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Abstract  

In addition to cognitive decline, Alzheimer’s disease (AD) is also characterized by agitation and disruptions in 

activity and sleep. These symptoms typically occur in the evening or at night and have been referred to as 

‘sundowning’. These symptoms are especially difficult for carers and there are no specific drug treatments.  

There is increasing evidence that these symptoms reflect an underlying pathology of circadian rhythm 

generation and transmission. We investigated whether a transgenic mouse model relevant to AD 

(APPswe/PS1dE9) exhibits circadian alterations in locomotor activity and expression of clock genes involved in 

the regulation of the circadian cycle. Female mice at 2 months of age were investigated in their home cage.  

Results show that the APPswe/PS1dE9 transgene alters levels and patterns in circadian rhythm of locomotor 

activity. Expression of the clock genes Per1, Per2, Cry1 and Cry2 was found to increase at night compared to 

day in wild-type control mice in the medulla/pons. This effect was blunted for Cry1 and Cry2 gene expression in 

APPswe/PS1dE9. In summary, this study suggests altered circadian regulation of locomotor activity is abnormal 

in female APPswe/PS1dE9 mice and that this alteration has biomolecular analogies in a widely available model 

of AD. Furthermore, the early age at which these effects are manifest suggests that these circadian effects may 

precede plaque development. The APPswe/PS1dE9 mouse genetic model may have potential to serve as a tool 

in understanding the neuropathology of circadian abnormalities in AD and as a model system to test novel 

therapeutic agents for these symptoms.  

Key words: 

Alzheimer’s Disease, circadian, clock genes, APPswe/PS1dE9 mice, Per1, Per2, Cry1, Cry2, Bmal, Rev-Erb, 

Rev-Erbβ 
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Introduction  

Alzheimer’s Disease (AD) is associated with behavioural disturbances such as restlessness and agitation that are 

exacerbated in late afternoon or early evening, sometimes referred to as “sundowning”. The day/night 

rhythmicity of these symptoms has led to the suggestion that disturbances in the biological clock may underly 

them. This is supported by both behavioural and molecular evidence [for reviews see (1, 2)]. Behaviourally, 

patients with AD have been shown to have lower locomotor activity during the day and a higher percentage of 

their total daily activity at night relative to age-matched comparison subjects. The activity rhythms of AD 

patients have been reported to delayed by four hours in AD patients compared to normal elderly controls (3-5) 

AD patients also show less inter-daily stability (a measure of rhythmicity) and a later acrophase (time at which a 

peak of activity occurs) (3, 6). Circadian rhythms are regulated by a master clock located in the suprachiasmatic 

nucleus (SCN) (7, 8). Recently Videnovic et al., (1) showed in a small post-mortem sample of patients with AD 

and age-matched controls that SCN neuronal number correlated with the amplitude of the circadian rhythm of 

locomotor activity.Identification of neural and non-neural tissues that contain the molecular machinery required 

for the generation of endogenous rhythms has been made possible by the identification of clock genes (7).  

These genes include Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Rev-Erb, Rev-Erbβ, Rora, Rorb and Rorc 

(9). Through binding to E-box elements, Clock:Bmal1 heterodimers drive the expression of multiple Clock-

controlled genes (CCGs). As the Per and Cry protein products accumulate in the cytoplasm, they dimerize and 

translocate to the nucleus to inhibit the activity of Clock:Bmal1, thereby inhibiting their own transcription. Rev–

erbα forms an additional negative loop to the cycle by inhibiting Bmal1 transcription. As a positive loop, Per 

proteins inhibit Rev–erb transcription; this lifts the Rev–erb mediated inhibition of Bmal1 transcription, 

which serves to activate the system (10). It has now been established that individual cells possess self-sustained 

circadian oscillators and are not simply weak “slave” oscillators driven by the master SCN clock (11). The 

discovery of SCN-independent brain clocks in a number of areas in the mammalian brain including the olfactory 

bulb, brainstem and hippocampus suggests that the mammalian circadian system involves multiple pacemaking 

nuclei (12, 13). Little is known about the role of the relationship between extra SCN brain oscillators and 

rhythmic and circadian behavior and even less is known about whether there may be alterations in these 

oscillators that might play a role in rhythmic and circadian abnormalities in AD. It is notable that the 

hippocampus and olfactory bulb brain regions have been associated with the earliest stages of AD pathology 

(14). 
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In order to address these questions, a number of studies have investigated whether genetic mouse models 

relevant to AD show circadian abnormalities in their behavioral activity patterns in addition to their known 

cognitive abnormalities. Conclusions in mouse models have been mixed. Most studies [though not all, see (15)] 

have shown a generalised hyperactivity in AD mouse models with some studies showing this to be specific to 

nocturnal activity (16, 17) and some to diurnal activity (18, 19).   This variability is unsurprising given that 

studies differ in the transgenic model used (e.g. Tg2576, APPSwe/PS1dE9, APP23), background strain of 

mouse (e.g. C57BL/6, CD1/129) and method used to assess activity (e.g. running wheel vs. home cage). 

