193 research outputs found

    A new species in the major malaria vector complex sheds light on reticulated species evolution

    Get PDF
    Complexes of closely related species provide key insights into the rapid and independent evolution of adaptive traits. Here, we described and studied Anopheles fontenillei sp.n., a new species in the Anopheles gambiae complex that we recently discovered in the forested areas of Gabon, Central Africa. Our analysis placed the new taxon in the phylogenetic tree of the An. gambiae complex, revealing important introgression events with other members of the complex. Particularly, we detected recent introgression, with Anopheles gambiae and Anopheles coluzzii, of genes directly involved in vectorial capacity. Moreover, genome analysis of the new species allowed us to clarify the evolutionary history of the 3La inversion. Overall, An. fontenillei sp.n. analysis improved our understanding of the relationship between species within the An. gambiae complex, and provided insight into the evolution of vectorial capacity traits that are relevant for the successful control of malaria in Africa

    Haemosporidian parasites of Antelopes and other vertebrates from Gabon, Central Africa

    Get PDF
    Re-examination, using molecular tools, of the diversity of haemosporidian parasites (among which the agents of human malaria are the best known) has generally led to rearrangements of traditional classifications. In this study, we explored the diversity of haemosporidian parasites infecting vertebrate species (particularly mammals, birds and reptiles) living in the forests of Gabon (Central Africa), by analyzing a collection of 492 bushmeat samples. We found that samples from five mammalian species (four duiker and one pangolin species), one bird and one turtle species were infected by haemosporidian parasites. In duikers (from which most of the infected specimens were obtained), we demonstrated the existence of at least two distinct parasite lineages related to Polychromophilus species (i. e., bat haemosporidian parasites) and to sauropsid Plasmodium (from birds and lizards). Molecular screening of sylvatic mosquitoes captured during a longitudinal survey revealed the presence of these haemosporidian parasite lineages also in several Anopheles species, suggesting a potential role in their transmission. Our results show that, differently from what was previously thought, several independent clades of haemosporidian parasites (family Plasmodiidae) infect mammals and are transmitted by anopheline mosquitoes

    Wordwide patterns of genetic differentiation imply multiple ‘domestications’of Aedes aegypti, a major vector of human diseases

    Get PDF
    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti

    Genetic Structure of the Tiger Mosquito, Aedes albopictus, in Cameroon (Central Africa)

    Get PDF
    Background: Aedes albopictus (Skuse, 1884) (Diptera: Culicidae), a mosquito native to Asia, has recently invaded all five continents. In Central Africa it was first reported in the early 2000s, and has since been implicated in the emergence of arboviruses such as dengue and chikungunya in this region. Recent genetic studies of invasive species have shown that multiple introductions are a key factor for successful expansion in new areas. As a result, phenotypic characters such as vector competence and insecticide susceptibility may vary within invasive pest species, potentially affecting vector efficiency and pest management. Here we assessed the genetic variability and population genetics of Ae. albopictus isolates in Cameroon (Central Africa), thereby deducing their likely geographic origin. Methods and Results: Mosquitoes were sampled in 2007 in 12 localities in southern Cameroon and analyzed for polymorphism at six microsatellite loci and in two mitochondrial DNA regions (ND5 and COI). All the microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structureamong geographic populations (F-ST = 0.068, P<0.0001). Analysis of mtDNA sequences revealed four haplotypes each for the COI and ND5 genes, with a dominant haplotype shared by all Cameroonian samples. The weak genetic variation estimated from the mtDNA genes is consistent with the recent arrival of Ae. albopictus in Cameroon. Phylogeographic analysis based on COI polymorphism indicated that Ae. albopictus populations from Cameroon are related to tropical rather than temperate or subtropical outgroups. Conclusion: The moderate genetic diversity observed among Cameroonian Ae. albopictus isolates is in keeping with recent introduction and spread in this country. The genetic structure of natural populations points to multiple introductions from tropical regions

    Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences

    Get PDF
    Genetic variation was estimated in ten samples populations of Aedes aegypti from the Brazilian Amazon, by using a 380 bp fragment of the mitochocondrial NADH dehydrogenase subunit 4 (ND4) gene. A total of 123 individuals were analyzed, whereby 13 haplotypes were found. Mean genetic diversity was slightly high (h = 0.666 ± 0.029; π = 0.0115 ± 0.0010). Two AMOVA analyses indicated that most of the variation (~70%-72%) occurred within populations. The variation found among and between populations within the groups disclosed lower, but even so, highly significant values. FST values were not significant in most of the comparisons, except for the samples from Pacaraima and Rio Branco. The isolation by distance (IBD) model was not significant (r = 0.2880; p = 0.097) when the samples from Pacaraima and Rio Branco were excluded from the analyses, this indicating that genetic distance is not related to geographic distance. This result may be explained either by passive dispersal patterns (via human migrations and commercial exchange) or be due to the recent expansion of this mosquito in the Brazilian Amazon. Phylogenetic relationship analysis showed two genetically distinct groups (lineages) within the Brazilian Amazon, each sharing haplotypes with populations from West Africa and Asia

