1,927 research outputs found

    Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice

    Get PDF
    In addition to cognitive decline, Alzheimer’s disease (AD) is also characterized by agitation and disruptions in activity and sleep. These symptoms typically occur in the evening or at night and have been referred to as ‘sundowning’. These symptoms are especially difficult for carers and there are no specific drug treatments. There is increasing evidence that these symptoms reflect an underlying pathology of circadian rhythm generation and transmission. We investigated whether a transgenic mouse model relevant to AD (APPswe/PS1dE9) exhibits circadian alterations in locomotor activity and expression of clock genes involved in the regulation of the circadian cycle. Female mice at 2 months of age were investigated in their home cage. Results show that the APPswe/PS1dE9 transgene alters levels and patterns in circadian rhythm of locomotor activity. Expression of the clock genes Per1, Per2, Cry1 and Cry2 was found to increase at night compared to day in wild-type control mice in the medulla/pons. This effect was blunted for Cry1 and Cry2 gene expression in APPswe/PS1dE9. In summary, this study suggests altered circadian regulation of locomotor activity is abnormal in female APPswe/PS1dE9 mice and that this alteration has biomolecular analogies in a widely available model of AD. Furthermore, the early age at which these effects are manifest suggests that these circadian effects may precede plaque development. The APPswe/PS1dE9 mouse genetic model may have potential to serve as a tool in understanding the neuropathology of circadian abnormalities in AD and as a model system to test novel therapeutic agents for these symptoms

    Gene × environment interactions in schizophrenia: evidence from genetic mouse models

    Get PDF
    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia

    Potentiation of latent inhibition by haloperidol and clozapine is attenuated in Dopamine D2 receptor (Drd-2) deficient mice: Do antipsychotics influence learning to ignore irrelevant stimuli via both Drd-2 and non-Drd-2 mechanisms?

    Get PDF
    Whether the dopamine Drd-2 receptor is necessary for the behavioural action of antipsychotic drugs is an important question, as Drd-2 antagonism is responsible for their debilitating motor side effects. Using Drd-2 null mice (Drd2 -/-) it has previously been shown that Drd-2 is not necessary for antipsychotic drugs to reverse D-amphetamine disruption of latent inhibition (LI), a behavioural measure of learning to ignore irrelevant stimuli. Weiner's 'two-headed' model indicates that antipsychotics not only reverse LI disruption, 'disrupted LI', but also potentiate LI when low/absent in controls, 'persistent' LI. We investigated whether antipsychotic drugs haloperidol or clozapine potentiated LI in wild-type controls or Drd2 -/-. Both drugs potentiated LI in wild-type but not in Drd2 -/- mice, suggesting moderation of this effect of antipsychotics in the absence of Drd-2. Haloperidol potentiated LI similarly in both Drd1 -/- and wild-type mice, indicating no such moderation in Drd1 -/-. These data suggest that antipsychotic drugs can have either Drd-2 or non-Drd-2 effects on learning to ignore irrelevant stimuli, depending on how the abnormality is produced. Identification of the non-Drd-2 mechanism may help to identify novel non-Drd2 based therapeutic strategies for psychosis