Differences in the age at testing and whether studies have been carried out under free running vs entraining 

light-dark conditions also contribute to the variability in inferred phenotypes (20, 21) (22-24). While the number 

of studies is as yet small, many do indicate some modest circadian abnormality when compared to wild-type 

controls that show greater consistency.  

Several studies using different measurement techniques have shown that clock gene expression (mostly Per1 

and Per2) varies across the 24 hour cycle in the SCN in mice (25, 26) and more recently in rats (27). Wang et 

al., (28) showed that Per2 mRNA and protein expression varied across the 24 hour cycle in the hippocampus. 

While these rhythms are altered with normal ageing in several species including mice, hamsters and rats (29-

31), few studies have investigated whether these expression patterns are altered in genetic mouse models 

relevant to AD. Duncan and colleagues (32) showed the clock gene Per2 is increased at night in the SCN of 

wild-type mice with a strong trend towards attenuation of this increase in APPxPS1 mice that did not reach 

statistical significance. The mice used in that study were on a CD1/129 background strain and notably did not 

show the hyperactivity frequently reported in APPxPS1 mice. The WT mice in that aspect of the study were also 

15 months old, and as the study indicated age-associated reductions in activity rhythms it is possible that a floor 

effect may have masked potential changes associated with genotype for the baseline day/night changes in Per2. 
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In the current study we investigated whether the 24hour rhythm of home cage activity is abnormal in 

APPSwe/PS1dE9 mice on the more common C57BL/6J background strain. We subsequently investigated 

whether these mice concomitantly show abnormalities in differential mRNA expression of a number of clock 

genes between the highest and lowest point of their activity in the 24 hour cycle; Zeitgeber times (ZT) 2 and 14 

(day vs. night). Zeitgeber times were defined in relation to the light-dark cycle with ZT0 as lights on and LT12 

as lights off.  We focused on brain regions outside of the SCN: the hippocampus (important for memory 

function) and the medulla/pons (important for the sleep-wake cycle).  

MATERIALS AND METHODS 

Animals and housing conditions 

The mice used in these studies were the double transgenic AD mouse model, APPswe/PS1dE9 and WT controls 

of the same C57/BL6 genetic background.  A chimeric mouse/human APP695 with mutations linked to familial 

AD (APPSwe) was expressed as well as a mutation in the human PS1 gene carrying the exon-9-deleted variant 

associated with AD (33, 34). All experimental animals used in the present work were bred in the University of 

Nottingham's transgenic animal facility and have been described previously (35, 36). Prior to activity 

monitoring studies, all mice were housed in the same room, maintained on a light/dark (LD) light cycle, with 

lights on at 07:00 hrs. Room temperature, relative humidity and air exchange were automatically controlled. 

Mice were housed in individually ventilated cages (Tecniplast, Buguggiate (VA), Italy) with a floor area 501cm, 

dimensions (WxDXH) 391X199x160 mm. Cages had a play tunnel and shredded paper nesting material. They 

were housed in groups of 2-3 with ad libitum access to food and water, and provided with nesting material and a 

play tube. During the studies, the animals were singly-housed and were subjected to either a LD cycle or 

constant dim red light (“darkness”: DD).  All experiments were approved by the University of Nottingham 

Animal Welfare and Ethical Review Board and were carried out in compliance with the Home Office 

regulations on animal experimentation with appropriate personal and project license authority under the Animals 

(Scientific Procedures) Act, UK 1986. After locomotor activity recording, mice were euthanized under LD 

conditions at ZT2 (day) and ZT14 (night) time points. These were selected on the basis of the highest and lowest 

activity peaks. There were n=3 WT and n=4 APPswe/PS1dE9 per time point. The hippocampus and 

medulla/pons regions were dissected and snap frozen on dry ice and stored at -80oC prior to analysis.  
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Experimentally naïve 2 month-old female mice were used, 8 APPSwe/PS1dE9 transgenic mice and 6 

wild-type (WT) littermates. Mice were tested in staggered cohorts following breeding to ensure that each mouse 

was the same age at the beginning of behavioural testing.   