    First serological evidence of West Nile virus in human rural populations of Gabon

    Get PDF
    To investigate West Nile virus (WNV) circulation in rural populations in Gabon, we undertook a large serological survey focusing on human rural populations, using two different ELISA assays. A sample was considered positive when it reacted in both tests. A total of 2320 villagers from 115 villages were interviewed and sampled. Surprisingly, the WNV-specific IgG prevalence was high overall (27.2%) and varied according to the ecosystem: 23.7% in forested regions, 21.8% in savanna, and 64.9% in the lakes region. The WNV-specific IgG prevalence rate was 30% in males and 24.6% in females, and increased with age. Although serological cross-reactions between flaviviruses are likely and may be frequent, these findings strongly suggest that WNV is widespread in Gabon. The difference in WNV prevalence among ecosystems suggests preferential circulation in the lakes region. The linear increase with age suggests continuous exposure of Gabonese populations to WNV. Further investigations are needed to determine the WNV cycle and transmission patterns in Gabon

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research

    Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission

    Get PDF
    The dramatic global expansion of Aedes albopictus in the last three decades has increased public health concern because it is a potential vector of numerous arthropod-borne viruses (arboviruses), including the most prevalent arboviral pathogen of humans, dengue virus (DENV). Ae. aegypti is considered the primary DENV vector and has repeatedly been incriminated as a driving force in dengue's worldwide emergence. What remains unresolved is the extent to which Ae. albopictus contributes to DENV transmission and whether an improved understanding of its vector status would enhance dengue surveillance and prevention. To assess the relative public health importance of Ae. albopictus for dengue, we carried out two complementary analyses. We reviewed its role in past dengue epidemics and compared its DENV vector competence with that of Ae. aegypti. Observations from “natural experiments” indicate that, despite seemingly favorable conditions, places where Ae. albopictus predominates over Ae. aegypti have never experienced a typical explosive dengue epidemic with severe cases of the disease. Results from a meta-analysis of experimental laboratory studies reveal that although Ae. albopictus is overall more susceptible to DENV midgut infection, rates of virus dissemination from the midgut to other tissues are significantly lower in Ae. albopictus than in Ae. aegypti. For both indices of vector competence, a few generations of mosquito colonization appear to result in a relative increase of Ae. albopictus susceptibility, which may have been a confounding factor in the literature. Our results lead to the conclusion that Ae. albopictus plays a relatively minor role compared to Ae. aegypti in DENV transmission, at least in part due to differences in host preferences and reduced vector competence. Recent examples of rapid arboviral adaptation to alternative mosquito vectors, however, call for cautious extrapolation of our conclusion. Vector status is a dynamic process that in the future could change in epidemiologically important ways

    A local outbreak of dengue caused by an imported case in Dongguan China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions around the world. Since the first occurrence of dengue was confirmed in Guangdong, China in 1978, dengue outbreaks have been reported sequentially in different provinces in South China transmitted by<sup>.</sup>peridomestic <it>Ae. albopictus </it>mosquitoes, diplaying <it>Ae. aegypti</it>, a fully domestic vector that transmits dengue worldwide. Rapid and uncontrolled urbanization is a characteristic change in developing countries, which impacts greatly on vector habitat, human lifestyle and transmission dynamics on dengue epidemics. In September 2010, an outbreak of dengue was detected in Dongguan, a city in Guangdong province characterized by its fast urbanization. An investigation was initiated to identify the cause, to describe the epidemical characteristics of the outbreak, and to implement control measures to stop the outbreak. This is the first report of dengue outbreak in Dongguan, even though dengue cases were documented before in this city.</p> <p>Methods</p> <p>Epidemiological data were obtained from local Center of Disease Control and prevention (CDC). Laboratory tests such as real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), the virus cDNA sequencing, and Enzyme-Linked immunosorbent assay (ELISA) were employed to identify the virus infection and molecular phylogenetic analysis was performed with MEGA5. The febrile cases were reported every day by the fever surveillance system. Vector control measures including insecticidal fogging and elimination of habitats of <it>Ae. albopictus </it>were used to control the dengue outbreak.</p> <p>Results</p> <p>The epidemiological studies results showed that this dengue outbreak was initiated by an imported case from Southeast Asia. The outbreak was characterized by 31 cases reported with an attack rate of 50.63 out of a population of 100,000. <it>Ae. albopictus </it>was the only vector species responsible for the outbreak. The virus cDNA sequencing analysis showed that the virus responsible for the outbreak was Dengue Virus serotype-1 (DENV-1).</p> <p>Conclusions</p> <p>Several characterized points of urbanization contributed to this outbreak of dengue in Dongguan: the residents are highly concentrated; the residents' life habits helped to form the habitats of <it>Ae. albopictus </it>and contributed to the high Breteau Index; the self-constructed houses lacks of mosquito prevention facilities. This report has reaffirmed the importance of a surveillance system for infectious diseases control and aroused the awareness of an imported case causing the epidemic of an infectious disease in urbanized region.</p
    corecore