50 research outputs found

    Potential Structural Materials and Design Concepts for Light Airplanes

    Get PDF
    Potential structural materials and design considerations for helicopters and light general aircraf

    Potential structural materials and design concepts for light airplanes Final report

    Get PDF
    Potential structural materials and design concepts evaluated for light aircraft application

    Implementation of polarization diversity pulse-pair technique using airborne W-band radar

    Get PDF
    This work describes the implementation of polarization diversity on the National Research Council Canada W-band Doppler radar and presents the first-ever airborne Doppler measurements derived via polarization diversity pulse-pair processing. The polarization diversity pulse-pair measurements are interleaved with standard pulse-pair measurements with staggered pulse repetition frequency, this allows a better understanding of the strengths and drawbacks of polarization diversity, a methodology that has been recently proposed for wind-focused Doppler radar space missions. Polarization diversity has the clear advantage of making possible Doppler observations of very fast decorrelating media (as expected when deploying Doppler radars on fast-moving satellites) and of widening the Nyquist interval, thus enabling the observation of very high Doppler velocities (up to more than 100m -1 in the present work). Crosstalk between the two polarizations, mainly caused by depolarization at backscattering, deteriorated the quality of the observations by introducing ghost echoes in the power signals and by increasing the noise level in the Doppler measurements. In the different cases analyzed during the field campaigns, the regions affected by crosstalk were generally associated with highly depolarized surface returns and depolarization of backscatter from hydrometeors located at short ranges from the aircraft. The variance of the Doppler velocity estimates can be well predicted from theory and were also estimated directly from the observed correlation between the H-polarized and inline-formula V-polarized successive pulses. The study represents a key milestone towards the implementation of polarization diversity in Doppler space-borne radars

    IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor Networks

    Get PDF
    The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact of real-world environments on the system performance. A crucial step to validate the behavior of these systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment management and data processing tool allowing the definition of arbitrary complex data analysis applications. While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data gathering technologies. The resulting flexibility and extensibility enable the definition of various services, from experiment management and performance evaluation to user-specific applications and visualization. IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field experimentation and development of customized applications for interfacing the end user with the system

    Artificial intelligence for automatically detecting animals in camera trap images: a combination of MegaDetector and YOLOv5

    Get PDF
    Camera traps have gained high popularity for collecting animal images in a cost-effective and non-invasive manner, but manually examining these large volumes of images to extract valuable data is a laborious and costly process. Deep learning, specifically object detection techniques, constitutes a powerful tool for automating this task. Here, we describe the development and result of a deep-learning workflow based on MegaDetector and YOLOv5 for automatically detecting animals in camera trap images. For the development, we first used MegaDetector, which automatically generated bounding boxes for 93.2% of the images in the training set, differentiating animals, humans, vehicles, and empty photos. This annotation phase allowed to discard useless images. Then, we used the images containing animals within the training dataset to train four YOLOv5 models, each one built for a group of species of similar aspects as defined by a human expert. Using four expert models instead of one reduces the complexity and variance between species, allowing for more precise learning within each of the groups. The final result is a workflow where the end-user enters the camera trap images into a global model. Then, this global model redirects the images towards the appropriate expert model. Finally, the final animal classification into a particular species is based on the confidence rates provided by a weighted voting system implemented among the expert models. We validated this workflow using a dataset of 120.000 images collected by 100 camera traps over five years in Andalusian National Parks (Spain) with a representation of 24 mammal species. Our workflow approach improved the global classification F1-score from 0.92 to 0.96. It increased the precision for distinguishing similar species, for example from 0.41 to 0.96 for C. capreolus; and from 0.24 to 0.73 for D. dama, often confounded with other ungulate species, which demonstrates its potential for animal detection in images.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Major Histocompatibility Class I Locus Contributes to Multiple Sclerosis Susceptibility Independently from HLA-DRB1*15:01

    Get PDF
    Background: In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS) is associated with alleles of the human leukocyte antigen (HLA) Class II gene DRB1. Whether other major histocompatibility complex (MHC) genes contribute to MS susceptibility is controversial. Methodology/Principal Findings: A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs) spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility allele in the MHC (O.R. = 3.04, p<1×10−78). To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery rate = .05) 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs were associated with MS susceptibility with p-values ≤1×10−8. The most significantly associated SNP was rs4959039, a SNP in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45×10−13) and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP's contribution to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen. Conclusions: A MHC Class I locus contributes to MS susceptibility independently of the HLA-DRB1*15:01 haplotype

    In Vitro Analysis of FGF-23 Induced Gene Expression

    Get PDF
    Fibroblast growth factor 23 (FGF-23) has recently been shown to be involved in phosphate regulation and bone mineralization. This study evaluated the effect of FGF-23 on three human cell lines (Caco-2, HK-2, SaOS-2) representing three different sites of phosphate regulation (small intestine, kidney proximal tubules, and bone, respectively). FGF-23 induced gene expression was studied using Clontech human Atlas glass microarrays containing various assortments of genes and by a custom designed oligo microarray containing specific genes selected for their biological relevance to FGF-23's potential function. FGF-23 induced differential gene expression in all three cell types, suggesting that FGF-23 may be capable of acting on these three primary sites of phosphate regulation. Human small intestine-like endothelial cell line, Caco-2, showed upregulation of several genes including parathyroid hormone receptors 1 and 2. FGF-23 inhibited the expression of water channel transporters aquaporin 5 and 6 in human osteoblast-like SaOS-2 cells while upregulating aquaporin expression in HK-2 cells. Somatostatin receptors 1-4 were identified to be upregulated in the human kidney, HK-2 cell line. Mucin 2, a gene that is linked to abnormal cellular growth, was consistently induced by FGF-23 in all three cell lines. Families of aquaporins, somatostatins, parathyroid hormones, and other identified differentially expressed genes are involved in different signaling pathways that are associated with phosphate and calcium regulation. Selected candidates were analyzed further by real-time RT-PCR. These data support FGF-23 induced regulation of aquaporin 5 mRNA in HK-2 cells and 1-alpha-hydroxylase mRNA in Caco cells. FGF-23 induced changes in mRNA analysis of four additional genes was less than two-fold in triplicate analysis of selected samples. Taken together, these results suggest that each cell type may have responded to FGF-23, but additional validation of the array data set will be required to identify those genes specifically regulated by FGF-23. Further refinement of this data set will undoubtedly uncover additional functions of FGF-23 and may provide valuable insight into designing therapeutic approaches for phosphate specific disorders
    corecore