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Understanding the processes by which species colonize and adapt to human habitats is particularly important in

the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and

yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some popu-

lations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to

thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all

those outside Africa. It is not clear whetherall domestic populations are genetically related and represent a single

‘domestication’ event, or whether association with human habitats has developed multiple times independently

within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at

12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic

populations outside of Africa and the other included both domestic and forest populations within Africa.

This suggests that human association in Africa occurred independently from that in domestic populations

across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the

ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned

back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.

Keywords: Aedes aegypti aegypti; Aedes aegypti formosus; human habitats; microsatellites;

evolution; mosquito genetics
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1. INTRODUCTION
Humans have had an enormous influence on the global

environment and are known to have shaped genetic vari-

ation within other species in the recent past [1–4]. Much

work in conservation biology has focused on evolutionary
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genetic changes associated with human effects on natural

populations of a variety of species [5–7]. However, rela-

tively few studies have investigated the adaptation of

other species to human environments, or human com-

mensalism, particularly at the population genetic level

[1,8–10]. The processes by which certain populations

of a species colonize and adapt to urban or other domestic

habitats remain poorly understood.

Colonization of human habitats is particularly interest-

ing in arthropod disease vector systems where humans

provide the arthropod with the blood it needs to syn-

thesize eggs and reproduce. Such extreme ecological

overlap between human and vector populations has

important implications for public health and disease

transmission. Humans have a stable community structure

that provides constant access to food (blood) and plentiful

breeding habitats. Thus, once a founding vector popu-

lation has entered a human environment, selection for

specialization can occur [11]. For example, several mos-

quito populations that breed specifically in human

domestic habitats and urban areas are specialists that

have adapted to feed on humans, and prefer them over

other species [12–14]. Species that breed in human-

generated containers can easily spread around the world

through human movement of goods [15].

The mosquito species Aedes aegypti is a prime study

system for research on the evolution of human association

with public health consequences. The species is a vector

of several human diseases, including yellow fever and

dengue fever, and has invaded much of the tropical and

subtropical world over the past few centuries [16].

Though an effective vaccine exists for yellow fever, there

is currently no vaccine for dengue. Indeed, dengue is on

the rise across the world, including in sub-Saharan

Africa, where major outbreaks were rare in the past [17].

The virus affects an estimated 50 million people per year,

with 2.5 billion people, or 40 per cent of the global

population, currently at risk of infection [18].

Aedes aegypti is often treated as a homogeneous species

in its role as a disease vector, but the species is actually

rich in genetic, morphological and ecological variation

[19–26]. Mattingly [26] described two subspecies based

on overall body colour and the extent of white scaling

on the first abdominal tergite. The darker and presumably

ancestral Aedes aegypti formosus was reportedly confined

to Africa, where it tended to breed in forested habitats

and was predominantly zoophilic (preferring to bite

non-human animals). The lighter Aedes aegypti aegypti,

on the other hand, was distributed throughout the tropics

outside Africa, where it bred in human-generated con-

tainers and was strongly anthropophilic (preferring to

bite humans). Mattingly himself, however, acknowledged

that the true situation was more complex, particularly

within Africa. Mattingly [26,27] and McClelland [25]

documented continuous variation in one of the morpho-

logical characters (scaling patterns) that was supposed

to be diagnostic of the two subspecies. Nevertheless, allo-

zyme studies from the 1970s and 1980s identified a clear

genetic structure and supported the idea that Ae. aegypti

harbours genetically distinct forms with discrete geo-

graphical distribution and mean differences in scaling

pattern and ecological preference [20–23,28]. Interest-

ingly, two forms identified as subspecies aegypti and

formosus were shown to coexist in a few places along the
Proc. R. Soc. B
coast of East Africa, including the Rabai district of Kenya

[23,24,28,29], where the former bred inside homes in

villages and the latter bred in surrounding forests.

