443 research outputs found

    Genome-wide association studies using single-nucleotide polymorphisms versus haplotypes: an empirical comparison with data from the North American Rheumatoid Arthritis Consortium

    Get PDF
    The high genomic density of the single-nucleotide polymorphism (SNP) sets that are typically surveyed in genome-wide association studies (GWAS) now allows the application of haplotype-based methods. Although the choice of haplotype-based vs. individual-SNP approaches is expected to affect the results of association studies, few empirical comparisons of method performance have been reported on the genome-wide scale in the same set of individuals. To measure the relative ability of the two strategies to detect associations, we used a large dataset from the North American Rheumatoid Arthritis Consortium to: 1) partition the genome into haplotype blocks, 2) associate haplotypes with disease, and 3) compare the results with individual-SNP association mapping. Although some associations were shared across methods, each approach uniquely identified several strong candidate regions. Our results suggest that the application of both haplotype-based and individual-SNP testing to GWAS should be adopted as a routine procedure

    Disrupted gene networks in subfertile hybrid house mice

    Get PDF
    The Dobzhansky–Muller (DM) model provides a widely accepted mechanism for the evolution of reproductive isolation: incompatible substitutions disrupt interactions between genes. To date, few candidate incompatibility genes have been identified, leaving the genes driving speciation mostly uncharacterized. The importance of interactions in the DM model suggests that gene coexpression networks provide a powerful framework to understand disrupted pathways associated with postzygotic isolation. Here, we perform weighted gene coexpression network analysis to infer gene interactions in hybrids of two recently diverged European house mouse subspecies, Mus mus domesticus and M. m. musculus, which commonly show hybrid male sterility or subfertility. We use genome-wide testis expression data from 467 hybrid mice from two mapping populations: F2s from a laboratory cross between wild-derived pure subspecies strains and offspring of natural hybrids captured in the Central Europe hybrid zone. This large data set enabled us to build a robust consensus network using hybrid males with fertile phenotypes. We identify several expression modules, or groups of coexpressed genes, that are disrupted in subfertile hybrids, including modules functionally enriched for spermatogenesis, cilium and sperm flagellum organization, chromosome organization, and DNA repair, and including genes expressed in spermatogonia, spermatocytes, and spermatids. Our network-based approach enabled us to hone in on specific hub genes likely to be influencing module-wide gene expression and hence potentially driving large-effect DM incompatibilities. A disproportionate number of hub genes lie within sterility loci identified previously in the hybrid zone mapping population and represent promising candidate barrier genes and targets for future functional analysis

    A first genetic portrait of synaptonemal complex variation.

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales. Applying a novel digital image analysis technique to spermatocyte spreads, we measured total SC length in 9,532 spermatocytes from recombinant offspring of wild-derived mouse strains with differences in this fundamental meiotic trait. Using this large dataset, we identified the first known genomic regions involved in the evolution of SC length. Distinct loci affect total SC length divergence between and within subspecies, with the X chromosome contributing to both. Joint genetic analysis of MLH1 foci-immunofluorescent markers of crossovers-from the same spermatocytes revealed that two of the identified loci also confer differences in the genome-wide recombination rate. Causal mediation analysis suggested that one pleiotropic locus acts early in meiosis to designate crossovers prior to SC assembly, whereas a second locus primarily shapes crossover number through its effect on SC length. One genomic interval shapes the relationship between SC length and recombination rate, likely modulating the strength of crossover interference. Our findings pinpoint SC formation as a key step in the evolution of recombination and demonstrate the power of genetic mapping on standing variation in the context of the recombination pathway

    "In the end its all nice" : Sara's addiction, television, and self-mediation in Hubert Selby Jr.'s Requiem for a dream"

    Get PDF
    In an effort to expand the small amount of criticism devoted to Hubert Selby Jr.’s work, this paper examines the character, Sara Goldfarb, in the novel, Requiem for a Dream. By focusing on the construction and destruction of Sara’s identity, as well as her physical body, I primarily will look at how Selby’s novel comments on culture as a “self” mediator, especially when acquired through the medium of television. I open with a brief discussion of Selby’s life, particularly his relationship with the illness that made up a major part of it, and then turn to Selby’s experimental style in an effort to understand how his mixing of first and third-person narrative perspectives helps the reader to see that Sara’s interiority is comprised of the ideologies communicated to her through the cultural medium of television. Drawing from Ulric Neisser’s “Five Kinds of Self-Knowledge,” the second part of this paper examines the five selves (ecological, interpersonal, extended, private, and conceptual) that comprise Sara’s subjectivity, while primarily focusing on her conceptual self and her inability to accept her current roles as a widow and “sonless” mother. In addition, I also will concentrate on television’s role as a cultural mediator for Sara’s identity, including discussions about the televisual utopia of entertainment and the three-orders of signification as expounded upon by John Fiske and John Hartley. After examining the construction of Sara’s character, this paper will conclude with a discussion of how the same cultural factors, as well as her sense of agency, both play role in the destruction of Sara’s interior and exterior selves. Thus, the primary goal of this project is to provide further insight into Requiem for a Dream, since little has been written on it, and to understand how Selby’s novel comments on culture’s role in the formation of an individual’s “self,” while simultaneously destroying it

    Contrasting multi-site genotypic distributions among discordant quantitative phenotypes: the APOA1/C3/A4/A5 gene cluster and cardiovascular disease risk factors

