16 research outputs found

    Postauthorization safety study of betaine anhydrous

    Full text link
    Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013–2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0–9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 μmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≥ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation

    Biochemické a funkční projevy dědičných poruch mitochondriální F1Fo ATP syntázy

    No full text
    1. lékařská fakultaFirst Faculty of Medicin

    Identification of Two Dysfunctional Variants in the ABCG2 Urate Transporter Associated with Pediatric-Onset of Familial Hyperuricemia and Early-Onset Gout

    No full text
    The ABCG2 gene is a well-established hyperuricemia/gout risk locus encoding a urate transporter that plays a crucial role in renal and intestinal urate excretion. Hitherto, p.Q141K—a common variant of ABCG2 exhibiting approximately one half the cellular function compared to the wild-type—has been reportedly associated with early-onset gout in some populations. However, compared with adult-onset gout, little clinical information is available regarding the association of other uricemia-associated genetic variations with early-onset gout; the latent involvement of ABCG2 in the development of this disease requires further evidence. We describe a representative case of familial pediatric-onset hyperuricemia and early-onset gout associated with a dysfunctional ABCG2, i.e., a clinical history of three generations of one Czech family with biochemical and molecular genetic findings. Hyperuricemia was defined as serum uric acid (SUA) concentrations 420 μmol/L for men or 360 μmol/L for women and children under 15 years on two measurements, performed at least four weeks apart. The proband was a 12-year-old girl of Roma ethnicity, whose SUA concentrations were 397–405 µmol/L. Sequencing analyses focusing on the coding region of ABCG2 identified two rare mutations—c.393G&gt;T (p.M131I) and c.706C&gt;T (p.R236X). Segregation analysis revealed a plausible link between these mutations and hyperuricemia and the gout phenotype in family relatives. Functional studies revealed that p.M131I and p.R236X were functionally deficient and null, respectively. Our findings illustrate why genetic factors affecting ABCG2 function should be routinely considered in clinical practice as part of a hyperuricemia/gout diagnosis, especially in pediatric-onset patients with a strong family history

    Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis

    Get PDF
    Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis

    Influence of early identification and therapy on long-term outcomes in early-onset MTHFR deficiency

    No full text
    International audienceMTHFR deficiency is a severe inborn error of metabolism leading to impairment of the remethylation of homocysteine to methionine. Neonatal and early-onset patients mostly exhibit a life-threatening acute neurologic deterioration. Furthermore, data on early-onset patients' long-term outcomes are scarce. The aims of this study were (1) to study and describe the clinical and laboratory parameters of early-onset MTHFR-deficient patients (i.e., &lt;= 3 months of age) and (2) to identify predictive factors for severe neurodevelopmental outcomes in a cohort with early and late onset MTHFR-deficient patients. To this end, we conducted a retrospective, multicentric, international cohort study on 72 patients with MTHFR deficiency from 32 international metabolic centres. Characteristics of the 32 patients with early-onset MTHFR deficiency were described at time of diagnosis and at the last follow-up visit. Logistic regression analysis was used to identify predictive factors of severe neurodevelopmental outcome in a broader set of patients with early and non-early-onset MTHFR deficiency. The majority of early-onset MTHFR-deficient patients (n = 32) exhibited neurologic symptoms (76%) and feeding difficulties (70%) at time of diagnosis. At the last follow-up visit (median follow-up time of 8.1 years), 76% of treated early-onset patients (n = 29) exhibited a severe neurodevelopmental outcome. Among the whole study population of 64 patients, pre-symptomatic diagnosis was independently associated with a significantly better neurodevelopmental outcome (adjusted OR 0.004, [0.002-0.232]; p = 0.003). This study provides evidence for benefits of pre-symptomatic diagnosis and appropriate therapeutic management, highlighting the need for systematic newborn screening for MTHFR deficiency and pre-symptomatic treatment that may improve outcome
    corecore