Although indoor-breeding populations from coastal

East Africa provide the best-documented examples of

domesticity among African populations of Ae. aegypti,

there is ample evidence of human association in West

Africa as well [25,26,30–36]. Unlike the situation in

East Africa, however, domestic populations in West

Africa do not appear to differ genetically from nearby

forest populations [30–33]. This raises the question as

to whether they represent independent incursions of

Ae. aegypti into human habitats, or are evolutionarily related

to domestic populations from other areas of the world.

We used molecular genetic markers to investigate

whether all worldwide human-associated populations of

Ae. aegypti represent a single domestication event, or

whether human-associated African populations represent

independent examples of domestication within the species.

In this paper, we make no definitive a priori subspecies

designations, but address how our genetic data correspond

to other authors’ definitions in the discussion. Using 12

polymorphic microsatellites, we examined 1152 Ae. aegypti

individuals from 24 locations spanning 13 countries and

five continents. A comprehensive dataset of this sort

should allow us to assess population structure and eluci-

date the origin of domestic populations, particularly in

West Africa.
2. METHODS
(a) Sampling/collections

During the period from 2004 to 2010, Ae. aegypti were col-

lected from 24 locations across the world in 13 countries

on five continents (table 1; see the electronic supplementary

material, figure S1, for a map). Mosquitoes sampled from the

field were collected as eggs or larvae, and reared to adults

for identification and preservation in 70 to 100 per cent

EtOH or at 2808C. To avoid sampling siblings laid by a

single female in the same oviposition container, mosquitoes

were collected from multiple containers across numerous

sampling sites (e.g. homes). This should not be a major pro-

blem even without this precaution, however, since several

studies indicate that Ae. aegypti females deposit eggs across

a number of oviposition sites [37–41]. Mosquitoes analysed

came directly from the field, except for those from Pijijiapan

(Mexico) and Tahiti (French Polynesia), which passed

through one generation in the laboratory before being

sampled, and populations from Thailand and Venezuela,

which passed through two laboratory generations (table 1).

All mosquito lines that passed through the laboratory were

set up to be as representative as possible of field populations.

Colonies were established in large cages by several hundred

to over 1000 mosquitoes from the field.

(b) Genetic methods

Whole genomic DNA was extracted individually from 1152

larval or adult mosquitoes with DNeasy kits (Qiagen) follow-

ing the manufacturer’s protocols. Individual genotypes were

scored at 12 microsatellite loci (electronic supplementary

material, table S1), including eight previously published mar-

kers [42] and four new loci developed for this study. The four

new loci were developed by screening the genomic contigs

available on VectorBase (http://aaegypti.vectorbase.org/

http://aaegypti.vectorbase.org/index.php
http://aaegypti.vectorbase.org/index.php
http://rspb.royalsocietypublishing.org/


Table 1. Collection information for Aedes aegypti population samples examined at 12 microsatellite loci. A population was

considered domestic if the mosquitoes were collected in or around human habitation (village, town, city). Morphological subspecies
classifications, where possible, were made based on the presence or absence of white scales on the first abdominal tergite [26].

population region habitat type gen. in lab
morphological
subspecies classification n

year
collected

Vaca Key, FL, USA North America domestic 0 — 42 2009
Conch Key, FL, USA North America domestic 0 — 42 2006
Palm Beach County, FL, USA North America domestic 0 — 43 2006
Houston, TX, USA North America domestic 0 — 29 2009

Coatzacoalcos, Mexico [67]a North America domestic 0 — 50 2008
Pijijiapan, Mexico [67]a North America domestic 1 — 47 2008
Dominica Caribbean domestic 0 — 95 2009
Bolivar, Venezuela [68]a South America domestic 2 — 48 2004

Zulia, Venezuela [68]a South America domestic 2 — 47 2004
Rayong, Thailand Asia domestic 2 — 48 2009
Prachuabkhirikan, Thailand Asia domestic 2 — 47 2009
Tahiti, French Polynesia South Pacific domestic 1 — 48 2010
Cairns, Australia Australia domestic 0 — 48 2009

