous paragraph. As was the case for𝐴, 𝐵−1,−1(𝑧, 𝑠) = 0 since 𝐵(𝑧, 𝑠)
is a sum of terms involving the Lie bracket of at least 2 elements of 𝔮∞.
Turning now to the right-hand side of (6.12), by (6.13)

𝑒𝑁(𝑧)𝑒Γ(𝑠) = 𝑒𝑁(𝑧)+Γ(𝑠)+�̄�(𝑧,𝑠).

Therefore,

𝑒−2𝑖𝛿(𝑧,𝑠)𝑒𝑁(𝑧)𝑒Γ(𝑠) = 𝑒−2𝑖𝛿(𝑧,𝑠)+𝑁(𝑧)+Γ(𝑠)+�̄�(𝑧,𝑠)+𝐶(𝑧,𝑠), (6.16)

where 𝐶(𝑧, 𝑠) is a sum of terms 𝑋 = Ad(𝑋1) ◦ … ◦ Ad(𝑋𝑚−1)𝑋𝑚 with some 𝑋𝑗 = −2𝑖𝛿(𝑧, 𝑠) and
the remaining terms 𝑋𝑖 either equal to −2𝑖𝛿(𝑧, 𝑠) or to 𝑁(𝑧) + Γ(𝑠) + �̄�(𝑧, 𝑠).
Comparing (6.15) and (6.16) it follows that

𝑁(�̄�) + Γ̄(𝑠) + 𝐴(𝑧, 𝑠) − 2𝑖𝛿 + 𝐵(𝑧, 𝑠)

= −2𝑖𝛿(𝑧, 𝑠) + 𝑁(𝑧) + Γ(𝑠) + �̄�(𝑧, 𝑠) + 𝐶(𝑧, 𝑠).
(6.17)
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Likewith𝐴 and𝐵, we have𝐶−1,−1(𝑧, 𝑠) = 0. Accordingly, taking the (−1, −1)-component of Equa-
tion (6.17) yields

𝑁(�̄�) + (Γ̄)−1,−1(𝑠) − 2𝑖𝛿−1,−1 = −2𝑖𝛿−1,−1(𝑧, 𝑠) + 𝑁(𝑧) + Γ−1,−1(𝑠).

Solving for 𝛿−1,−1(𝑧, 𝑠) gives

𝛿−1,−1(𝑧, 𝑠) = 𝑁(Im(𝑧)) + Im(Γ(𝑠))−1,−1 + 𝛿−1,−1. (6.18)

Returning to Equation (6.16) and noting that 𝐴−1,−1(𝑧, 𝑠) = 0, upon taking the (−2, −2)-
component we obtain that

𝐶−2,−2(𝑧, 𝑠) =
1

2
[−2𝑖𝛿−1,−1(𝑧, 𝑠), 𝑁(𝑧) + Γ−1,−1(𝑠)]

= −𝑖[𝑁(Im(𝑧)) + Im(Γ(𝑠))−1,−1 + 𝛿−1,−1, 𝑁(𝑧) + Γ−1,−1(𝑠)]

= −𝑖[𝑁(Im(𝑧)), Γ−1,−1(𝑠)]

− 𝑖[Im(Γ(𝑠))−1,−1, 𝑁(𝑧) + Γ−1,−1(𝑠)]

− 𝑖[𝛿−1,−1, Γ−1,−1(𝑠)].

(6.19)

In particular, it follows from (6.19) that 𝐶−2,−2(𝑧, 𝑠) belongs to class  .
Taking (−2, −2) components (6.17) implies

(Γ̄)−2,−2(𝑠) + 𝐴−2,−2(𝑧, 𝑠) + 𝐵−2,−2(𝑧, 𝑠) − 2𝑖𝛿−2,−2

= −2𝑖𝛿−2,−2(𝑧, 𝑠) + Γ−2,−2(𝑠) + �̄�−2,−2(𝑧, 𝑠) + 𝐶−2,−2(𝑧, 𝑠)

and hence

𝛿−2,−2(𝑧, 𝑠) = 𝛿−2,−2 + 𝐷−2,−2(𝑧, 𝑠),

where 𝐷−2,−2(𝑧, 𝑠) belongs to the class  . By (6.9) we obtain that
lim

Im(𝑧)→∞
𝑠→0

𝛿−2,−2(𝑧, 𝑠) = 𝛿−2,−2.