    High Schizotypy Predicts Emotion Recognition Independently of Negative Affect

    Get PDF
    Introduction: Deficits in Emotion Recognition (ER) contribute significantly to poorer functional outcomes in people with schizophrenia. However, rather than reflecting a core symptom of schizophrenia, reduced ER has been suggested to reflect increased mood disorder co-morbidity and confounds of patient status such as medication. We investigated whether ER deficits are replicable in psychometrically defined schizotypy, and whether this putative association is mediated by increased negative affect.Methods: Two hundred and nine participants between the ages of 18 and 69 (66% female) were recruited from online platforms: 80% held an undergraduate qualification or higher, 44% were current students, and 46% were in current employment. Participants were assessed on psychometric schizotypy using the O-LIFE which maps onto the same symptoms structure (positive, negative, and disorganised) as schizophrenia. Negative affect was assessed using the Depression Anxiety and Stress Scale (DASS-21). Emotion Recognition of both positive and negative emotions was assessed using the short version of the Geneva Emotion Recognition Task (GERT-S).Results: Negative schizotypy traits predicted poorer ER accuracy to negative emotions (β = −0.192, p = 0.002) as predicted. Unexpectedly, disorganised schizotypy traits predicted improved performance to negative emotions (β = 0.256, p = 0.007) (primarily disgust). Negative affect was found to be unrelated to ER performance of either valence (both p > 0.591). No measure predicted ER accuracy of positive emotions. Positive schizotypy traits were not found to predict either positive or negative ER accuracy. However, positive schizotypy predicted increased confidence in decisions and disorganised schizotypy predicted reduced confidence in decisions.Discussion: The replication of ER deficits in non-clinical negative schizotypy suggests that the association between negative symptoms and ER deficits in clinical samples may be independent of confounds of patient status (i.e., anti-psychotic medication). The finding that this association was independent of negative affect further suggests ER deficits in patients may also be independent of mood disorder co-morbidity. This association was not demonstrated for the positive symptom dimension of the O-LIFE, which may be due to low levels of this trait in the current sample

    Specialised information processing deficits and distinct metabolomics profiles following TM-domain disruption of Nrg1

    Get PDF
    While there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signalling in schizophrenia. The present study focused on specialised behavioural and characterisation of hitherto un-characterised information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across two different sites and protocols, Nrg1 mutants demonstrated deficits in pre-pulse inhibition, a measure of sensorimotor gating that is disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second-, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in the ‘what-where-when’ cognitive paradigm, Nrg1 mutants displayed sex-specific (males only) disruption of ‘what-when’ performance, indicative of impaired episodic memory. Differential metabolomic profiling revealed that these behavioural phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioural changes in adulthood

    Does cannabis use predict psychometric schizotypy via aberrant salience?

    Get PDF
    Cannabis can induce acute psychotic symptoms in healthy individuals and exacerbate pre-existing psychotic symptoms in patients with schizophrenia. Inappropriate salience allocation is hypothesised to be central to the association between dopamine dysregulation and psychotic symptoms. This study examined whether cannabis use is associated with self-reported salience dysfunction and schizotypal symptoms in a non-clinical population. 910 University students completed the following questionnaire battery: the cannabis experience questionnaire modified version (CEQmv); schizotypal personality questionnaire (SPQ); community assessment of psychic experience (CAPE); aberrant salience inventory (ASI). Mediation analysis was used to test whether aberrant salience mediated the relationship between cannabis use and schizotypal traits. Both frequent cannabis consumption during the previous year and ASI score predicted variation across selected positive and disorganised SPQ subscales. However, for the SPQ subscales ‘ideas of reference’ and ‘odd beliefs’, mediation analysis revealed that with the addition of ASI score as a mediating variable, current cannabis use no longer predicted scores on these subscales. Similarly, cannabis use frequency predicted higher total SPQ as well as specific Positive and Disorganised subscale scores, but ASI score as a mediating variable removed the significant predictive relationship between frequent cannabis use and ‘odd beliefs’, ‘ideas of reference’, ‘unusual perceptual experiences’, ‘odd speech’, and total SPQ scores. In summary, cannabis use was associated with increased psychometric schizotypy and aberrant salience. Using self-report measures in a non-clinical population, the cannabis-related increase in selected positive and disorganised SPQ subscale scores was shown to be, at least in part, mediated by disturbance in salience processing mechanisms

    Tracking subjects' strategies in behavioural choice experiments at trial resolution.

    Get PDF
    Investigating how, when, and what subjects learn during decision-making tasks requires tracking their choice strategies on a trial-by-trial basis. Here we present a simple but effective probabilistic approach to tracking choice strategies at trial resolution using Bayesian evidence accumulation. We show this approach identifies both successful learning and the exploratory strategies used in decision tasks performed by humans, non-human primates, rats, and synthetic agents. Both when subjects learn and when rules change the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that subjects have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control

    Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Get PDF
    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies

    Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations

    Get PDF
    Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient’s neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement
    • …
    corecore