Townsville, Australia Australia domestic 0 — 47 2009
Rabai, Kenya East Africa domestic/forest 0 aegypti þ formosus 71 2009
Bundibugyo, Uganda East Africa domestic 0 aegypti þ formosus 47 2009
Kichwamba, Uganda East Africa domestic 0 aegypti þ formosus 48 2009
Dakar, Senegal [31]a West Africa domestic 0 aegypti 43 2005

N’goye, Senegal [31]a West Africa domestic 0 aegypti 45 2007
Koungheul, Senegal [31]a West Africa domestic 0 aegypti þ formosus 46 2006
Goudiry, Senegal [31]a West Africa domestic 0 formosus 46 2007
PK-10, Senegal [31]a West Africa forest 0 formosus 48 2006
Yaounde, Cameroon West Africa domestic 0 aegypti 47 2009

Bijagos, Guinea-Bissau West Africa domestic 0 — 30 2009

aSamples collected for previous studies.
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index.php) for trinucleotide repeats with 8–20 uninterrupted

repeats that did not contain repetitive sequences in either

flanking region. Primers were designed using PRIMER 3

[43], and blasted against the genome in VectorBase to

ensure that the loci were single copy and located on different

supercontigs to minimize the potential for genetic linkage.

We paired microsatellite loci based on non-overlapping

size ranges and amplified each pair in a multiplex PCR reac-

tion with a single fluorescent M13 primer, two forward

primers with M13 tails, and two reverse primers [44]. All

PCR reactions (10 ml) contained 1� Type-it Multiplex

PCR Master Mix (Qiagen), 25 nM of each forward primer,

250 nM of each reverse primer and 500 nM of fluorescently

labelled M13 primer. All loci were amplified according to the

thermocycling conditions in Slotman et al. [42]. PCR pro-

ducts were run on an Applied Biosystems 3730xl DNA

Genetic Analyser with a GS 500 Rox internal size standard

(Applied Biosystems). Microsatellite primer sequences, mul-

tiplex pairings and fluorescent primers are given in electronic

supplementary material, table S1. Microsatellite alleles were

scored using the software GENEMAPPER (Applied Biosys-

tems). We screened 30 candidate microsatellites, and from

those chose 12 loci that reliably amplified in all samples

and showed sufficient variability. This maximized infor-

mation and allowed us to obtain a consistent dataset for a

heterogeneous set of population samples. All 12 micro-

satellite loci reside on different genomic supercontigs

(VectorBase).

(c) Analyses

For all analyses described below, individuals from a single

geographical location were treated as a single population,
Proc. R. Soc. B
with one exception. Rabai, Kenya, has previously been

shown to harbour two genetically distinct forms of Ae. aegypti

(§1). Preliminary analyses of the current dataset supported

this finding, and we therefore treated Rabai individuals from

the two genetic groups as independent populations.

All microsatellite loci were tested for within-population

deviations from Hardy–Weinberg equilibrium (HWE)

using the web version of the software GENEPOP [45,46].

The same program was used to test all pairs of loci across

all populations for linkage disequilibrium (LD). Markov

chain parameters were set at 10 000 dememorizations,

1000 batches and 10 000 iterations per batch for both

HWE and LD. GENEPOP was also used to compute allele fre-

quencies for all loci across populations. Observed and

expected heterozygosities for each population were computed

using the software ARLEQUIN 3.5 [47].

We assessed overall genetic differentiation among popu-

lations by calculating FST for all population pairs in

ARLEQUIN 3.5 [47]. We evaluated hierarchical patterns of

population structure and tested our ability to assign individ-

uals to their population of origin using the Bayesian

clustering method implemented in the software program

STRUCTURE v. 2.3 [48]. STRUCTURE identifies genetic clusters

and assigns all individuals to these clusters without any

a priori information regarding sampling locations. To

determine the most likely number of clusters (K), we con-

ducted five independent runs for each K ¼ 1–26. For all

runs, we assumed an admixture model and independent

allele frequencies, and used a burn-in value of 100 000

iterations followed by 500 000 replications. The most

likely number of clusters was determined following the

guidelines of Pritchard et al. [48] and by calculating DK,

http://aaegypti.vectorbase.org/index.php
http://rspb.royalsocietypublishing.org/
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which is based on the second-order rate of change of

the likelihood distribution between values of K [49].

