92 research outputs found

    Faire face à la salinisation et à la contamination des aquifères côtiers dans le contexte des changements environnementaux planétaires et sociétaux : Approches géochimique et isotopique appliquées aux ressources en eau de Recife (Brésil)

    No full text
    National audienceEn raison d'une pression démographique croissante, la région métropolitaine de Recife a subi d'importants changements d'utilisation des terres et de l'eau au cours des dernières décennies. Ces évolutions ont notamment généré une baisse spectaculaire des niveaux piézométriques, la salinisation et la contamination des eaux souterraines. Cette dégradation des ressources naturelles est liée à l'augmentation de la demande en eau, ponctuellement amplifiée par des périodes de sécheresse qui ont conduit à la construction de milliers de puits privés. La région de Recife apparaît ainsi comme un "point chaud" typique illustrant les problèmes des pays émergents tels que l'urbanisation, la répartition inégale de la richesse, la faiblesse des structures décisionnelles, les rapides développements industriel et touristique, induisant des pressions fortes sur les ressources en eau (quantité et qualité) dans le contexte des changements globaux sociétaux et environnementaux. Le projet COQUEIRAL a pour objectif d'étudier l'impact des activités humaines sur les aquifères côtiers surexploités en (1) analysant les pressions sur les ressources en eau souterraine et leurs raisons sociales et structurelles,(2) identifiant les sources et les mécanismes de la dégradation des ressources en eau souterraine en termes de qualité et de quantité, en se concentrant sur les processus physiques et chimiques en tant que vecteurs de la réaction du système aux pressions extérieures et (3) évaluant les impacts des changements globaux sur les ressources en eau à l'échelle régionale

    Groundwater salinization in a coastal multilayer aquifer: Preliminary results on origins and mechanisms. Example of Recife (Brazil)

    Get PDF
    International audienceThe Recife Metropolitan Region (PE, Brazil) appears as a typical "hot spot" illustrating the problems of southern countries such as urbanization or rapid industrial and touristic development. All these factors induce high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This paper focuses on the groundwater geochemistry in a costal multilayer aquifer aiming at investigating the sources and processes of salinization. The preliminary results of 62 groundwater samples from the five main aquifers are reported

    Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    Get PDF
    International audienceThis study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities

    Tracing the origins and processes of groundwater salinization in coastal aquifers with a multi-isotopes approach. Example of Recife, Northeast of Brazil

    No full text
    International audienceThe Recife Metropolitan Region (PE, Brazil) is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. By focusing on the groundwater geochemistry in a costal multilayer aquifer, this work aims at investigating the sources and processes of salinization. Two different Precambrian blocks separated by a large lineament area constitute the site basement. The sedimentary fillings of the two basins present different origins that were distinguished by the Sr isotope composition. The northern deep Beberibe aquifer displays very high 87Sr/86Sr with a large range of values (0.7102-0.7233) illustrating the main continental origin of sediments whereas the southern deep Cabo aquifer showed lower values (0.7097-0.7141) indicating the contribution of the marine sedimentation. Although sulfate isotopes, Electrical Conductivity and Cl contents indicate a mixing with seawater for some samples of the deep Cabo and Beberibe aquifers, all 87Sr/86Sr values are above the present-day seawater composition. This can be related to the complex local history of transgression/regression phases that induced alternatively salinisation and freshening with gains and losses of cations and Sr, together with water-rock interactions. δ18O-δ2H clearly evidence the local present day recharge in the surficial aquifer, some samples being affected by in situ evaporation processes and/or recharge with evaporated water from dams used for water supply. The deep aquifers display a high range of B (20-600µg/L) and δ11B (6.7-68.5‰) with some of the highest values known to date. Multiple sources and processes affect the B behavior, among which mixing with saline water, B sorption on clays/organic matter and mixing with wastewater. The surficial aquifers are locally salinized possibly due to present seawater intrusion, and highly contaminated with wastewater

    Potential leakage between aquifers in a deeply anthropized coastal sedimentary basin (Recife, Brazil): Strontium isotope constraints

