174 research outputs found

    The Evolution of X-ray Clusters and the Entropy of the Intra Cluster Medium

    Full text link
    The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies is determined by gravitational processes associated with shock heating, adiabatic compression, and non-gravitational processes such as heating by SNe, stellar winds, activity in the central galactic nucleus, and radiative cooling. The effect of gravitational processes on the thermodynamics of the Intra Cluster Medium (ICM) can be expressed in terms of the ICM entropy S ~ ln(T/\rho^{2/3}). We use a generalized spherical model to compute the X-ray properties of groups and clusters for a range of initial entropy levels in the ICM and for a range of mass scales, cosmic epochs and background cosmologies. We find that the statistical properties of the X-ray clusters strongly depend on the value of the initial excess entropy. Assuming a constant, uniform value for the excess entropy, the present-day X-ray data are well fitted for the following range of values K_* = kT/\mu m_p \rho^{2/3} = (0.4\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for clusters with average temperatures kT>2 keV; K_* = (0.2\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for groups and clusters with average temperatures kT<2 keV. These values correspond to different excess energy per particle of kT \geq 0.1 (K_*/0.4\times 10^{34}) keV. The dependence of K_* on the mass scale can be well reproduced by an epoch dependent external entropy: the relation K_* = 0.8(1+z)^{-1}\times 10^{34} erg cm^2 g^{-5/3} fits the data over the whole temperature range. Observations of both local and distant clusters can be used to trace the distribution and the evolution of the entropy in the cosmic baryons, and ultimately to unveil the typical epoch and the source of the heating processes.Comment: 53 pages, LateX, 19 figures, ApJ in press, relevant comments and references adde

    Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers.

    Get PDF
    The authors studied noncancer mortality among phenoxyacid herbicide and chlorophenol production workers and sprayers included in an international study comprising 36 cohorts from 12 countries followed from 1939 to 1992. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin or higher chlorinated dioxins (TCDD/HCD) was discerned from job records and company questionnaires with validation by biologic and environmental measures. Standard mortality ratio analyses suggested a moderate healthy worker effect for all circulatory diseases, especially ischemic heart disease, among both those exposed and those not exposed to TCDD/HCD. In Poisson regression analyses, exposure to TCDD/HCD was not associated with increased mortality from cerebrovascular disease. However, an increased risk for circulatory disease, especially ischemic heart disease (rate ratio [RR] 1.67, 95% confidence interval [Cl] 1.23-2.26) and possibly diabetes (RR 2.25, 95% Cl 0.53-9.50), was present among TCDD/HCD-exposed workers. Risks tended to be higher 10 to 19 years after first exposure and for those exposed for a duration of 10 to 19 years. Mortality from suicide was comparable to that for the general population for all workers exposed to herbicides or chlorophenols and was associated with short latency and duration of exposure. More refined investigations of the ischemic heart disease and TCDD/HCD exposure association are warranted

    Populating a cluster of galaxies - I. Results at z=0

    Get PDF
    We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star-formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about 2.0e7 dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N-body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology-radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.Comment: 28 pages, submitted to MNRA

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11

    A Trial of the Efficacy, Safety and Impact on Drug Resistance of Four Drug Regimens for Seasonal Intermittent Preventive Treatment for Malaria in Senegalese Children

    Get PDF
    UNLABELLED: In the Sahel, most malaria deaths occur among children 1-4 years old during a short transmission season. A trial of seasonal intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) and a single dose of artesunate (AS) showed an 86% reduction in the incidence of malaria in Senegal but this may not be the optimum regimen. We compared this regimen with three alternatives. METHODS: 2102 children aged 6-59 months received either one dose of SP plus one dose of AS (SP+1AS) (the previous regimen), one dose of SP plus 3 daily doses of AS (SP+3AS), one dose of SP plus three daily doses of amodiaquine (AQ) (SP+3AQ) or 3 daily doses of AQ and AS (3AQ+3AS). Treatments were given once a month on three occasions during the malaria transmission season. The primary end point was incidence of clinical malaria. Secondary end-points were incidence of adverse events, mean haemoglobin concentration and prevalence of parasites carrying markers of resistance to SP. FINDINGS: The incidence of malaria, and the prevalence of parasitaemia at the end of the transmission season, were lowest in the group that received SP+3AQ: 10% of children in the group that received SP+1AS had malaria, compared to 9% in the SP+3AS group (hazard ratio HR 0.90, 95%CI 0.60, 1.36); 11% in the 3AQ+3AS group, HR 1.1 (0.76-1.7); and 5% in the SP+3AQ group, HR 0.50 (0.30-0.81). Mutations associated with resistance to SP were present in almost all parasites detected at the end of the transmission season, but the prevalence of Plasmodium falciparum was very low in the SP+3AQ group. CONCLUSIONS: Monthly treatment with SP+3AQ is a highly effective regimen for seasonal IPT. Choice of this regimen would minimise the spread of drug resistance and allow artemisinins to be reserved for the treatment of acute clinical malaria

    What kind of expertise is needed for low energy construction

    Get PDF
    The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector
    • …
    corecore