STRUCTURE results were visualized using the program

DISTRUCT [50].

Additionally, self-assignment tests were completed for a

subset of populations (§3) in GENECLASS2 [51] to assess

the degree to which an individual mosquito could be formally

assigned to a specific population. After creating reference

populations based on geography and clusters identified by

STRUCTURE, this analysis allowed us to take individuals

out of the analysis and then ‘ask’ where they would be

assigned.

To assess relatedness among populations, we calculated

Cavalli-Sforza & Edwards’s [52] chord distance for each

pair of populations in PHYLIP 3.69 (GENDIST module)

and used the resulting distance matrix to create two types

of plot. We first used it to construct a neighbour-joining

tree in MEGA4 [53], with node confidence inferred via

1000 bootstrap replicates in PHYLIP 3.69 (modules SEQ-

BOOT, GENDIST, NEIGHBOUR and CONSENSE).

The neighbour-joining network should not be taken as a

true phylogeny since microsatellites are not ideal markers

for recovering evolutionary history [54]. Rather, the analysis

should be considered as an additional method to assess

genetic clustering of populations. Second, we used the dis-

tance matrix to construct a Euclidean-based non-metric

multi-dimensional scaling plot in the software PAST [55].

Finally, to assess whether African Ae. aegypti represent the

ancestral form of the species, we calculated allelic richness

and private allelic richness for each population using the pro-

gram HP-RARE [56,57]. HP-RARE uses rarefaction to correct

for sample size. The program sampled 21 individuals

(42 allele copies) at random from each population to match

the smallest population sample size.
3. RESULTS
(a) Marker validation

Forty-two of 300 population-by-locus-specific FIS values

deviated significantly from Hardy–Weinberg expecta-

tions after sequential Bonferroni correction (electronic

supplementary material, table S2). Of the 25 popu-

lation-specific tests for each marker, anywhere from zero

(AC2 or B2) to eight to nine (AC5 and A9) tests were

significant. In at least one of the latter cases (A9), the sig-

nificant tests resulted from an excess of homozygotes,

probably owing to null alleles. The Walhund effect may

also have contributed to some of the skewed values if

populations were not truly panmictic since individuals

were sampled across multiple homes/containers/localities

with unknown substructure. Though 160 of 1650

(9.7%) locus-by-locus tests for LD remained significant

after Bonferroni correction, no two loci were consistently

correlated across populations, indicating that close phys-

ical genetic linkage is unlikely. This is consistent with

each microsatellite residing on a different supercontig of

the genome assembly. It is possible, however, that chro-

mosomal inversions link physically distant markers in

some but not all populations [58].

To assess the robustness of our results, all analyses

were repeated using a 10-locus dataset that did not

include the two most problematic loci (AC5 and A9).

This smaller dataset produced the same pattern

of population clustering and hierarchical relatedness
Proc. R. Soc. B
as the full 12-locus dataset, and so we report only

the latter here.
(b) Worldwide population structure and ancestry

The Bayesian analysis of worldwide population structure

clearly indicated that the most likely number of clusters

was two when evaluated using DK (electronic supplemen-

tary material, figure S2). The two clusters cleanly

separated African and non-African populations with a

single exception (figure 1a). The sample from Rabai,

Kenya, included individuals from both clusters, a result

consistent with previous work in this area [20–23,28].

The otherwise cohesive African group contained West

and East African populations from urban to forest

environments, and individuals that have been identified

as both Ae. ae. aegypti and Ae. ae. formosus based on mor-

phology (table 1). Very little mixing between groups was

detected, other than in the population from Ngoye, Sene-

gal (figure 1a). STRUCTURE was run separately on

individuals from the African and non-African clusters to

assess additional structuring within groups. We hereafter

refer to the non-African cluster as pantropical since it

encompasses populations throughout the tropics/sub-

tropics including a single representative within Africa.