Therefore, we have completed the proof of Theorem 6.1 in the case where 𝓁() = 4 (for example,
the dilogarithm variation in Example 6.7).
To verify the general statement, we assume by induction that for 𝑎 = 2,… , 𝑘 that

(i) 𝐶−𝑎,−𝑎(𝑧, 𝑠) belongs to class  , and is given by a Lie polynomial with terms
Ad(𝐿1) ◦ … ◦ Ad(𝐿𝑟−1)𝐿𝑟, (6.20)

where each 𝐿𝑗 is either 𝛿−𝑏,−𝑏, 𝑁(𝑧), 𝑁(�̄�), Γ−𝑏,−𝑏(𝑠) or Γ̄−𝑏,−𝑏(𝑠);
(ii) 𝛿−𝑎,−𝑎(𝑧, 𝑠) = 𝛿−𝑎,−𝑎 + 𝐷−𝑎,−𝑎(𝑧, 𝑠) where 𝐷−𝑎,−𝑎(𝑧, 𝑠) satisfies also condition (i).
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The previous paragraphs establish the induction base 𝑎 = 2.
To establish the case 𝑎 = 𝑘 + 1 we recall 𝐶(𝑧, 𝑠) is a sum of terms 𝑋 =

Ad(𝑋1) ◦ … ◦ Ad(𝑋𝑚−1)𝑋𝑚, where some 𝑋𝑗 = −2𝑖𝛿(𝑧) and the remaining terms 𝑋𝑖 are either
−2𝑖𝛿(𝑧) or 𝑁(𝑧) + Γ(𝑠) + �̄�(𝑧, 𝑠) (which occurs at least once). In particular, upon expanding
𝛿(𝑧, 𝑠) into Hodge components, it follows that 𝐶−𝑎−1,−𝑎−1(𝑧, 𝑠) can be expanded into a sum of
terms

𝑈 = Ad(𝑈1) ◦ … ◦ Ad(𝑈𝑚−1)𝑈𝑚

of the required form (i). It now follows from (6.17) and the previous results about 𝐴(𝑧, 𝑠), 𝐵(𝑧, 𝑠)
and 𝐶−𝑏,−𝑏(𝑧, 𝑠) for 𝑏 = 1,… , 𝑘 + 1 that (ii) holds. □

6.2 Heights of nilpotent orbits

Let → Δ∗ be an admissible variation ofmixedHodge structure over the punctured diskΔ∗ with
weight graded quotients Gr𝑊

0
= ℤ(0), Gr𝑊

−1
=  and Gr𝑊

−2
= ℤ(1). Assume that has unipotent

monodromy and select an embedding of Δ∗ into the coordinate disk

Δ = {𝑠 ∈ ℂ ∣ |𝑠| < 1}

as the complement of 𝑠 = 0. In [5, Section 3], the third author and Brosnan proved that there exists
a rational number 𝜇 such that

ℎ(𝑠) = ht(𝑠) + 𝜇 log |𝑠| (6.21)

extends continuously toΔ. Moreover, ℎ(0) can be constructed by pure linear algebra from the data
of (𝑁, 𝐹∞,𝑊) of the nilpotent orbit of .
Consider now an arbitrary oriented admissible variation  → Δ∗ with unipotent monodromy.

As noted in (6.10), the data (𝑁, 𝐹∞,𝑊) of the associated nilpotent orbit of  is only well defined
up to replacing 𝐹∞ by 𝑒𝜆𝑁 ⋅ 𝐹∞. In this section, we define a height ht(𝑁, 𝐹∞,𝑊) of an oriented
admissible nilpotent orbit (𝑒𝑧𝑁 ⋅ 𝐹∞,𝑊) which generalizes the construction of [5] and prove:

Proposition 6.3. If 𝓁() > 2 then, for any 𝜆 ∈ ℂ,

ht(𝑁, 𝑒𝜆𝑁 ⋅ 𝐹∞,𝑊) = ht(𝑁, 𝐹∞,𝑊).

Thus, ht(𝑁, 𝐹∞,𝑊) only depends on the variation  and not on a particular choice of limit Hodge
filtration 𝐹∞. If moreover𝑁 acts trivially on Gr𝑊 then𝑀(𝑁,𝑊) = 𝑊 and

ht(𝑁, 𝐹∞,𝑊) = ht(𝐹∞,𝑀).

On the right-hand side ht(𝐹∞,𝑀) denotes the usual height of the oriented extension (𝐹∞,𝑀).

