3,255 research outputs found

    Generalized Centrifugal Force Model for Pedestrian Dynamics

    Get PDF
    A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which occur for certain choices of the forces. The main intention of this work is the quantitative description of pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide corridors are performed. The results of the proposed model show good agreement with empirical data obtained in controlled experiments.Comment: 10 pages, 14 figures, accepted for publication as a Regular Article in Physical Review E. This version contains minor change

    Evolutionary Kuramoto Dynamics

    Get PDF
    Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such systems indicates an evolutionary benefit that outweighs the cost of establishing and maintaining them, but little is known about the process of evolutionary development. To begin to address this shortfall, we introduce and analyse a new evolutionary game theoretic framework modelling the behaviour and evolution of systems of coupled oscillators. Each oscillator is characterized by a pair of dynamic behavioural dimensions, a phase and a communication strategy, along which evolution occurs. We measure success of mutations by comparing the benefit of synchronization balanced against the cost of connections between the oscillators. Despite the simple set-up, this model exhibits non-trivial behaviours mimicking several different classical games—the Prisoner’s Dilemma, snowdrift games, coordination games—as the landscape of the oscillators changes over time. Across many situations, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization is greater than twice the cost, the system will evolve towards complete communication and phase synchronization

    Entire solutions of hydrodynamical equations with exponential dissipation

    Get PDF
    We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at high wavenumbers k|k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any C<1/(2ln2)C<1/(2\ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C=C=1/ln2C= C_\star =1/\ln2. The same behavior with a universal constant CC_\star is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres

    Quantum coherence and entanglement in the avian compass

    Get PDF
    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A

    Assessing the phylogeographic history of the montane caddisfly Thremma gallicum using mitochondrial and restriction-site-associated DNA (RAD) mar

    No full text
    Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658-bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC-based hypothesis testing to complement phylogeographic studies on non-model species

    Probabilistic tractography in the ventrolateral thalamic nucleus: cerebellar and pallidal connections

    Get PDF
    The ventrolateral thalamic nucleus (VL), as part of the ‘motor thalamus’, is main relay station of cerebellar and pallidal projections. It comprises anterior (VLa) and posterior (VLpd and VLpv) subnuclei. Though the fibre architecture of cerebellar and pallidal projections to of the VL nucleus has already been focus in a numerous amount of in vitro studies mainly in animals, probabilistic tractography now offers the possibility of an in vivo comparison in healthy humans. In this study we performed a (a) qualitative and (b) quantitative examination of VL-cerebellar and VL-pallidal pathways and compared the probability distributions between both projection fields in the VL after an (I) atlas-based and (II) manual-based segmentation procedure. Both procedures led to high congruent results of cerebellar and pallidal connectivity distributions: the maximum of pallidal projections was located in anterior and medial parts of the VL nucleus, whereas cerebellar connectivity was more located in lateral and posterior parts. The median connectivity for cerebellar connections in both approaches (manual and atlas-based segmentation) was VLa > VLpv > VLpd, whereas the pallidal median connectivity was VLa ~ VLpv > VLpd in the atlas-based approach and VLpv > VLa > VLpd in the manual approach.Peer reviewe
    corecore