Among pantropical populations, geographically relevant

clustering was detected out to K ¼ 12 (figure 1b). Indi-

vidual mosquitoes were assigned correctly to their

population of origin with high accuracy. African popu-

lations showed weaker (but nevertheless geographically

relevant) structure at K ¼ 2 and K ¼ 4 (figure 1c), both

of which appeared as peaks in a DK analysis. Individuals

from Goudiry and PK-10, Senegal, could be assigned

reliably back to their population of origin at K ¼ 4

(figure 1c). Interestingly, the clusters detected among

the African populations were not associated with ecology

(urban versus forest populations) or with the two

morphological subspecies.

To confirm the ability of our markers to assign unknown

pantropical mosquitoes back to their population of origin,

self-assignment tests were conducted in GENECLASS2 [51],

which correctly assigned 90 per cent of the pantropical indi-

viduals back to their genetic cluster as determined

by STRUCTURE (K ¼ 12). When geographical locations

were used as the reference populations, 87.7 per cent

of individuals were correctly assigned back to their

population of origin.

A non-metric multi-dimensional scaling analysis of all

populations based on Cavalli-Sforza and Edwards’s chord

distances recovered the same two genetic groups as the

STRUCTURE analysis. However, the pantropical form

from Rabai, Kenya, is shown to be as different from the

other populations in the pantropical cluster (those from

outside Africa) as it is from the African populations

(figure 2a). This result is also reflected in mean pairwise

FST values between groups (figure 2b; raw pairwise FST-

data listed in electronic supplementary material,

table S3). A neighbour-joining tree based on Cavalli-

Sforza and Edwards’s chord distances strongly supports

the same separation of groups as above. African popu-

lations appear at the base of the network with no clear

geographical or ecological structuring (figure 2c, red

branches). All pantropical populations cluster together

with strong support (figure 2c, dark blue branches).

http://rspb.royalsocietypublishing.org/
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Figure 1. STRUCTURE bar plots. Each vertical bar represents a single individual. The height of each colour represents the prob-
ability of assignment to that cluster. (a) K ¼ 2 for all sampled mosquitoes in all populations; (b) K ¼ 12 for pantropical cluster;
and (c) K ¼ 4 (top) and K ¼ 2 (bottom) for African cluster.
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Genetic groupings within this pantropical group mirror

geography fairly closely, but often with weak bootstrap

support. The pantropical form from Rabai, Kenya, clus-

ters with other pantropical populations, but is

subtended by a long branch at the base of the group

(light blue branch).

When whole regions were considered, corrected allelic

richness across loci was 11.03 within the African popu-

lations and 7.46 within the pantropical populations.

Unlike earlier allozyme analyses [20–22], a number of

unique alleles were found in both groups. Private allelic

richness was also substantially higher in the African

group (5.19) than in the pantropical group (1.62).

Mean observed heterozygosity was 0.613 across African

populations and 0.529 in the pantropical populations.

Diversity statistics for all populations are given in the elec-

tronic supplementary material, as are allele frequencies

across all loci (electronic supplementary material,

table S4). Microsatellite genotypes for all individuals

have been deposited in the Dryad digital repository

(doi:10.5061/dryad.8065).
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4. DISCUSSION
(a) Discrete genetic clusters within Aedes aegypti

High genetic distances between pantropical populations

and African populations strongly support the existence

of two divergent groups within Ae. aegypti. These

groups correspond with previous descriptions of sub-

species Ae. ae. aegypti and Ae. ae. formosus based on

geography and genetics [16,20–22,25,26]. However, it

is now clear that the single morphological trait commonly

used for subspecies identification (i.e. white scaling on the

first abdominal tergite) is not a reliable method to dis-

tinguish between the two divergent genetic forms of

Ae. aegypti, particularly in West Africa [16,25]. Indeed,

we currently know of no morphological character that

can reliably differentiate them, though background cuticle

and scale colour, traits ignored in most previous studies,

deserve further attention. In light of our results, the sub-

species of Ae. aegypti clearly need to be revised. Without

more detailed morphological and other natural history

information, we do not feel comfortable trying to redefine

the subspecies in this study. However, for the sake of

http://dx.doi.org/10.5061/dryad.8065
http://rspb.royalsocietypublishing.org/
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consistency with previous literature, throughout the rest

of this discussion we will refer to all populations in the

African genetic cluster as Ae. ae. formosus and those in

the pantropical cluster, including that from Rabai,

Kenya, as Ae. ae. aegypti.