Accordingly, we can define the limit height of  to be ht(𝑁, 𝐹∞,𝑊) of the associated nilpotent
orbit.
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Remark 6.4. Unfortunately, we do not yet have the analog of (6.21) in general. In the next sub-
section we given an example of an admissible nilpotent variation with weight graded quotients
Gr𝑊

0
= ℤ, Gr𝑊

−3
of rank two and Gr𝑊

−6
≅ ℤ(3) for which ht() grows like a multiple of (log |𝑠|)3 as

𝑠 → 0.

To define the height of a nilpotent orbit, we will freely borrow from Section [6, Section 6]. The
key concept is the notion of a Deligne system, which originates from a letter of Deligne to Cattani
and Kaplan:

Definition 6.5. [6, 6.6]. Let 𝐾 be a field of characteristic zero. A 1-variable Deligne system over
K consists of the following data:

∙ an increasing filtration𝑊 of a finite-dimensional 𝐾-vector space 𝑉;
∙ a nilpotent endomorphism 𝑁 of 𝑉 which preserves𝑊 such that the relative weight filtration
𝑀 = 𝑀(𝑁,𝑊) exists; and

∙ a grading 𝑌 of𝑀 which preserves𝑊 and satisfies [𝑌,𝑁] = −2𝑁.

A morphism of Deligne systems (𝑊,𝑁,𝑌) → (�̃�, �̃�, �̃�) is an endomorphism 𝑇 of the underlying
𝐾-vector spaces such that

𝑇(𝑊𝑖) ⊆ �̃�𝑖, �̃� ◦𝑇 − 𝑇 ◦𝑌 = 0 and �̃� ◦𝑇 − 𝑇 ◦𝑁 = 0.

Given a Deligne system (𝑊,𝑁,𝑌), each choice of grading 𝑌′ of 𝑊 which commutes with 𝑌
determines an 𝔰𝔩2-triple (𝑁0,𝐻,𝑁

+
0
) where

𝑁 =
∑
𝑗⩾0

𝑁−𝑗, [𝑌′, 𝑁−𝑗] = −𝑗𝑁−𝑗, (6.22)

(so𝑁0 is the 0-eigencomponent of N relative to Ad𝑌′) and𝐻 = 𝑌 − 𝑌′ (cf. [6, Equations 6.8 and
6.9]). The basic construction of Deligne’s letter is the following (see [6] for additional history and
references):

Theorem 6.6 [6, 6.10]. Let (𝑊,𝑁,𝑌) be a Deligne system. Then, there exists a unique functorial
grading 𝑌′ = 𝑌′(𝑁, 𝑌) of𝑊 which commutes with 𝑌 such that

[𝑁 − 𝑁0,𝑁
+
0
] = 0, (6.23)

where (𝑁0,𝐻,𝑁
+
0
) is the associated 𝔰𝔩2-triple attached to 𝑌′ and (𝑊,𝑁,𝑌).

In particular, given any admissible variation  of mixed Hodge structure over the punctured
diskΔ∗ with unipotent monodromy, we obtain a Deligne system (𝑊,𝑁,𝑌)where𝑊 is the weight
filtration of  , 𝑁 is the local monodromy and 𝑌 = 𝑌(𝐹∞,𝑀) where (𝐹∞,𝑀) is the limit mixed
Hodge structure of  . If 𝜆 ∈ ℂ, then 𝑒𝜆𝑁 is a morphism from (𝑊,𝑁,𝑌) to (𝑊,𝑁,𝑌 + 2𝜆𝑁) =

(𝑊,𝑁,𝑌(𝑒𝜆𝑁 ⋅𝐹∞,𝑀)). Therefore,

𝑌′(𝑁, 𝑌(𝑒𝜆𝑁 ⋅𝐹∞,𝑀)) = 𝑒𝜆𝑁 ⋅ 𝑌′(𝑁, 𝑌(𝐹∞,𝑀)). (6.24)
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We next proceed to the definition of the height of a nilpotent orbit. So let  and ̌ be the
classifying spaces of mixed Hodge structures of a filtered vector space (𝑉,𝑊) and its compact
dual. Let 𝐹 ∈ ̌ and 𝑁 a nilpotent endomorphism of 𝑉 such that (𝑒𝑧𝑁 ⋅ 𝐹,𝑊) is an admissible
nilpotent orbit. This means the following conditions:

(i) 𝑁(𝐹𝑟) ⊂ 𝐹𝑟−1 (horizontality);
(ii) 𝑒𝑧𝑁 ⋅ 𝐹 ∈  for Im(𝑧) ≫ 0; and
(iii) the filtration𝑀 = 𝑀(𝑁,𝑊) exists.

