220 research outputs found
First Comparative Transcriptomic Analysis of Wild Adult Male and Female Lutzomyia longipalpis, Vector of Visceral Leishmaniasis
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).Facultad de Ciencias Exacta
Deficiency in β1,3-Galactosyltransferase of a Leishmania major Lipophosphoglycan Mutant Adversely Influences the Leishmania-Sand Fly Interaction
To study the function of side chain oligosaccharides of the cell-surface lipophosphoglycan (LPG), mutagenized Leishmania major defective in side chain biosynthesis were negatively selected by agglutination with the monoclonal antibody WIC79.3, which recognizes the galactose-containing side chains of L. major LPG. One such mutant, called Spock, lacked the ability to bind significantly to midguts of the natural L. major vector, Phlebotomus papatasi, and to maintain infection in the sand fly after excretion of the digested bloodmeal. Biochemical characterization of Spock LPG revealed its structural similarity to the LPG of Leishmania donovani, a species whose inability to bind to and maintain infections in P. papatasi midguts has been strongly correlated with the expression of a surface LPG lacking galactose-terminated oligosaccharide side chains. An in vitro galactosyltransferase assay using wild-type or Spock membranes was used to determine that the defect in Spock LPG biosynthesis is a result of defective beta1,3-galactosyltransferase activity as opposed to a modification of LPG, which would prevent it from serving as a competent substrate for galactose addition. The results of these experiments show that Spock lacks the beta1, 3-galactosyltransferase for side chain addition and that the LPG side chains are required for L. major to bind to and to produce transmissible infection in P. papatasi
First Comparative Transcriptomic Analysis of Wild Adult Male and Female Lutzomyia longipalpis, Vector of Visceral Leishmaniasis
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).Facultad de Ciencias Exacta
Differential Midgut Attachment of Leishmania (Viannia) braziliensis in the Sand Flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia
The interaction between Leishmania and sand flies has been demonstrated in many Old and New World species. Besides the morphological differentiation from procyclic to infective metacyclic promastigotes, the parasite undergoes biochemical transformations in its major surface lipophosphoglycan (LPG). An upregulation of β-glucose residues was previously shown in the LPG repeat units from procyclic to metacyclic phase in Leishmania (Viannia) braziliensis, which has not been reported in any Leishmania species. LPG has been implicated as an adhesion molecule that mediates the interaction with the midgut epithelium of the sand fly in the Subgenus Leishmania. These adaptations were explored for the first time in a species from the Subgenus Viannia, L. (V.) braziliensis with its natural vectors Lutzomyia (Nyssomyia) intermedia and Lutzomyia (Nyssomyia) whitmani. Using two in vitro binding techniques, phosphoglycans (PGs) derived from procyclic and metacyclic parasites were able to bind to the insect midgut and inhibit L. braziliensis attachment. Interestingly, L. braziliensis procyclic parasite attachment was ∼11-fold greater in the midgut of L. whitmani than in L. intermedia. The epidemiological relevance of L. whitmani as a vector of American Cutaneous Leishmaniasis (ACL) in Brazil is discussed
Anopheles aquasalis Infected by Plasmodium vivax Displays Unique Gene Expression Profiles when Compared to Other Malaria Vectors and Plasmodia
Malaria affects 300 million people worldwide every year and is endemic in 22 countries in the Americas where transmission occurs mainly in the Amazon Region. Most malaria cases in the Americas are caused by Plasmodium vivax, a parasite that is almost impossible to cultivate in vitro, and Anopheles aquasalis is an important malaria vector. Understanding the interactions between this vector and its parasite will provide important information for development of disease control strategies. To this end, we performed mRNA subtraction experiments using A. aquasalis 2 and 24 hours after feeding on blood and blood from malaria patients infected with P. vivax to identify changes in the mosquito vector gene induction that could be important during the initial steps of infection. A total of 2,138 clones of differentially expressed genes were sequenced and 496 high quality unique sequences were obtained. Annotation revealed 36% of sequences unrelated to genes in any database, suggesting that they were specific to A. aquasalis. A high number of sequences (59%) with no matches in any databases were found 24 h after infection. Genes related to embryogenesis were down-regulated in insects infected by P. vivax. Only a handful of genes related to immune responses were detected in our subtraction experiment. This apparent weak immune response of A. aquasalis to P. vivax infection could be related to the susceptibility of this vector to this important human malaria parasite. Analysis of some genes by real time PCR corroborated and expanded the subtraction results. Taken together, these data provide important new information about this poorly studied American malaria vector by revealing differences between the responses of A. aquasalis to P. vivax infection, in relation to better studied mosquito-Plasmodium pairs. These differences may be important for the development of malaria transmission-blocking strategies in the Americas
Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever
AbstractSalmonella spp. are Gram-negative, facultative, intracellular pathogens that cause several diarrheal diseases ranging from self-limiting gastroenteritis to typhoid fever. Previous results from our laboratory showed that Saccharomyces cerevisiae strain UFMG 905 isolated from ‘cachaça’ production presented probiotic properties due to its ability to protect against experimental infection with Salmonella enterica serovar Typhimurium. In this study, the effects of oral treatment with S. cerevisiae 905 were evaluated at the immunological level in a murine model of typhoid fever. Treatment with S. cerevisiae 905 inhibited weight loss and increased survival rate after Salmonella challenge. Immunological data demonstrated that S. cerevisiae 905 decreased levels of proinflammatory cytokines and modulated the activation of mitogen-activated protein kinases (p38 and JNK, but not ERK1/2), NF-κB and AP-1, signaling pathways which are involved in the transcriptional activation of proinflammatory mediators. Experiments in germ-free mice revealed that probiotic effects were due, at least in part, to the binding of Salmonella to the yeast. In conclusion, S. cerevisiae 905 acts as a potential new biotherapy against S. Typhimurium infection due to its ability to bind bacteria and modulate signaling pathways involved in the activation of inflammation in a murine model of typhoid fever
Flowering, germination and rooting of cuttings of Lippia L. (Verbenaceae)
Lippia species from Cadeia do Espinhaço (MG, Brazil), were collected and established at the Botanical Experimental Station, Juiz de Fora, MG. The flowering of plants was evaluated in both natural and controlled conditions. Germination test was accomplished with seeds obtained from natural conditions. The rooting of cuttings was evaluated in plants cultivated in the Botanical Experimental Station. The majority of species blossomed either in the dry or in the rainy seasons. Only one species blooms in both seasons. At controlled conditions, the flowering period increased in species that flourish in the summer. Some species presented better germination with fresh collected seeds while others when the seeds were stored, evidencing both viability loss and seed dormancy. GA3 stimulates the germination in some species, while it inhibited or not influenced on others. Some species germinate better in the darkness, while others under white light. Some of them germinate in the light or in the darkness. Adventitious roots formation in cuttings of wild species was very low and did not vary in response to season variation and auxin concentration. On the other hand, rooting of cuttings of L. alba (Mill.) N.E. Br. varied in response both to season variation and to auxin types and concentration. This is the first report on physiological reproductive aspects of endemic Lippia species from the Cadeia do Espinhaço. The results indicate the possibility to use seeds in the propagation of wild Lippia species and, they also show that reproduction through conventional vegetative propagation techniques presents quite reduced efficiency.Plantas de dez espécies de Lippia foram coletadas na Cadeia do Espinhaço, MG, Brasil e cultivadas em canteiros em Juiz de Fora, MG. A época de florescimento das espécies de Lippia foi observada nos ambientes de origem e em canteiro. A germinação foi testada com sementes coletadas em ambiente natural. Os materiais estabelecidos ex situ foram avaliados quanto ao enraizamento de estacas. As análises das plantas em ambiente natural e das cultivadas em canteiro evidenciaram que a maioria das espécies estudadas apresenta floração no período seco (inverno), enquanto um menor número, no chuvoso (verão). Uma única espécie floresceu nessas duas estações. Em cultivo controlado, o período de floração das espécies com floração característica no verão foi aumentado. Algumas espécies germinaram melhor quando recém coletadas enquanto outras quando armazenadas, evidenciando a ocorrência de perda de viabilidade e de dormência. O GA3 estimulou a germinação em algumas espécies, enquanto inibiu ou não apresentou efeitos sobre outras. Sementes de algumas espécies germinaram melhor no escuro, enquanto de outras sob luz branca, existindo ainda espécies que germinaram tanto na luz quanto no escuro. O enraizamento das estacas das espécies não domesticadas de Lippia foi muito baixo, independente da estação do ano e da concentração da auxina. O enraizamento em estacas de L. alba (Mill.) N.E. Br. variou em resposta à época de coleta das estacas e quanto ao tipo e à concentração das auxinas utilizadas. Os resultados do presente trabalho constituem os primeiros relatos envolvendo a reprodução de espécies de Lippia endêmicas da Cadeia do Espinhaço. Eles indicam a possibilidade de utilização das sementes na propagação das plantas desse gênero e também evidenciam que a reprodução das plantas das espécies não domesticadas de Lippia através de técnicas convencionais de propagação assexuada apresenta eficiência bastante reduzida
Anopheles darlingi polytene chromosomes: revised maps including newly described inversions and evidence for population structure in Manaus
Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies
The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection
Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies
- …