Home-cage activity 

Activity recording occurred in identical boxes, sized 16cm x 19cm x 26cm. There were four boxes per light-

tight chamber, size; 80cm x 61cm x 71cm (ENV- 018, MED associates Inc., St Albans, VT, U.S.A.). Each 

chamber contained a fluorescent bulb (170 lux) and red bulb (8 lux) which supplied white light during the day 

and red light at night respectively (as appropriate to the experiment). Employing a camera at the roof of the 

chamber, the Video Tracking Interface software (Version 1, MED associates inc) maintained the current 

tracking location of each individual mouse and recorded the footage from each individual box. This footage was 

then converted into distance travelled (in cm), stereotypic counts and ambulatory counts by the Activity Monitor 

software (Version 5, MED Associates Inc.). Each chamber also contained a fan, mounted at the back to provide 

air exchange and background noise (55dB). 

Experiment 1: In the initial period of the study, the mice were under a 12h light: 12h dark cycle (lights on 07:00 

hrs ZT12 lights off 19:00 ZT24) and locomotor activity was recorded for 6 days (8640 mins).  Locomotor 

activity recording in DD for 24 days followed immediately, the mice remained in the experimental room, the 

fluorescent lights were turned off and red lights kept on permanently, the chamber doors were closed and a radio 

was permanently switched on which provided additional background noise (70 dB). This was done to ensure the 

elimination of all photic and non-photic cues associated with the building.  At the end of the experiment, the 

mice were re-housed with their original littermates and returned to the holding room. 

Analysis of locomotor activity data 

The locomotor activity data was collected in 1 minute bins and several variables extracted and analyzed. For the 

purposes of this study, Diurnal distance was defined as activity that occurred in the light phase (07:00-19:00 

hrs), Nocturnal activity was defined as activity that occurred in the dark phase (19.00 - 07:00 hrs). Percentage of 

nocturnal activity refers to the percentage of total daily activity occurring during the nocturnal period (6). 

Percentage of the first/last 2 hours in the light/dark period refers to the percentage of total daily activity 

occurring in the first/last 2 hours of the light/dark phases (32). Period length was calculated using the Chi2 

periodogram analysis (37). Period is defined as the time elapsed for one complete oscillation or cycle (the 

distance in time between two consecutive peaks [or troughs] of a recurring wave and was calculated using Chi2-
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periodogram analysis (37) . Period length under free-running conditions (DD) was calculated by visually fitting 

a line to the activity onsets, estimating the total phase shift over the course of the study, then calculating the 

mean shift per cycle.  This was done by an experimenter who was blind to the genotype of the mice. Cosinor 

analysis fits a cosine wave to the raw data (37). This yields the mesor (central point of the fitted cosinor 

function), amplitude (height of the fitted cosine curve), relative amplitude (amplitude/mesor) and acrophase 

(31). The software used is available at http://www.circadian.org/softwar.html. Acrophase is the time at which 

the peak of a rhythm occurs. It refers to the phase angle of the peak of a cosine wave fitted to the raw data of a 

rhythm. The unit of measurement is degrees (°) which is converted to a value proportional to that of a 24-hour 

clock using the formula, H = (D x 24) / 360 + S, where D is the value in degrees, H is the value in hours, and S 

is the start time. Robustness has been described as how regular a circadian rhythm is and calculated as the 

percentage of the total variance that can be accounted for by the cosine wave (a measure of rhythmicity). 

Essentially the robustness statistic reflects the extent of stationarity of a rhythm, a calculation of the 

periodograms Qp value compared to the Qp value associated with a perfectly rhythmic time series.(38)   The 

Rhythmicity Index measured the strength of the rhythm calculated as the height of the third peak in an 

autocorrelation analysis (39).   

Activity Onset was determined as the first time-point from 6hrs before lights off where activity counts 

exceeded the 24 hrs mean and remained sustained over three of the following bins. This is dissociable from the 

onset of the active phase.  Activity Offset was determined as the latest time-point with three of the previous bins 

also above the 24 hrs (23). This is dissociable from the end of the active phase.  Activity Duration was 

calculated as the difference between Activity Onset and Activity Offset.  