Letmax = max(𝑊),min = min(𝑊). Assume (𝑒𝑧𝑁 ⋅ 𝐹,𝑊) is oriented and𝓁 = 𝓁(𝑊) > 2.We have
a limit mixed Hodge structure (𝐹,𝑀). Let 𝑌′ = 𝑌′(𝑁, 𝑌(𝐹,𝑀)) and 𝛿 = 𝛿(𝐹,𝑀). Write

𝛿 =
∑
𝑗⩾0

𝛿−𝑗, [𝑌′, 𝛿−𝑗] = −𝑗𝛿−𝑗. (6.25)

Note that this decomposition is with respect to a grading of𝑊 and not with respect to a grading
of𝑀. We define the height of the admissible nilpotent orbit as

ht(𝑁, 𝐹,𝑊)𝑒∨ = 𝛿−𝓁 𝑒, (6.26)

where 𝑒 is a lift of the generator of Gr𝑊max and 𝑒
∨ projects to the generator of Gr𝑊

min
. We stress here

the fact that the generators 𝑒 and 𝑒∨ as well as the grading𝑌′ correspond to the filtration𝑊, while
the operator 𝛿 is defined by the mixed Hodge structure (𝐹,𝑀). We proceed in this way because
there is no reason for (𝐹,𝑀) to be oriented.

Proof of Proposition 6.3. Let 𝑒𝑧𝑁 ⋅ 𝐹 be an admissible nilpotent orbit as before and 𝜆 ∈ ℂ. Let
𝛿 = 𝛿(𝐹,𝑀) and �̃� = 𝛿(𝑒𝜆𝑁 ⋅𝐹,𝑀). By Lemma 2.10

�̃� = 𝛿 + Im(𝜆)𝑁.

Moreover, since 𝑁 is a (−1, −1)-morphism of both (𝐹,𝑀) and (𝑒𝜆𝑁 ⋅ 𝐹,𝑀) it follows that both 𝛿
and �̃� are fixed by the adjoint action of 𝑒𝜆𝑁 .
Let 𝛿 =

∑
𝑗 𝛿𝑗 and 𝑁 =

∑
𝑗 𝑁𝑗 denote the decomposition of 𝛿 and 𝑁 into eigencomponents

with respect to the adjoint action of 𝑌′ = 𝑌′(𝑁, 𝑌(𝐹,𝑀)) as in (6.25). Then,

�̃� = 𝑒𝜆𝑁 ⋅ �̃� = 𝑒𝜆𝑁 ⋅
∑
𝑗⩾0

𝛿−𝑗 + Im(𝜆)𝑁−𝑗 =
∑
𝑗⩾0

𝑒𝜆𝑁 ⋅ (𝛿−𝑗 + Im(𝜆)𝑁−𝑗). (6.27)

Let �̃�′ = 𝑌′(𝑁, 𝑌(𝑒𝜆𝑁 ⋅𝐹,𝑀)) and

�̃� =
∑
𝑗⩾0

�̃�−𝑗, [�̃�′, �̃�−𝑗] = −𝑗�̃�−𝑗,

be the decomposition of �̃� into eigencomponents for Ad �̃�′. By Equation (6.24), �̃�′ = 𝑒𝜆𝑁 ⋅ 𝑌′.
Moreover,

[𝑒𝜆𝑁 ⋅ 𝑌′, 𝑒𝜆𝑁 ⋅ (𝛿−𝑗 + Im(𝜆)𝑁−𝑗)] = 𝑒𝜆𝑁 ⋅ [𝑌′, 𝛿−𝑗 + Im(𝜆)𝑁−𝑗]
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= −𝑗𝑒𝜆𝑁 ⋅ (𝛿−𝑗 + Im(𝜆)𝑁−𝑗).

Comparing the previous equation with (6.27) it follows that

�̃�−𝑗 = 𝑒𝜆𝑁 ⋅ (𝛿−𝑗 + Im(𝜆)𝑁−𝑗). (6.28)

In the notation of (6.26), we are interested in comparing �̃�−𝓁 and 𝛿−𝓁 . As the first step, we note
that 𝑁 acts trivially on Gr𝑊max and Gr

𝑊
min

as each factor has dimension 1 and 𝑁 is nilpotent. As 𝑁
preserves𝑊, it then follows that 𝑒𝜆𝑁 fixes 𝛿−𝓁 and 𝑁−𝓁 under the adjoint action. Thus,

�̃�−𝓁 = 𝛿−𝓁 + Im(𝜆)𝑁−𝓁 .

