21 research outputs found

    Myco-Architecture off Planet: Growing Surface Structures at Destination

    Get PDF
    Our work focused on filling major select key technical knowledge gaps, and technical aspects to be addressed in a Phase II proposal were identified such as the secretion of glues or plastics by the fungi or bacteria to form biocomposites. Specifically, we raised the technical TRL by assessing the growth of in-house mycelial-producing strains on potential food substrates and analyzed the advantages and disadvantages to their use off planet. Growth of the mycelia on sawdust and powdered nutrients including dried, powdered algae, was used as a baseline. We measured growth as a function of temperature, tested the relevant material properties of the mycelia products produced, and measured the mass of input and output volume for production per volume of material. Mycotecture was produced in a bag simulating the proposed mission implementation. Post-production such as heat treatment (as is done with terrestrial mycotecture)was assessed.The material properties of the dried, frozen and baked mycelial outputs included density, strength,thermal insulation and flame retardation. Tensile/compression testing on biocomposite material specimens was performed to obtain three-dimensional elastic constants, as well as to examine deformation and fracture behavior. These mechanical tests were performed on both dormant and activated samples to understand the evolution of the structural material. In addition, experimental data obtained from the mechanical testing was used to build a failure prediction model that accounts for material anisotropy. This aided in future structural design through a quantitative understanding of the mechanical limits of the material. To examine the texture, defects, fracture surfaces of the material, high-resolution microstructural imaging was utilized before and after the mechanical tests. This microstructural analysis informed us about the macro-structural behavior and influenced structural design. Thermal decomposition analysis was also performed tounderstand the thermal limits

    Comparative Survival Analysis of Deinococcus Radiodurans and the Haloarchaea Natrialba Magadii and Haloferax Volcanii, Exposed to Vacuum Ultraviolet Irradiation

    Full text link
    The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum-UV (V-UV) radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Cell monolayers (containing 105 - 106 cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10-5 Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of ((3.77 \pm 0.76) x 10-2), larger than the one of D. radiodurans ((1.13 \pm 0.23) x 10-2). The survival fraction of the haloarchaea H. volcanii, of ((3.60 \pm 1.80) x 10-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluencies up to 150 J m-2. For fluencies larger than 150 J m-2 there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher V-UV fluency (1350 J m-2) while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable micro-organisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and the Jupiter's moon Europa. This is the first work reporting survival of haloarchaea under simulated interplanetary conditions.Comment: Draft version (without figures), Accepted for publication in Astrobiolog

    Perspective: science policy through public engagement

    Get PDF
    While tensions may lie between science and policy, we argue that dissemination and public engagement are key in alleviating those perceived tensions. Science being valued by society results in fact-based policy-making being demanded by constituents. Constituents’ demands will yield representatives who are familiar with the scientific process and research to inform policy decisions.https://academic.oup.com/spp/article/47/6/890/590080

    Astrobiology in Brazil: early history and perspectives

    No full text
    This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies. Received 29 February 2012, accepted 17 May 2012, first published online 18 July 2012Sao Paulo Research Foundation (FAPESP)FAPESP (Sao Paulo Research Foundation)National Institute of Space Research (INEspaco - MCT/CNPq)National Institute of Space Research (INEspaco MCT/CNPq)Brazilian Antarctic Program (PROANTAR - CNPq)Brazilian Antarctic Program (PROANTAR CNPq)Universidade de Sao PauloUniversidade de Sao PauloBrazilian Astrobiology Research Center (NAP-Astrobio)Brazilian Astrobiology Research Center (NAPAstrobio

    Construction and characterization of metal ion-containing DNA nanowires for synthetic biology and nanotechnology

    No full text
    DNA is an attractive candidate for integration into nanoelectronics as a biological nanowire due to its linear geometry, definable base sequence, easy, inexpensive and non-toxic replication and self-assembling properties. Recently we discovered that by intercalating Ag+ in polycytosine-mismatch oligonucleotides, the resulting C-Ag+-C duplexes are able to conduct charge efficiently. To map the functionality and biostability of this system, we built and characterized internally-functionalized DNA nanowires through non-canonical, Ag+-mediated base pairing in duplexes containing cytosine-cytosine mismatches. We assessed the thermal and chemical stability of ion-coordinated duplexes in aqueous solutions and conclude that the C-Ag+-C bond forms DNA duplexes with replicable geometry, predictable thermodynamics, and tunable length. We demonstrated continuous ion chain formation in oligonucleotides of 11-50 nucleotides (nt), and enzyme ligation of mixed strands up to six times that length. This construction is feasible without detectable silver nanocluster contaminants. Functional gene parts for the synthesis of DNA- and RNA-based, C-Ag+-C duplexes in a cell-free system have been constructed in an Escherichia coli expression plasmid and added to the open-source BioBrick Registry, paving the way to realizing the promise of inexpensive industrial production. With appropriate design constraints, this conductive variant of DNA demonstrates promise for use in synthetic biological constructs as a dynamic nucleic acid component and contributes molecular electronic functionality to DNA that is not already found in nature. We propose a viable route to fabricating stable DNA nanowires in cell-free and synthetic biological systems for the production of self-assembling nanoelectronic architectures.status: publishe

    Biological Growth as an Alternative Approach to On and Off-Earth Construction

    Get PDF
    A critical aspect of human space exploration and eventual settlement is the ability to construct habitats while minimizing payload mass launched from Earth. To respond to this challenge, we have proposed the use of fungal bio composites for growing extraterrestrial structures, directly at the destination, significantly lowering the mass of structural materials transported from Earth and minimizing the need for high mass robotic operations and infrastructure preparations. Throughout human history, the construction of habits has used biologically produced materials, from bone and skins to wood and limestone. Traditionally, the materials are used only after post-mortem. Currently, the idea of working with living biological organisms, and the phenomenon of growth itself, is of increasing interest in architecture and space applications. Here, we describe the use of mycelium-based composites as an alternative, biological approach for constructing regenerative and adaptive buildings in extreme environments and extraterrestrial habitats. It is a continuation of our research program initiated under the auspices of the ‘Myco-architecture Off Planet’ NASA NIAC Team. These composites, which are fire-resistant, and insulating, do not consist of volatile organic compounds from petrochemical products and can be used independently or in conjunction with regolith, could employ the living biological growth in a controlled environment, for the process of material fabrication, assembly, maintenance, and repair, providing structures resilient to extra-terrestrial hazards. Here we outline the potential and challenges of using bio-composites for Earth and space applications. We describe how these might be addressed in order to make this biological approach feasible, providing new, growing materials for designing and building sustainable habitats, both on Earth and for long-duration space missions

    Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems

    Get PDF
    While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments

    The Astrobiology Primer v2.0

    Get PDF
    Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography. However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects. Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?)
    corecore