Previous authors have inferred that Africa is the ances-

tral homeland of Ae. aegypti [27], from which a founding

non-African population split allopatrically and spread

across the globe [16,27,29]. Our own measures of

within-population genetic diversity support this hypoth-

esis. Values of heterozygosity, allelic richness and private

allelic richness were substantially higher in Ae. ae.

formosus than across populations of Ae. ae. aegypti. The

distinction between the two subspecies/groups is further

supported by the overall lack of mixing between them.

This appeared true even in the one location, Rabai,

Kenya (East Africa), where they occur sympatrically

[20,21,23,28], though more extensive sampling in this

region is needed. The pantropical Ae. ae. aegypti popu-

lation in Rabai, Kenya, may represent a reintroduction

of that subspecies from outside sub-Saharan Africa,

which has become genetically isolated [16]. However,

since the pantropical population in Rabai appears so

divergent from all other Ae. aegypti populations, we are

performing ongoing studies to determine the origin of

these mosquitoes. Though pure populations of Ae. ae.

aegypti, as defined based on our genetic results, were

not found in West Africa, we cannot rule out the
Proc. R. Soc. B
possibility that Ae. ae. aegypti has been introduced to cer-

tain locations in West Africa (e.g. N’goye, Senegal) where

it has interbred with the native Ae. ae. formosus.
(b) Independent development of human association

Mattingly [26,27] emphasized the ecological contrast

between wild, zoophilic populations of Ae. ae. formosus in

Africa and domestic, anthropophilic populations of Ae. ae.

aegypti outside Africa. More recent studies continue to

document strong domesticity/anthropophily in pantropical

Ae. ae. aegypti populations [13,59]. However, the data pre-

sented here make it clear that the genetically cohesive Ae. ae.

formosus is much more variable ecologically than traditional

descriptions would suggest. Indeed, it encompasses both

wild and domestic populations across Africa. All samples

from urban domestic populations in West Africa cluster

clearly with Ae. ae. formosus, rather than with any popu-

lations of Ae. ae. aegypti (figures 1 and 2). This evidence

supports the view that sympatric, or near sympatric, breed-

ing of domestic and forest forms as studied in West Africa is

not a strict analogue of the situation in Rabai, Kenya (coastal

East Africa), where the forms are very different from a gen-

etic perspective [16,25,26,35]. Furthermore, even within

West Africa, human-associated populations do not cluster

separately from forest populations (figures 1 and 2),

suggesting independent invasions of human habitats by

Ae. ae. formosus across the African landscape. This

http://rspb.royalsocietypublishing.org/
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phenomenon of multiple independent colonizations of

human habitats has been corroborated in studies of other

taxa [8].

One explanation for the observed patterns is that

Ae. ae. formosus is a generalist that invades human-

associated niches where available without specifically

adapting to them. Behavioural flexibility and adaptive plas-

tic responses have been shown to affect urban invasion

success in other species [60,61], and Ae. aegypti has been

documented to be flexible in its breeding sites and behav-

iour in certain locations [62,63]. Alternatively, invasion of

human-associated habitats by Ae. ae. formosus in Africa

may be driven by specific adaptation to those environ-

ments, as it is in pantropical Ae. ae. aegypti (including

populations from Rabai, Kenya) [16,23,24,28,29]. If so,

the genetic dissimilarity between domestic populations

within and outside of Africa suggests that this example of

ecological specialization on human habitats within Ae.

ae. formosus was independent of that associated with the

split between the two subspecies. A third possibility, not

exclusive of those above, is that although domestic popu-

lations of the two subspecies do not represent a single

cohesive evolutionary unit, some ‘domestic’ alleles that

segregate within Ae. ae. formosus, helping certain popu-

lations to exploit human habitats, are the same as those

that appear to be fixed in pantropical Ae. ae. aegypti.