The limit mixed Hodge structure (𝐹,𝑀) induces on Gr𝑊 the limit mixed Hodge structures of
the variations of pure Hodge structure on Gr𝑊 . Let 2𝑎 = max and 2𝑏 = min. Then, Gr𝑊

2𝑎
is the

constant variation of type (𝑎, 𝑎)whereasGr𝑊
2𝑏
is the constant variation of type (𝑏, 𝑏). Consequently,

𝐹𝑎 surjects on Gr𝑊
2𝑎
whereas 𝐹𝑎+1 maps to zero in Gr𝑊

2𝑎
. Moreover, Gr𝑊

2𝑏
= 𝑊2𝑏 and 𝑊2𝑏 ⊂ 𝐹𝑏

whereas 𝐹𝑏+1 ∩𝑊2𝑏 = 0.
By the previous paragraph, it follows that in Equation (6.26) we can arrange that 𝑒 ∈ 𝐹𝑎. By [31,

Equation (3.20)], 𝑌′ preserves 𝐹. Accordingly, since 𝑁 is horizontal with respect to 𝐹, so is each
eigencomponent 𝑁−𝑗 .
Therefore, 𝑁−𝓁(𝑒) ∈ 𝐹𝑎−1. But, 2𝑎 − 2𝑏 > 2 implies 𝑎 − 1 > 𝑏 and hence 𝑁−𝓁(𝑒) ∈ 𝐹𝑏+1 ∩

𝑊2𝑏. Thus, 𝑁−𝓁(𝑒) = 0. This proves the first statement of Proposition 6.3.
Finally, if 𝑁 acts trivially on Gr𝑊 then 𝑁0 = 0 and hence 𝐻 = 𝑌 − 𝑌′ = 0. Therefore, 𝑌 = 𝑌′

which implies𝑀 = 𝑊 and the decomposition of 𝛿 with respect to 𝑌′ is just the decomposition of
𝛿 with respect to 𝑌 = 𝑌(𝐹∞,𝑀). □

6.3 Three examples

In this subsection we show that the Bloch–Wigner dilogarithm𝐷2 is the height of the dilogarithm
variation over ℙ1 − {0, 1,∞}. We then show that up to a multiple of 4𝜁(2), we can express 𝐷2 as
the height of an elementary family of triangles of the type considered in 5.2. Finally, we show that
the height can become unbounded in the case where the underlying variation of mixed Hodge
structure is not unipotent in the sense of Hain and Zucker [23].

Example 6.7. Let  be the dilog variation over ℙ1 − {0, 1,∞} [23, 4.13]. Then, ht() = −𝐷2(𝑠).
By [36, 4.13] we may select a basis {𝑒0, 𝑒1, 𝑒2} of 𝑉ℂ = 𝑠 such that  has bigrading 𝐼𝑎,𝑎 = ℂ𝑒−𝑎

and integral structure 𝑉ℤ generated by

𝑣0(𝑠) = 𝑒0 − log(1 − 𝑠)𝑒1 + 𝐿2(𝑠)𝑒2,

𝑣1(𝑠) = (2𝜋𝑖)(𝑒1 + log(𝑠)𝑒2),

𝑣2(𝑧) = (2𝜋𝑖)2𝑒2,

where 𝐿2(𝑠) =
∑∞

𝑗=1
𝑠𝑗

𝑗2
is the dilogarithm. By Lemma 2.6 we need to compute 1

2
Im((𝑒0 − 𝑒0)−4).
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Abbreviating 𝑣𝑗(𝑠) to 𝑣𝑗 , it follows from the previous equations that

𝑒2 = (2𝜋𝑖)−2𝑣2,

𝑒1 = (2𝜋𝑖)−1𝑣1 − (2𝜋𝑖)−2 log(𝑠)𝑣2,

𝑒0 = 𝑣0 + (2𝜋𝑖)−1 log(1 − 𝑠)𝑣1 − (2𝜋𝑖)−2[log(1 − 𝑠) log(𝑠)𝑣2 + 𝐿2(𝑠)]𝑣2.

