184 research outputs found

    Vibration serviceability assessment of office floors for realistic walking and floor layout scenarios: Literature review

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordOver the last two decades, office floors have been built progressively lightweight with increasing spans and slenderness. Therefore, vibration performance of office floors due to walking dynamic loads is becoming their governing design criterion, determining their size and shape, and therefore overall weight and embodied energy of the building. To date, floor design guidelines around the world recommend walking load scenarios in offices featuring some or all of the following standard characteristics: (a) walking loads are assumed to be periodic dynamic excitation represented by the Fourier series, including harmonics corresponding to up to the first four integer multiples of the pacing frequency of which at least one is exciting the floor at a resonant frequency and (b) single person walking. However, the literature surveyed provides evidence that such assessment methodology is potentially an over-simplification which as it does not reflect real walking load scenarios, since crucial features of the floor vibration source, path and receiver are missing. First, in terms of vibration source realistic scenarios need to feature: (a) moving rather than stationary walking forces; (b) stochastic nature of human gait; (c) simultaneous multiperson walking; and (d) human-structure interaction. Second, for the transmission path (i.e. office floor structure), two features are needed to consider: (a) realistic office floor layouts and (b) presence, or absence, of non-structural elements. Finally, for the vibration receivers (i.e. floor occupants): (a) vibrations calculated at floor locations occupied by users (instead of at the potential highest response location which may not be occupied); (b) actual period over which occupants feel vibration due to such excitation and (c) assessment of vibration levels based on their probability of occurrence. This paper therefore addresses these seldom considered but increasingly important features and discusses realistic approaches to floor design for vibration serviceability.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES

    Developing strategies to manage highly phosphine resistant populations of flat grain beetles in large bulk storages in Australia

    Get PDF
    Development of high level resistance to phosphine fumigant in flat grain beetles (Cryptolestes ferrugineus) in large bulk storages in Australia poses a serious threat to the biosecurity of Australian grain. The level of resistance in this species is the highest ever detected in any stored grain insect pest in Australia with a resistance factor of 875. Laboratory studies showed that at 0.5 mg/L and at 1 mg/L of phosphine 30 and 24 days are required, respectively, to attain population extinction. These doses are currently being tested in field trials for their validation. Moreover, we have developed an action plan in collaboration with project scientists and the major Australian bulk handling companies aimed at eradicating infestations of phosphine resistant flat grain beetles and preventing their spread. The key components of this plan include the use of grain protectants and sulfuryl fluoride to eliminate phosphine-resistant populations, adoption of an intensive hygiene program and monitoring of insect populations through inspection, sampling and resistance testing. Keywords: Flat grain beetle, Cryptolestes ferrugineus, Phosphine, Resistance, Fumigation protocol

    Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperature

    Get PDF
    Silver carbonate (Ag2CO3) is a material currently used for artificial carbon storage. In this work, we report synchrotron X-ray powder diffraction (XRD) experiments under high pressure and high temperature in combination with density-functional theory (DFT) calculations on silver carbonate up to 13.3 GPa. Two pressure-induced phase transitions were observed at room temperature: at 2.9 GPa to a high-pressure (HP1) phase and at 10.5 GPa to a second high-pressure phase (HP2). The facts that a) the HP2 phase can be indexed with the initial P21/m structure, b) our DFT calculations predict the initial structure is stable in the entire pressure range, and c) the HP2 phase is stable under decompression suggest that the intermediate HP1 phase is a product of the appearance of non-hydrostatic stresses in the sample. The observed structural transformations are associated to a high sensitivity of this compound to non-hydrostatic conditions. The compressibility of Ag2CO3 has also been determined, showing the c axis is the most compressible and that the bulk modulus increases quickly with applied pressure. We attribute both observations to the weak nature of the closed-shell Ag–Ag interactions in this material. The behavior of Ag2CO3 under heating at approximately 3 GPa was also studied. No temperature-induced phase transitions were found at this pressure, and the thermal expansion was determined to be relatively high for a carbonate.Authors thank the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T) and PGC2021-125518NB-I00 (cofinanced by EU FEDER funds), and from the Generalitat Valenciana under projects CIAICO/2021/241 and MFA/2022/007. A.O.R. acknowledges the financial support of the Spanish MINECO RyC-2016-20301 Ramón y Cajal Grant and the project AYUD/2021/51036 of the Principality of Asturias (cofinanced by EU FEDER funds). Authors also thank the MALTA Consolider supercomputing centre and Compute Canada for computational resources and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2021024988. These experiments were performed at the MSPD beamline with the collaboration of ALBA staff

    Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    Emergence of fluoroquinolone-resistant Campylobacter jejuni and Campylobacter coli among Australian chickens in the absence of fluoroquinolone use

    Get PDF
    In a structured survey of all major chicken-meat producers in Australia, we investigated the antimicrobial resistance (AMR) and genomic characteristics of Campylobacter jejuni (n = 108) and C. coli (n = 96) from cecal samples of chickens at slaughter (n = 200). The majority of the C. jejuni (63%) and C. coli (86.5%) samples were susceptible to all antimicrobials. Fluoroquinolone resistance was detected among both C. jejuni (14.8%) and C. coli (5.2%), although this only included three sequence types (STs) and one ST, respectively. Multidrug resistance among strains of C. jejuni (0.9%) and C. coli (4.1%) was rare, and fluoroquinolone resistance, when present, was never accompanied by resistance to any other agent. Comparative genome analysis demonstrated that Australian isolates were found dispersed on different branches/clusters within the international collection. The major fluoroquinolone-resistant STs of C. jejuni (ST7323, ST2083, and ST2343) and C. coli (ST860) present in Australian chickens were similar to those of international isolates and have been reported previously in humans and animals overseas. The detection of a subpopulation of Campylobacter isolates exclusively resistant to fluoroquinolone was unexpected since most critically important antimicrobials such as fluoroquinolones are excluded from use in Australian livestock. A number of factors, including the low level of resistance to other antimicrobials, the absence of fluoroquinolone use, the adoption of measures for preventing spread of contagion between flocks, and particularly the genomic identities of isolates, all point to humans, pest species, or wild birds as being the most plausible source of organisms. This study also demonstrates the need for vigilance in the form of surveillance for AMR based on robust sampling to manage AMR risks in the food chain

    Utility of biotechnology based decision making tools in postharvest grain pest management: An Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfestant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area.A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfestant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)

    Get PDF
    BACKGROUND: Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial. METHODS: This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the “mean cumulative pain index” rated every 4 weeks until death or end of study using numeric rating scale. DISCUSSION: An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life. TRIAL REGISTRATION: German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    The rph1 Gene Is a Common Contributor to the Evolution of Phosphine Resistance in Independent Field Isolates of Rhyzopertha Dominica

    Get PDF
    Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks
    • …
    corecore