Under LD conditions, lights on was 07.00 hrs and lights off was 19.00 hrs. Mice are largely nocturnal and onset 

of the active phase is closely linked to lights off.  However, as a result of the changes to onset/offset of the 

active phase under DD conditions and the fact that there are individual differences in the amount and direction 

of these shifts, onset and offset of the active phase can no longer be fixed to 07.00 and 19.00 hrs respectively 

and rhythms would be expected to free-run. This therefore means diurnal activity, nocturnal activity, percentage 

of activity at night and percentage of the first/last 2 hours in the light/dark period cannot be measured. Double 

plotted actograms were used to visually represent each day in DD (37).  

The number of total stereotypic counts (repeated movement within a specified area around the mouses location 

detected by the software) made by the mice was also recorded. Diurnal/ nocturnal stereotypic counts were 
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obtained from this measure. Data reflected activity counts very closely hence overall effects are referred to but 

the data is not reported.  

qRT-PCR  

Clock gene expression in dissected brain regions was determined by qRT-PCR. Total RNA was extracted from 

tissue using TRIzol (Sigma). RNA (500ng) was reverse transcribed using oligo(dT)12-18, and quantitative RT-

PCR was performed on a Mx3005P cycler (Stratagene) using Brilliant II SYBR green qPCR mix (Agilent 

Technologies). Values were normalized to expression levels of the housekeeping gene, GAPDH. The relative 

differences among the comparison groups were calculated using the ∆∆CT method. Primer sequences used for 

qPCR detection of mouse genes were as follows:   

mPer1 forward  5′-TCGAAACCAGGACACCTTCTCT-3′  

mPer1 reverse  5′-GGGCACCCCGAAACACA-3′,  

mPer2 forward    5′-GCTCGCCATCCACAAGAAG-3′  

mPer2 reverse   5′-GCGGAATCGAATGGGAGAATA-3′ 

mClock forward   5′-CGGCGAGAACTTGGCATT-3′  

mClock  reverse   5′-AGGAGTTGGGCTGTGATCA-3′ 

mBmal1 forward   5′-TGACCCTCATGGAAGGTTAGAA-3′   

mBmal1 reverse  5′-GGACATTGCATTGCATGTTGG-3′,   

mCry1 forward  5′-ATCGTGCGCATTTCACATAC-3′    

mCry1 reverse     5′-TCCGCCATTGAGTTCTATGAT-3′,  

mCry2 forward  5′CCATTATGAAGATGGCCAAGGA-3′  

mCry2 reverse   5′- CTGCCCATTCAGTTCGATGATT-3′,  

Rev-erb forward 5′-TGGCATGGTGCTACTGTGTAAGG-3′   

Rev-erb reverse  5′-ATATTCTGTTGGATGCTCCGGCG-3′,  

Rev-erb forward 5′-GGAGTTCATGCTTGTGAAGGCTGT-3′  

Rev-erb reverse  5′-CAGACACTTCTTAAAGCGGCACTG-3′. 

 

Statistics 

Statistics were performed using SPSS (Version 18, 2009 SPSS Inc. Chicago, Illinois, USA). For activity data  

one-way analysis of variance (ANOVA) was used with genotype (WT Vs APPswe)  as independent variable. 

For LD Vs DD comparisons repeated measures ANOVA was used with lighting condition (LD Vs DD) as 

independent variable. 
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In mRNA gene expression experiments two-way ANOVA was used with Zeitgeber time (ZT2 Vs ZT14) and 

Genotype (WT Vs APPswe)  as independent variables. T-tests were used for individual comparisons.   

RESULTS 

Locomotor Activity : LD conditions  

Figure 1A shows that in 12L:12D conditions APPSwe/PS1dE9mice (‘APPswe’ in Figure) were significantly 

more hyperactive than WT mice [F(1,12)=6.369, p=0.027], they were also more  active at night than WT mice 

[F(1,12)=8.107, p=0.015], and had a greater percentage of activity at night compared to WT mice 

[F(1,12)=19.575, p=0.001]. They were not significantly more active in the day, though as is typical in mice 

absolute activity was low during this period [F(1,12)=1.529, p=0.240].   