Therefore,

𝑒0 − 𝑒0

= 2(2𝜋𝑖)−1 Re(log(1 − 𝑠))𝑣1 − 2𝑖(2𝜋𝑖)−2Im(log(1 − 𝑠) log(𝑠) + 𝐿2(𝑠))𝑣2

= 2Re(log(1 − 𝑠))(𝑒1 + log(𝑠)𝑒2) − 2𝑖Im(log(1 − 𝑠) log(𝑠) + 𝐿2(𝑠))𝑒2.

Accordingly,

1

2
Im((𝑒0 − 𝑒0)−4)

= Re(log(1 − 𝑠))Im(log(𝑠)) − Im(log(1 − 𝑠) log(𝑠)) − Im(𝐿2(𝑠)).

To simplify the previous equation, let log(1 − 𝑠) = 𝐴 + 𝑖𝐵 and log(𝑠) = 𝐶 + 𝑖𝐷. Then,

Re(log(1 − 𝑠))Im(log(𝑠)) − Im(log(1 − 𝑠) log(𝑠))

= 𝐴𝐷 − (𝐴𝐷 + 𝐵𝐶) = −𝐵𝐶 = −arg(1 − 𝑠) log |𝑠|.
Thus,

ht(𝑠) = −Im(𝐿2(𝑠)) − arg(1 − 𝑠) log |𝑠| = −𝐷2(𝑠).

Example 6.8. Returning to the setting of 5.2, let𝑊𝛽 denote the standard triangle and consider
the sections

𝑠𝑡,0 = 𝑥0 + 𝑡𝑥1 + 𝑥2,

𝑠𝑡,1 = 𝑥0 + 𝑥1 + 𝑡𝑥2,

𝑠𝑡,2 = 𝑡𝑥0 + 𝑥1 + 𝑥2,

of ℙ2(1), where 𝑡 ∈ 𝑆 = ℙ1 − {−2,−1, 0, 1,∞}. Let 𝓁𝑡,𝑖 = div(𝑠𝑡,𝑖) for 𝑖 = 0, 1, 2 and consider the
family of higher cycles {𝑍𝛼(𝑡)}𝑡∈𝑆 , with individual 𝑍𝛼(𝑡) as defined in Section 5.2. By the choice of
𝑡, all the cycles 𝑍𝛼(𝑡) are non-degenerate and intersect𝑊𝛽 properly and transversely. Moreover,
the pair of cycles 𝑍𝛼(𝑡),𝑊𝛽 satisfies Assumption 3.27. Then,

ht(𝐵𝑍𝛼(𝑡),𝑊𝛽
) =

3

(2𝜋𝑖)2
(𝐷2(𝑡) + 𝐷2(𝑡) + 𝐷2(𝑡

−2)).
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To continue, recall that 𝐷2(𝑧) = 𝐷2(1 − 1∕𝑧) and hence 𝐷2(𝑡−2) = 𝐷(1 − 𝑡2). By the 5 term rela-
tion

𝐷2(𝑥) + 𝐷2(𝑦) + 𝐷2

(
1 − 𝑥

1 − 𝑥𝑦

)
+ 𝐷2(1 − 𝑥𝑦) + 𝐷2

(
1 − 𝑦

1 − 𝑥𝑦

)
= 0.

Setting 𝑥 = 𝑦 = 𝑡 it follows that

𝐷2(𝑡) + 𝐷2(𝑡) + 𝐷2(1∕𝑡
2) = 𝐷2(𝑡) + 𝐷2(𝑡) + 𝐷2(1 − 𝑡2)

= −𝐷2

(
1 − 𝑡

1 − 𝑡2

)
− 𝐷2

(
1 − 𝑡

1 − 𝑡2

)
= −2𝐷2((1 + 𝑡)−1).

Finally, 𝐷2(𝑧) = −𝐷2(1∕𝑧) and 𝐷2(𝑧) = −𝐷2(1 − 𝑧). Therefore,

ht(𝐵𝑍𝛼(𝑡),𝑊𝛽
) =

6

(2𝜋𝑖)2
𝐷2(1 + 𝑡) =

−𝐷2(1 + 𝑡)

4𝜁(2)
=
𝐷2(−𝑡)

4𝜁(2)
.

