38 research outputs found

    Structural features of adenovirus 2 virus-associated RNA required for binding to the protein kinase DAI

    Get PDF
    The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection

    Cellular mRNA Activates Transcription Elongation by Displacing 7SK RNA

    Get PDF
    The positive transcription elongation factor P-TEFb is a pivotal regulator of gene expression in higher cells. Originally identified in Drosophila, attention was drawn to human P-TEFb by the discovery of its role as an essential cofactor for HIV-1 transcription. It is recruited to HIV transcription complexes by the viral transactivator Tat, and to cellular transcription complexes by a plethora of transcription factors. P-TEFb activity is negatively regulated by sequestration in a complex with the HEXIM proteins and 7SK RNA. The mechanism of P-TEFb release from the inhibitory complex is not known. We report that P-TEFb-dependent transcription from the HIV promoter can be stimulated by the mRNA encoding HIC, the human I-mfa domain-containing protein. The 3′-untranslated region of HIC mRNA is necessary and sufficient for this action. It forms complexes with P-TEFb and displaces 7SK RNA from the inhibitory complex in cells and cell extracts. A 314-nucleotide sequence near the 3′ end of HIC mRNA has full activity and contains a predicted structure resembling the 3′-terminal hairpin of 7SK that is critical for P-TEFb binding. This represents the first example of a cellular mRNA that can regulate transcription via P-TEFb. Our findings offer a rationale for 7SK being an RNA transcriptional regulator and suggest a practical means for enhancing gene expression

    Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic translation initiation factor eIF5A has been implicated in HIV-1 replication. This protein contains the apparently unique amino acid hypusine that is formed by the post-translational modification of a lysine residue catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH). DOHH activity is inhibited by two clinically used drugs, the topical fungicide ciclopirox and the systemic medicinal iron chelator deferiprone. Deferiprone has been reported to inhibit HIV-1 replication in tissue culture.</p> <p>Results</p> <p>Ciclopirox and deferiprone blocked HIV-1 replication in PBMCs. To examine the underlying mechanisms, we investigated the action of the drugs on eIF5A modification and HIV-1 gene expression in model systems. At early times after drug exposure, both drugs inhibited substrate binding to DOHH and prevented the formation of mature eIF5A. Viral gene expression from HIV-1 molecular clones was suppressed at the RNA level independently of all viral genes. The inhibition was specific for the viral promoter and occurred at the level of HIV-1 transcription initiation. Partial knockdown of eIF5A-1 by siRNA led to inhibition of HIV-1 gene expression that was non-additive with drug action. These data support the importance of eIF5A and hypusine formation in HIV-1 gene expression.</p> <p>Conclusion</p> <p>At clinically relevant concentrations, two widely used drugs blocked HIV-1 replication <it>ex vivo</it>. They specifically inhibited expression from the HIV-1 promoter at the level of transcription initiation. Both drugs interfered with the hydroxylation step in the hypusine modification of eIF5A. These results have profound implications for the potential therapeutic use of these drugs as antiretrovirals and for the development of optimized analogs.</p

    The PKR-binding domain of adenovirus VA RNAI exists as a mixture of two functionally non-equivalent structures

    Get PDF
    VA RNAI is a non-coding adenoviral transcript that counteracts the host cell anti-viral defenses such as immune responses mediated via PKR. We investigated potential alternate secondary structure conformations within the PKR-binding domain of VA RNAI using site-directed mutagenesis, RNA UV-melting analysis and enzymatic RNA secondary structure probing. The latter data clearly indicated that the wild-type VA RNAI apical stem can adopt two different conformations and that it exists as a mixed population of these two structures. In contrast, in two sequence variants we designed to eliminate one of the possible structures, while leaving the other intact, each formed a unique secondary structure. This clarification of the apical stem pairing also suggests a small alteration to the apical stem–loop secondary structure. The relative ability of the two apical stem conformations to bind PKR and inhibit kinase activity was measured by isothermal titration calorimetry and PKR autophosphorylation inhibition assay. We found that the two sequence variants displayed markedly different activities, with one being a significantly poorer binder and inhibitor of PKR. Whether the presence of the VA RNAI conformation with reduced PKR inhibitory activity is directly beneficial to the virus in the cell for some other function requires further investigation

    Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis

    Get PDF
    Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5′-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein–protein interaction with the cellular translation machinery

    Envelope 2 protein phosphorylation sites S75 & 277 of hepatitis C virus genotype 1a and interferon resistance: A sequence alignment approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C is a major health problem affecting more than 200 million individuals in world including Pakistan. Current treatment regimen consisting of interferon alpha and ribavirin does not always succeed to eliminate virus completely from the patient's body.</p> <p>Results</p> <p>Interferon induced antiviral protein kinase R (PKR) has a role in the hepatitis C virus (HCV) treatment as dsRNA activated PKR has the capacity to phosphorylate the serine and threonine of E2 protein and dimerization viral RNA. E2 gene of hepatitis C virus (HCV) genotype 1 has an active role in IFN resistance. E2 protein inhibits and terminates the kinase activity of PKR by blocking it in protein synthesis and cell growth. This brings forward a possible relation of E2 and PKR through a mechanism via which HCV evades the antiviral effect of IFN.</p> <p>Conclusion</p> <p>A hybrid in-silico and wet laboratory approach of motif prediction, evolutionary and structural anlysis has pointed out serine 75 and 277 of the HCV E2 gene as a promising candidate for the serine phosphorylation. It is proposed that serine phosphorylation of HCV E2 gene has a significant role in interferon resistance.</p

    Synthesis and purification of single-stranded RNA for use in experiments with PKR and in cell-free translation systems

    No full text
    The biosynthesis of RNA in vitro using bacteriophage RNA polymerases has opened up many avenues of research. Large amounts of specific RNA species can be readily produced but small amounts of contaminants that are simultaneously generated can interfere with biological assays, PKR, a ribosome-associated and double-stranded (ds) RNA-dependent protein kinase, is an important regulator of the initiation of protein synthesis. It can be activated by very low concentrations of dsRNA and inhibited by small structured RNAs or high concentrations of dsRNA. The best-studied inhibitor of PKR activation is adenovirus VA RNA1. Its gene was cloned into a plasmid under the control of the T7 RNA polymerase promoter, and the optimization of VA RNA transcription is described. A dsRNA by-product of the transcription reaction activates PKR in kinase autophosphorylation assays, and hence a purification protocol that allows the separation and removal of dsRNA contaminants was developed. A scheme to analyze the RNA product with specific nucleases is discussed. In a reticulocyte cell-free translation system the activation of PKR by dsRNA contaminating a synthetic mRNA preparation is likely to lead to shut-off of translation. An assay to directly visualize and measure the level of PKR phosphorylation in the lysate is detailed

    Role of the apical stem in maintaining the structure and function of adenovirus virus-associated RNA.

    No full text
    Adenovirus virus-associated (VA) RNAI maintains efficient protein synthesis during the late phase of infection by preventing the activation of the double-stranded-RNA-dependent protein kinase, DAI. A secondary structure model for VA RNAI predicts the existence of two stems joined by a complex stem-loop structure, the central domain. The structural consequences of mutations and compensating mutations introduced into the apical stem lend support to this model. In transient expression assays for VA RNA function, foreign sequences inserted into the apical stem were fully tolerated provided that the stem remained intact. Mutants in which the base of the apical stem was disrupted retained partial activity, but truncation of the apical stem abolished the ability of the RNA to block DAI activation in vitro, suggesting that the length and position of the stem are both important for VA RNA function. These results imply that VA RNAI activity depends on secondary structure at the top of the apical stem as well as in the central domain and are consistent with a two-step mechanism involving DAI interactions with both the apical stem and the central domain

    Mutational analysis of the central domain of adenovirus virus-associated RNA mandates a revision of the proposed secondary structure.

    No full text
    Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell
    corecore