  In exploring the patterns of activity across the 24 hour period, APPSwe/PS1dE9 mice showed 

significantly less activity in the first 2 hours in the light period compared to WT mice [F(1,12)=10.225 p=0.008] 

as well in the last 2 hours  in the light period [F(1,12)=4.936 p=0.046] (Figure 2A-2B). In the dark phase, 

APPSwe/PS1dE9 mice had more activity than WT mice in the first 2 hours [F(1,12)=17.975 p=0.001] and 

significantly less than WT mice in the last 2 hours of the dark phase F(1,12)=20.392 p=0.001] (Figure 2C-2D). 

Stereotypic counts did not differ between APPSwe/PS1dE9 and WT mice on any of these measures (data not 

shown). 

  Robustness, was also found to be significantly higher in APPSwe mice [F(1,12)=8.53 p=0.013] (Figure 

3A) while rhythmicity index was unaltered in APPSwe/PS1dE9 mice [F(1,12)=0.397,  p=0.541] (Figure 3B). 

The time of peak activity (acrophase) occurred earlier in APPSwe/PS1dE9 mice than in wild-type controls 

[F(1,12)=7.723 p=0.017] (Figure 3C). Relative amplitude was also significantly higher in APPSwe/PS1dE9 

mice [F(1,12)=19.723,  p=0.001] (Figure 3D). Period length in APPSwe/PS1dE9 mice did not differ 

significantly from that of WT mice [F(1,12)=0.094,  p=0.764] (Figure 4).  

Locomotor activity: DD conditions 

In DD conditions APPSwe/PS1dE9 mice were also significantly more active that WT mice [F(1,12)=8.689, 

p=0.012] (Figure 1B). Also in common with mice in LD conditions, APPSwe/PS1dE9 mice showed 

significantly higher robustness than their WT counterparts [F(1,12)=5.457, p=0.038] (Figure 3A) while 

rhythmicity index remained unaltered [F(1,12)=1.397,  p=0.260] (Figure 3B). Higher relative amplitude in 

APPSwe/PS1dE9 mice was seen  [F(1,12)=7.768,  p=0.016] (Figure 3D), while activity offset was significantly 
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earlier in AppSwe/Ps1dE9 mice [F1,12=16.01, P<0.001] (Figure 3E), while activity duration was not 

significantly different between genotypes (Figure 3F).  Also similarly to LD conditions, the time of peak activity 

(acrophase) in APPSwe/PS1dE9 mice was significantly earlier in APPSwe/PS1dE9 mice [F(1,12)=16.648,  

p=0.002] (Figure 3C). The length of the free-running period was significantly shorter in APPSwe/PS1dE9 mice 

[F(5,7)=5.36,  p<0.05] (Figure 4B);  

The length of the free-running period was significantly shorter in APPSwe/PS1dE9 mice [F(1,12)=5.36,  

p<0.05] (Figure 4B); Mean and standard error of the mean period length WT (24.37 ± 0.07) and 

APPSwe/PS1dE9 (24.2±0.02). Calculation of period length by chi2 periodogram (37) produced similar 

estimates of period length (WT 24.28±0.07 vs APPSwe/PS1dE9 24.2±0.03). 

 

Comparing LD to DD conditions 

In all activity measures, there were significant effects of lighting condition (LD vs DD) on robustness, 

rhythmicity index and acrophase but no interactions with genotype on any measure. The effect of lighting 

conditions on total activity did not differ between WT and APPSwe/PS1dE9 mice, [F(1,12)=0.029, p=0.868] 

(data not shown) nor on relative amplitude [F(1,12)=0.617, p=0.447]. Compared to LD, the activity rhythms of  

mice were significantly less robust in DD [F(1,12)=15.351, p=0.002] (Figure 3A) but rhythmicity index was 

significantly increased in DD [F(1,12)=27.511,  p=0.000] (Figure 3B). The time of peak activity (acrophase) 

was also significantly earlier in DD compared to LD conditions, [F(1,12)=56.153, p=0.000] and overall in 

APPSwe/PS1dE9 mice compared to WT mice [F(1,12)=20.493,  p=0.001] (Figure 3C).  

 

Clock Gene Expression  

Effect of genotype 

Expression levels of mRNA for 8 clock genes were investigated in two brain regions (hippocampus and 

medulla/pons) of wild-type and APPSwe/PS1dE9 mice at ZT2 and ZT14.  A significant main effect of genotype 

on Cry1 (p=0.038) and Cry2 (p=0.035) was observed in the medulla/pons (Figure 5B).No significant effect of  

genotype was seen in the hippocampus. There were significant interactions between genotype and time of day 

(outlined below).  