In particular, upon setting 𝜃 = 𝜋∕2 in the formula𝐷2(𝑒𝑖𝜃) =
∑∞

𝑛=1
sin(𝑛𝜃)

𝑛2
it follows that𝐷2(

√
−1)

is equal to the Catalan constant 𝐶. Thus,

ht(𝐵
𝑍𝛼(−
√
−1),𝑊𝛽

) =
𝐶

4𝜁(2)
.

Also note that

lim
𝑡→𝑝

ht(𝐵𝑍𝛼(𝑡),𝑊𝛽
) = 0

for 𝑝 ∈ {−2,−1, 0, 1,∞}.

To close this subsection, we give an example of an admissible nilpotent orbit (𝑒𝑧𝑁 ⋅ 𝐹,𝑊) with
weight graded quotients Gr𝑊

0
≅ ℤ(0), Gr𝑊

−3
of rank two and Gr𝑊

−6
≅ ℤ(3) such that the height

grows like (log |𝑠|)3 for 𝑠 = 𝑒2𝜋𝑖𝑧.

Example 6.9. Let 𝑉ℤ be the lattice generated by 𝑒0, 𝑒, 𝑓 and 𝑒−6. Let

𝑊−6 = ℤ𝑒−6, 𝑊−3 = 𝑊−6 ⊕ ℤ𝑓 ⊕ ℤ𝑒, 𝑊0 = 𝑉ℤ,

with graded polarizations

0([𝑒0], [𝑒0]) = −3([𝑒], [𝑓]) = −6([𝑒−6], [𝑒−6]) = 1.

Let 𝑁 be the nilpotent endomorphism obtained by setting

𝑁(𝑒0) = 𝑒, 𝑁(𝑒) = 𝑓, 𝑁(𝑓) = 𝑒−6, 𝑁(𝑒−6) = 0.
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Let (𝐹,𝑀) be the mixed Hodge structure defined by setting

𝐼0,0 = ℂ𝑒0, 𝐼−1,−1 = ℂ𝑒, 𝐼−2,−2 = ℂ𝑓, 𝐼−3,−3 = ℂ𝑒−6.

Then, 𝑁(𝐼𝑎,𝑎) ⊂ 𝐼𝑎−1,𝑎−1 and hence 𝑁 is horizontal with respect to 𝐹. We also have 𝑁(𝑀𝑎) ⊆

𝑀𝑎−2. To verify that 𝑀 is the relative weight filtration 𝑁 and𝑊 it remains to check 𝑀 induces
the monodromy weight filtration of Gr(𝑁) shifted by −𝑘 on Gr𝑊

𝑘
. This is clear for Gr𝑊

0
and Gr𝑊

−6
.

Let �̃� be the map induced by 𝑁 on Gr𝑊
−3
then

𝑊(�̃�)−1 = ℤ[𝑓], 𝑊(�̃�)1 = Gr𝑊−3,

and hence𝑊(�̃�)[3]−4 = 𝑊(�̃�)−1 = ℤ[𝑓] while𝑊(�̃�)[3]−2 = 𝑊(�̃�)1 = Gr𝑊
−3
. Since 𝐼−1,−1 = ℂ𝑒

and 𝐼−2,−2 = ℂ𝑓 it follows that𝑀 induces the correct filtration on Gr𝑊
−3
.

Define

𝜈0(𝑧) = 𝑒𝑧𝑁(𝑒0) = 𝑒0 + 𝑧𝑒 +
1

2
𝑧2𝑓 +

1

6
𝑧3𝑒−6,

𝜈−1(𝑧) = 𝑒𝑧𝑁(𝑒) = 𝑒 + 𝑧𝑓 +
1

2
𝑧2𝑒−6,

𝜈−2(𝑧) = 𝑒𝑧𝑁(𝑓) = 𝑓 + 𝑧𝑒−6,

𝜈−3(𝑧) = 𝑒𝑧𝑁(𝑒−6) = 𝑒−6.