They could have originated in subspecies formosus and

risen to high frequency in the founding population of Ae.

ae. aegypti, or they may have originated in subspecies

aegypti and introgressed into formosus in modern times.

In the latter case, presumed neutral markers (e.g. microsa-

tellites) characteristic of Ae. ae. aegypti may not persist in

African domestic populations despite introgression of the

genomic regions controlling adaptive ecological traits.

Distinguishing between the possibilities laid out above

will require phenotypic and genotypic characterization of

domestic Ae. ae. formosus populations. The behaviours of

West African populations, in particular, are severely

understudied in comparison with those of pantropical

Ae. ae. aegypti. If traditional domestic phenotypes (e.g.

anthropophily, preference to breed in artificial containers)

are found within Ae. ae. formosus populations, it would be

informative to characterize their genetic basis and com-

pare it with the genetic basis of the same behaviours in

East African or worldwide Ae. ae. aegypti populations.
(c) Public health implications

Within the pantropical form, individuals could be

assigned back to their population of origin with high

probabilities (figure 1b). Owing to this strong assignment

ability, our combination of markers will prove useful in

tracking down the origins of new introductions of

Ae. aegypti. The manageable number of microsatellite

loci in our set will make it easier for scientists in disease

endemic countries to perform these analyses locally.

Overall, the pattern of genetic relatedness among pantro-

pical populations (figure 2c) shows a striking resemblance

to geography, despite low bootstrap support at certain

nodes. Ongoing DNA sequencing of genes from these

samples will potentially shed further light and add

rigour to the historical inferences of the species. Since

only a fraction of existing Ae. aegypti populations have
Proc. R. Soc. B
been examined, more variants and relationships probably

remain to be discovered across the world.

We have verified that most domestic populations of

Ae. aegypti in Africa are genetically different from domestic

populations found elsewhere in the world. Therefore, we

cannot rely on studies of Ae. ae. aegypti to inform us of the

threat posed by Ae. ae. formosus in Africa. Since Ae. ae. formo-

sus is generally less competent at acquiring and transmitting

dengue and yellow fever viruses than Ae. ae. aegypti [64–

66], care must be taken with eradication campaigns against

African Ae. ae. formosus to avoid opening up niches for poten-

tially more virally competent worldwide Ae. ae. aegypti

populations to invade. So far, genetically pantropical mosqui-

toes have been confined to restricted indoor niches in East

African coastal areas, but those populations, as well as

migrants brought in from elsewhere, could potentially

occupy a broader range if natural Ae. ae. formosus populations

were removed. However, despite mean differences in compe-

tence between subspecies, Ae. ae. formosus itself is also

variable in its ability to replicate and transmit viruses [31],

and more work is needed to characterize the vector compe-

tence and behaviour of diverse Ae. ae. formosus populations.

Whether the basis of human association in Ae. ae.

formosus is genetic or plastic, the fact remains that African

populations of Ae. aegypti are breeding in human environ-

ments with easy access to humans as hosts for obtaining

blood. Overlap of mosquito and human populations pro-

vides opportunities for epidemic disease spread, which

can even be caused by Ae. aegypti populations with low

competence for viral replication and transmission [35].

Aedes aegypti formosus is apparently able to continue

invading human habitats, and this phenomenon is likely

to increase as the sub-Saharan African landscape becomes

increasingly human-dominated and human environments

represent a substantial part of available niches.

The evolution of human commensalism is a field that

is likely to grow in importance as the human population

continues to expand and mould environments across the

world. Our findings suggest that close human association

may arise multiple times within one of the most important

vectors of human diseases. In this relatively new field,

more research is needed across additional organisms to

begin to develop a sound theoretical framework.
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