24 research outputs found

    Thermal Behavior of Fluorinated Double-Walled Carbon Nanotubes

    Get PDF
    Double-walled carbon nanotubes (DWNTs), produced by a catalytic chemical vapor deposition method, have been fluorinated using a volatile mixture of BrF3 and Br2. Optical absorption spectroscopic study on the product detected nonfluorinated nanotubes, which could correspond to the inner walls of DWNTs. The fluorinated DWNTs have been annealed in vacuum at fixed temperatures, and X-ray photoelectron spectroscopy showed almost no fluorine in the sample heated to 300 °C. Comparison between X-ray fluorescent C KR spectra of the pristine DWNT sample and the annealed fluorinated sample revealed change of the atomic structure of graphitic shells in the process of thermal defluorination

    An ancient bison from the mouth of the Rauchua River (Chukotka, Russia)

    Full text link
    An incomplete carcass of an extinct bison, Bison ex gr. priscus, was discovered in 2012 in the mouth of the Rauchua River (69°30'N, 166°49'E), Chukotka. The carcass included the rump with two hind limbs, ribs, and large flap of hide from the abdomen and sides, several vertebrae, bones of the forelimbs and anterior autopodia, stomach with its contents, and wool. The limb bones are relatively gracile, which is unusual in bison, and a SEM study of the hair microstructure suggests higher insulating capacity than in extant members of the genus. Additionally, mitochondrial DNA analyses indicate that the Rauchua bison belonged to a distinct and previously unidentified lineage of steppe bison. Two radiocarbon dates suggest a Holocene age for the bison: a traditional 14C date provided an estimate of 8030±70 14C yr BP (SPb-743) and an AMS radiocarbon date provided an age of 9497±92 14C yr BP (AA101271). These dates make this the youngest known bison from Chukotka. Analysis of stomach contents revealed a diet of herbaceous plants (meadow grasses and sedges) and shrubs, suggesting that the early Holocene vegetation near the mouth of the Rauchua River was similar to that of the present day: tundra-associated vegetation with undersized plants

    Carbon films grown on Pt(111) as supports for model gold catalysts

    No full text
    Carbon films were grown on a Pt(1 1 1) single crystal by ethylene decomposition at elevated temperatures (1000–1300 K). Depending on the preparation conditions, different carbon structures formed on the metal surface such as flat and curved graphitic layers, carbon particles and carbon nanowires. Although these carbon films exhibited a high density of surface defects, gold interacted only weakly with the carbon surface. CO adsorption on the Au/carbon systems was very similar to that observed for various Au/oxide systems previously studied. This finding strongly indicates that CO adsorption on gold is essentially independent of the nature of support

    Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO3 Photocathode by Surface Passivation and Co-Catalyst Deposition

    No full text
    Perovskite-type lanthanum iron oxide, LaFeO3, is a promising photocathode material that can achieve water splitting under visible light. However, the performance of this photoelectrode material is limited by significant electron-hole recombination. In this work, we explore different strategies to optimize the activity of a nanostructured porous LaFeO3 film, which demonstrates enhanced photoelectrocatalytic activity due to the reduced diffusion length of the charge carriers. We found that surface passivation is not an efficient approach for enhancing the photoelectrochemical performance of LaFeO3, as it is sufficiently stable under photoelectrocatalytic conditions. Instead, the deposition of a Pt co-catalyst was shown to be essential for maximizing the photoelectrochemical activity both in hydrogen evolution and oxygen reduction reactions. Illumination-induced band edge unpinning was found to be a major challenge for the further development of LaFeO3 photocathodes for water-splitting applications

    Doped nanocrystalline pt-promoted ceria-zirconia as anode catalysts for it sofc:Synthesis and properties

    No full text
    Ceria-zirconia samples doped with Gd, Pr, Sm, or La cations were prepared via Pechini route and promoted by Pt. Effect of their real structure and surface properties (characterized by neuronography, EXAFS, XPS, FTIRS of adsorbed CO) on the mobility and reactivity of the lattice oxygen (by oxygen isotope exchange and CrLt TPR) was analyzed. For the reaction of CrLt steam reforming (SR), catalytic performance is determined both by Pt dispersion and lattice oxygen mobility. Ni-YSZ anodes promoted by these catalysts possess a stable and efficient performance in CH4SR in the 600-800°C range in stoichiometric feeds without coking.</p
    corecore