    Get PDF
    Code ADS 2013EGUGA..15.7691PInternational audienceDue to an increasing demographic pressure, the Metropolitan Region of Recife (RMR) went through remarkable changes of water and land uses over the last decades. These evolutions gave rise to numerous environmental consequences, such as a dramatic decline of the piezometric levels, groundwater salinization and contamination. This degradation of natural resources is linked to the increase of water demand, punctually amplified by drought periods which induced the construction of thousands of private wells. The preliminary results of 62 groundwater samples from the five main aquifers are reported. This part of the study focuses on the major elements together with Sr isotopes to (1) characterize the signature of the different aquifer compartments of the 5 main aquifers, and (2)assess the potential connections between aquifers, e.g. vertical exchanges between the aquifers that can be modified or amplified by overexploitation or triggered through failed or improperly constructed wells

    The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

    Get PDF
    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn2+/H+ antiporter involved in cytoplasmic zinc detoxification and thus in zinc tolerance. MTP1 was proposed to be triplicated in A. halleri, while it is present in single copy in A. thaliana and A. lyrata. Two of the three AhMTP1 paralogues were shown to co-segregate with zinc tolerance in a BC1 progeny from a cross between A. halleri and A. lyrata. In this work, the MTP1 family was characterized at both the genomic and functional levels in A. halleri. Five MTP1 paralogues were found to be present in A. halleri, AhMTP1-A1, -A2, -B, -C, and -D. Interestingly, one of the two newly identified AhMTP1 paralogues was not fixed at least in one A. halleri population. All MTP1s were expressed, but transcript accumulation of the paralogues co-segregating with zinc tolerance in the A. halleri X A. lyrata BC1 progeny was markedly higher than that of the other paralogues. All MTP1s displayed the ability to functionally complement a Saccharomyces cerevisiæ zinc hypersensitive mutant. However, the paralogue showing the least complementation of the yeast mutant phenotype was one of the paralogues co-segregating with zinc tolerance. From our results, the hypothesis that pentaplication of MTP1 could be a major basis of the zinc tolerance character in A. halleri is strongly counter-balanced by the fact that members of the MTP1 family are likely to experience different evolutionary fates, some of which not concurring to increase zinc tolerance

    Nitrate concentration in wetlands: assessing the contribution of deeper groundwater from anions

    No full text
    International audienceDenitrification in wetlands is useful for removing nitrate from the surface water, although it can be difficult to assess wetland functioning particularly where it overlies a hard-rock aquifer whose fractures and joints form pathways that mix waters with different chemical composition. The variability of NO3 concentrations in such waters, which partly transit through wetlands, can obscure the effect of denitrification. To address this question, we monitored groundwater chemistry at different depths on three pilot sites overlying (mica)schist aquifers with almost no NO3 contamination at depth, probably due to denitrification. The spatial variability of NO3 concentrations, both along the flowpath and with depth, is related in each site to at least one of the following factors: (1) upward flux of deeper NO3-free groundwater; (2) in situ heterotrophic denitrification; (3) application of different types of fertilizer and other amendments. These factors are efficiently discriminated by the monitoring of just three, easily affordable, parameters: NO3, SO4 and Cl

    Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    No full text
    International audienceThe Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian ‘schist’ areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and manure, water originating in the upper compartment of the aquifer in weathered rock (alterite) and water from the lower compartment of the aquifer, mainly comprising fissured fresh rock. The interaction with alterite thus led to higher Sr- isotope ratios (around 0.730) in the water because of the weathering of residual minerals whereas interaction in the fissured part implies that the Sr-isotope characteristics of waters are more related to the weathering of whole rock with a lower value.Secondly, an extensive approach was done by enlarging to Africa (granite-gneiss and schists 2200 – 700 Ma of the Congo Basin), French Guiana (Archaen gneiss 3400–2700Ma and granite-gneiss rocks 2300–1900Ma) and India (Archean granites 2500Ma and Palaeoproterozoic granodiorite and schists 3100 – 1600Ma) considering both surface and groundwater. Here, the weathering processes concern older silicate environments and such weathered silicates yield to clearly higher Sr- isotope ratios (up to 0.745). The Sr-isotope tracing defines and identifies the relative signature of water origin between alterite and rain or agricultural practice (India), between alterite and underlying weathered-fissured and fractured bedrock (Africa) and between the three end-members in French Guiana
    • …
    corecore