    Full text link
    Most tests of association between DNA sequence variation and quantitative phenotypes in samples of randomly chosen individuals rely on specification of genotypic strata followed by comparison of phenotypes across these strata. This strategy often succeeds when phenotypic differences are caused by one or two single nucleotide polymorphisms (SNPs) among the surveyed markers. However, when multiple-SNP haplotypes account for observed phenotypic variation, identification of the best partitioning requires examination of an inordinate number of SNP combinations. An alternative approach is to rank individuals by their phenotypic measures and ask whether attributes of the genotypic variation show a non-random distribution along this phenotypic ranking. One simple version of this strategy selects the top and bottom tails of the distribution, and then tests whether genotypes from these two samples are drawn from a single population. This framework does not require the recovery of phased haplotypes and allows contrasts between large numbers of sites at once. We use a method based on this approach to identify associations between plasma triglyceride level, a risk factor for cardiovascular disease, and multi-site genotypes located in the APOA1/C3/A4/A5 cluster of apolipoprotein genes in unrelated individuals (1,071 African-American females, 780 African-American males, 1,036 European-American females, and 930 European-American males) sampled from four US cities as part of the Coronary Artery Risk Development in Young Adults (CARDIA) study. Method performance is investigated using simulations that model genealogical variation and different genetic architectures. Results indicate that this multi-site test can identify genotype-phenotype associations with reasonable power, including those generated by some simple epistatic models. Genet. Epidemiol . 2006. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55790/1/20163_ftp.pd

    Genetic Dissection of a Key Reproductive Barrier Between Nascent Species of House Mice

    Get PDF
    Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice

    Sex-Specific Incompatibility Generates Locus-Specific Rates of Introgression Between Species

    Get PDF
    Disruption of interactions among ensembles of epistatic loci has been shown to contribute to reproductive isolation among various animal and plant species. Under the Bateson–Dobzhansky–Muller model, such interspecific incompatibility arises as a by-product of genetic divergence in each species, and the Orr–Turelli model indicates that the number of loci involved in incompatible interactions may “snowball” over time. We address the combined effect of multiple incompatibility loci on the rate of introgression at neutral marker loci across the genome. Our analysis extends previous work by accommodating sex specificity: differences between the sexes in the expression of incompatibility, in rates of crossing over between neutral markers and incompatibility loci, and in transmission of markers or incompatibility factors. We show that the evolutionary process at neutral markers in a genome subject to incompatibility selection is well approximated by a purely neutral process with migration rates appropriately scaled to reflect the influence of selection targeted to incompatibility factors. We confirm that in the absence of sex specificity and functional epistasis among incompatibility factors, the barrier to introgression induced by multiple incompatibility factors corresponds to the product of the barriers induced by the factors individually. A new finding is that barriers to introgression due to sex-specific incompatibility depart in general from multiplicativity. Our partitioning of variation in relative reproductive rate suggests that such departures derive from associations between sex and incompatibility and between sex and neutral markers. Concordant sex-specific incompatibility (for example, greater impairment of male hybrids or longer map lengths in females) induces lower barriers (higher rates of introgression) than expected under multiplicativity, and discordant sex-specific incompatibility induces higher barriers

    Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps

    Get PDF
    The rate of recombination is a key genomic parameter that displays considerable variation among taxa. Species comparisons have demonstrated that the rate of evolution in recombination rate is strongly dependent on the physical scale of measurement. Individual recombination hotspots are poorly conserved among closely related taxa, whereas genomic-scale recombination rate variation bears a strong signature of phylogenetic history. In contrast, the mode and tempo of evolution in recombination rates measured on intermediate physical scales is poorly understood. Here, we conduct a detailed statistical comparison between two whole-genome F2 genetic linkage maps constructed from experimental intercrosses between closely related house mouse subspecies (Mus musculus). Our two maps profile a common wild-derived inbred strain of M. m. domesticus crossed to distinct wild-derived inbred strains representative of two other house mouse subspecies, M. m. castaneus and M. m. musculus. We identify numerous orthologous genomic regions with significant map length differences between these two crosses. Because the genomes of these recently diverged house mice are highly collinear, observed differences in map length (centimorgans) are suggestive of variation in broadscale recombination rate (centimorgans per megabase) within M. musculus. Collectively, these divergent intervals span 19% of the house mouse genome, disproportionately aggregating on the X chromosome. In addition, we uncover strong statistical evidence for a large effect, sex-linked, site-specific modifier of recombination rate segregating within M. musculus. Our findings reveal considerable variation in the megabase-scale recombination landscape among recently diverged taxa and underscore the continued importance of genetic linkage maps in the post-genome era

    The Origin of a New Sex Chromosome by Introgression between Two Stickleback Fishes.

    Get PDF
    Introgression is increasingly recognized as a source of genetic diversity that fuels adaptation. Its role in the evolution of sex chromosomes, however, is not well known. Here, we confirm the hypothesis that the Y chromosome in the ninespine stickleback, Pungitius pungitius, was established by introgression from the Amur stickleback, P. sinensis. Using whole genome resequencing, we identified a large region of Chr 12 in P. pungitius that is diverged between males and females. Within but not outside of this region, several lines of evidence show that the Y chromosome of P. pungitius shares a most recent common ancestor not with the X chromosome, but with the homologous chromosome in P. sinensis. Accumulation of repetitive elements and gene expression changes on the new Y are consistent with a young sex chromosome in early stages of degeneration, but other hallmarks of Y chromosomes have not yet appeared. Our findings indicate that porous species boundaries can trigger rapid sex chromosome evolution
    corecore