Then, 𝑒𝑧𝑁 ⋅ 𝐹𝑎 = ⊕𝑏⩾𝑎 ℂ𝜈𝑏(𝑧). Accordingly, 𝑒𝑧𝑁 ⋅ 𝐹 induces a pure Hodge structure of weight 𝑘
on Gr𝑊

𝑘
: For Gr𝑊

0
and Gr𝑊

−6
we just take the constant variations of type (0,0) and (−3, −3). The

image 𝑒𝑧𝑁 ⋅ 𝐹−1 in Gr𝑊
−3

is ℂ[𝑒 + 𝑧𝑓] which gives a variation of pure Hodge structure of weight
−3.
Recall [17, 2.12] that

𝐼𝑝,𝑞 = 𝐹𝑝 ∩𝑊𝑝+𝑞 ∩ (�̄�
𝑞 ∩ 𝑊𝑝+𝑞 + 𝑈

𝑞−1
𝑝+𝑞−1

),

where 𝑈𝑎
𝑏
=
∑

𝑗⩾0 𝐹
𝑎−𝑗 ∩𝑊𝑏−𝑗 . In particular,

𝐼0,0
(𝑒𝑧𝑁 ⋅𝐹,𝑊)

= ℂ𝜈0(𝑧), 𝐼−1,−2
(𝑒𝑧𝑁 ⋅𝐹,𝑊)

= ℂ𝜈−1(𝑧),

as both 𝑒𝑧𝑁 ⋅ 𝐹0 and (𝑒𝑧𝑁 ⋅ 𝐹−1) ∩𝑊−3 have rank one.
To determine 𝐼−2,−1 note that

𝑈−2
−5 = (ℂ𝜈−2(𝑧)) ∩ 𝑊−5 ⊕ (ℂ𝜈−3(𝑧)) ∩ 𝑊−6 = ℂ𝑒−6.

Therefore,

(𝑒𝑧𝑁 ⋅ 𝐹−1) ∩𝑊−3 + 𝑈−2
−5 = ℂ�̄�−1(𝑧) ⊕ ℂ𝑒−6 = ℂ(𝑒 + �̄�𝑓) ⊕ ℂ𝑒−6,
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and hence

(𝑒𝑧𝑁 ⋅ 𝐹−2)∩𝑊−3 ∩ ((𝑒
𝑧𝑁 ⋅ 𝐹−1) ∩𝑊−3 + 𝑈−2

−5)

= (ℂ𝜈−1(𝑧) ⊕ ℂ𝜈−2(𝑧)) ∩ (ℂ(𝑒 + �̄�𝑓) ⊕ ℂ𝑒−6)

= ℂ(𝑒 + �̄�𝑓 + 𝑧(�̄� −
1

2
𝑧)𝑒−6)

because 𝑒 + �̄�𝑓 + 𝑧(�̄� − 1

2
𝑧)𝑒−6 = 𝜈−1(𝑧) + (�̄� − 𝑧)𝜈−2(𝑧). As such, 𝐼−1,−2

(𝑒𝑧𝑁 ⋅𝐹,𝑊)
⊕ 𝐼−2,−1

(𝑒𝑧𝑁 ⋅𝐹,𝑊)
is

spanned by 𝜈−1(𝑧) and 𝜈−2(𝑧). Moreover, 𝐼
−3,−3

(𝑒𝑧𝑁 ⋅𝐹,𝑊)
= 𝐼−3,−3 is generated by 𝑒−6.

To finish, observe that

𝜈0(𝑧) − �̄�0(𝑧) = (𝑧 − �̄�)(𝑒 +
1

2
(𝑧 + �̄�)𝑓 +

1

6
(𝑧2 + 𝑧�̄� + �̄�2)𝑒−6).

Next,

𝑒 +
1

2
(𝑧 + �̄�)𝑓 +

1

6
(𝑧2 + 𝑧�̄� + �̄�2)𝑒−6

= 𝜈−1(𝑧) +
1

2
𝜈−2(𝑧) +

1

6
(𝑧 − �̄�)2𝑒−6.

Thus,

(𝜈0(𝑧) − �̄�0(𝑧))−6 =
1

6
(𝑧 − �̄�)3𝑒−6.

where (⋯)−6 is projection onto 𝐼
−3,−3

(𝑒𝑧𝑁 ⋅𝐹,𝑊)
with respect to the Deligne bigrading of (𝑒𝑧𝑁 ⋅ 𝐹,𝑊).

Write now 𝑠 = 𝑒2𝜋𝑖𝑧, then the nilpotent orbit (𝑒𝑧𝑁 ⋅ 𝐹,𝑊) defines a variation ofmixedHodge struc-
tures  over the punctured unit disk with coordinate 𝑠. Then, by (2.6),

ht(𝑠) = 1

12𝜋3
(log |𝑠|)3.

We note also that, since the mixed Hodge structure (𝐹,𝑀) is split over ℝ, then 𝛿(𝐹,𝑀) = 0. There-
fore, in this case

ht(𝑁, 𝐹,𝑊) = 0.
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