35 research outputs found

    The effect of environment on type Ia supernovae in the dark energy survey three-year cosmological sample

    Get PDF
    Analyses of type Ia supernovae (SNe Ia) have found puzzling correlations between their standardised luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower-mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey three-year spectroscopically-confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U − R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U − R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U − R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U − R r.m.s. scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U − R environments

    OzDES reverberation mapping program: lag recovery reliability for 6-yr C IV analysis

    Get PDF
    We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN

    Angular momentum study for Kepler host stars: novel results and methods

    No full text
    No presente trabalho de tese apresentamos o estudo rotacional e de momentum angular para uma amostra de estrelas com planetas confirmados e candidatas a possuir companheiras planetárias (Objetos de Interesse Kepler), ambas pertencentes à missão Kepler. Para realizar estas estimativas, 3.807 estrelas foram analisadas conjuntamente mediante os métodos Lomb-Scargle e wavelet, definindo um alto grau de confiança quando os resultados concordavam dentro de um 10%. Para 540 estrelas conseguimos obter períodos rotacionais onde a significância dos métodos era maior a 99% e dentre elas 63 não possuíam medições na literatura até Fevereiro de 2015. De acordo com os valores de massa presentes na literatura, a amostra final de 131 estrelas com planetas confirmados e 409 estrelas candidatas está definida pelo intervalo de massas de 0,48 − 1,53 M⊙, que corres- ponde a tipos espectrais M até F tardio. Enquanto as relações de períodos, o conjunto de valores abrange o intervalo 2 − 89 d, possuindo um alto grau de concordância com a literatura e com predições teóricas. Com as estimativas do momentum angular chegamos a corroborar a relação com a massa estelar proposta por Kraft para estrelas de tipo espectral F e G, mas permanece o desafio de prolongar o estudo para massas menores onde a estrutura interna estelar é modificada e novos procedimentos devem ser utilizados. Adicionalmente ao estudo desta amostra principal, o conjunto total de estrelas da base Kepler foi analisada na busca de padrões de ruído. As metodologias, comparações com outras abordagens e detalhes da inspeção visual são aqui exibidos. Os resultados do conjunto de testes conduzidos (e.g., análise Bayesiana, testes não paramétricos) estão detalhados no texto. Os resultados de maior relevância foram publicados em nosso trabalho Paz-Chinchón et al. (2015)

    Dark energy survey year 1 results: Constraining baryonic physics in the Universe

    No full text
    International audienceMeasurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q_1) generally reflects the strength of baryon feedback. With the upper limit of Q_1 prior being bound by the Illustris feedback scenarios, we reach |20 per cent\sim 20{{\ \rm per\ cent}}| improvement in the constraint of |S8=σ8(Ωm/0.3)0.5=0.7880.021+0.018S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}| compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain |S8=0.7810.015+0.014S_8=0.781^{+0.014}_{-0.015}| for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q_1 prior. In terms of the baryon constraints, we measure |Q1=1.142.80+2.20Q_1=1.14^{+2.20}_{-2.80}| for DES Y1 only and |Q1=1.421.48+1.63Q_1=1.42^{+1.63}_{-1.48}| for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ

    A Deeper Look at DES Dwarf Galaxy Candidates: Grus I and Indus II

    No full text
    We present deep g- and r-band Magellan/Megacam photometry of two dwarf galaxy candidates discovered in the Dark Energy Survey (DES), Grus I and Indus II (DES J2038-4609). For the case of Grus I, we resolved the main sequence turn-off (MSTO) and similar to 2 mags below it. The MSTO can be seen at g(0) similar to 24 with a photometric uncertainty of 0.03 mag. We show Grus I to be consistent with an old, metal-poor (similar to 13.3 Gyr, [Fe/H] similar to -1.9) dwarf galaxy. We derive updated distance and structural parameters for Grus I using this deep, uniform, wide-field data set. We find an azimuthally-averaged halflight radius more than two times larger (similar to 151(-31)(+21) pc; similar to 4'. 16(-0.74)(+0.54)) and an absolute V-band magnitude similar to-4.1 that is similar to 1 magnitude brighter than previous studies. We obtain updated distance, ellipticity, and centroid parameters that are in agreement with other studies within uncertainties. Although our photometry of Indus II is similar to 2-3 magnitudes deeper than the DES Y1 public release, we find no coherent stellar population at its reported location. The original detection was located in an incomplete region of sky in the DES Y2Q1 data set and was flagged due to potential blue horizontal branch member stars. The best-fit isochrone parameters are physically inconsistent with both dwarf galaxies and globular clusters. We conclude that Indus II is likely a false positive, flagged due to a chance alignment of stars along the line of sight.ISSN:0004-637XISSN:2041-821

    The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination

    No full text
    ABSTRACT The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty

    Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

    No full text
    ABSTRACT We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i &amp;lt; 18) at low redshift (z &amp;lt; 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i &amp;lt; 21, and redshifts z &amp;lt; 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i &amp;lt; 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100 ,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set

    Understanding the extreme luminosity of DES14X2fna

    No full text
    ABSTRACT We present DES14X2fna, a high-luminosity, fast-declining Type IIb supernova (SN IIb) at redshift z = 0.0453, detected by the Dark Energy Survey (DES). DES14X2fna is an unusual member of its class, with a light curve showing a broad, luminous peak reaching Mr ≃ −19.3 mag 20 d after explosion. This object does not show a linear decline tail in the light curve until ≃60 d after explosion, after which it declines very rapidly (4.30 ± 0.10 mag 100 d−1 in the r band). By fitting semi-analytic models to the photometry of DES14X2fna, we find that its light curve cannot be explained by a standard 56Ni decay model as this is unable to fit the peak and fast tail decline observed. Inclusion of either interaction with surrounding circumstellar material or a rapidly-rotating neutron star (magnetar) significantly increases the quality of the model fit. We also investigate the possibility for an object similar to DES14X2fna to act as a contaminant in photometric samples of SNe Ia for cosmology, finding that a similar simulated object is misclassified by a recurrent neural network (RNN)-based photometric classifier as an SN Ia in ∼1.1–2.4 per cent of cases in DES, depending on the probability threshold used for a positive classification

    OzDES Reverberation Mapping Programme: the first Mg II lags from 5 yr of monitoring

    No full text
    Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is 4 per cen

    Multiwavelength optical and NIR variability analysis of the Blazar PKS 0027-426

    No full text
    ABSTRACT We present multiwavelength spectral and temporal variability analysis of PKS 0027-426 using optical griz observations from Dark Energy Survey between 2013 and 2018 and VEILS Optical Light curves of Extragalactic TransienT Events (VOILETTE) between 2018 and 2019 and near-infrared (NIR) JKs observations from Visible and Infrared Survey Telescope for Astronomy Extragalactic Infrared Legacy Survey (VEILS) between 2017 and 2019. Multiple methods of cross-correlation of each combination of light curve provides measurements of possible lags between optical–optical, optical–NIR, and NIR–NIR emission, for each observation season and for the entire observational period. Inter-band time lag measurements consistently suggest either simultaneous emission or delays between emission regions on time-scales smaller than the cadences of observations. The colour–magnitude relation between each combination of filters was also studied to determine the spectral behaviour of PKS 0027-426. Our results demonstrate complex colour behaviour that changes between bluer when brighter, stable when brighter, and redder when brighter trends over different time-scales and using different combinations of optical filters. Additional analysis of the optical spectra is performed to provide further understanding of this complex spectral behaviour
    corecore