Effect of time of day  
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In the hippocampus (Figure 5A) there was a general trend towards higher expression at ZT14 compared to ZT2, 

these levels reached significance for the Per1 (p=0.048) Per2 (p=0.032) and Rev-erb (p=0.041) expression. In 

the medulla/pons (Figure 5B), there was similarly a general trend towards higher expression at ZT14 compared 

to ZT2 these levels reaching significance for Per1 (p=0.006), Per 2 (p=0.023), Cry1 (p=0.008) and Cry2 

(p=0.003). 

Genotype x time of day interaction  

In the medulla/pons, the effect of TOD on the expression of Cry1 (p=0.04), Cry2 (p=0.042), Clock (p=0.025) 

and Bmal1 (p=0.018) was significantly different in WT mice and APPSwe/PS1dE9 mice. In APPSwe/PS1dE9 

mice, there was a significant down-regulation of Cry1 (p=0.045), Cry2 (p=0.03), Clock (p=0.05) and Bmal1 

(p=0.03) gene expression at ZT14 compared to WT mice at ZT14. 

 

DISCUSSION 

These data indicate that APPSwe/PS1dE9 mice show locomotor hyperactivity, a finding consistent with a 

number of previous studies (23, 40-42).  This hyperactivity was manifest particularly at night as expected in 

nocturnal animals. The hyperactivity in APPSwe/PS1dE9 relative to WT controls was observed in both LD and 

free running (DD) conditions. 

A number of alterations in the circadian pattern of activity of APPSwe/Ps1dE9 mice were detected 

across several parameters of rhythmicity. Most notably, APPSwe/Ps1dE9 mice showed shorter period length, 

increased robustness, an earlier acrophase. When mice were switched from LD to DD conditions, the mean 

activity onset of WT mice was delayed by approximately 2.5 hours while in APPSwe/PS1dE9 mice it remained 

unchanged. There was also a delay in mean activity offset (approximately 4 hrs) observed in WT mice that is 

not observed in APPSwe/PS1dE9 mice.  The onset and offset of the active phase in nocturnal species are closely 

coincident with light onset and offset (32). When mice were switched from LD to DD conditions, WT mice 

showed a clear phase delay while APPSwe/PS1dE9 mice maintained their prior rhythm. This is possibly linked 

to the shorter period length in APPSwe/PS1dE9 mice. The period length for the APPSwe/PS1dE9 is 

approximately 0.1 - 0.15 hours shorter than that for the WT mice.  Therefore, after 25 days in DD, there is at 

least a 2.5 hour difference in the time of activity onset between the two groups.  Period length under constant 

environmental conditions (i.e., DD) is a fundamental parameter of the circadian timing system.  Because the 

APPSwe/PS1dE9 mice have a period that is closer to 24 hours, their rhythms remain closer to the original LD 
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cycle and clock-time than those of the WT mice (see Figure 4A for illustration).   These indices taken together 

suggest abnormality in the circadian timing system in APPSwe/PS1dE9 mice. Shorter period length is 

reminiscent of effects found in several studies showing that period length shortens with age in many animal 

species (43-45). This may be consistent with an accelerated aging effect in APPSwe/PS1dE9 mice. We did not 

however see the generalised fragmented circadian activity pattern frequently reported in studies in older mice 

e.g., (46). There are some studies both in humans and mice that report a lengthening of the circadian period with 

age (47). Methodological considerations have been highlighted as contributing to these variable findings 

including after-effects from the former LD conditions (46).  

Studies of patients with Alzheimer’s Disease suggest increased activity at the end of the active phase 

(48), however it is clear that there is large individual variation in this pattern.  In the present study while we 

found increased activity it is concentrated at the earlier rather than later part of the active phase. A shorter period 

length maybe a contributory factor to this effect. Clinical studies also show later acrophase in Alzheimer’s 

patients while these mice show earlier acrophase.  However direct transposition between behavioural endpoints 

in human clinical studies and those in mice must be drawn with caution. In patients the studies are necessarily 

carried out in LD conditions and there is considerable heterogeneity in age, diagnosis and sex. The present study 

was carried out in female mice only, while most patient studies include both sexes. One advantage of mouse 

models for examining questions abot circadian biology is that they can be carried out easily in free running 

conditions thereby assessing the endogenous free running rhythm. We have preliminary evidence from this 

study for a shortening of period length in DD conditions, which might suggest a potential mechanism to 

investigate in patient studies. For example further addressing the question of mechanism of circadian disruption 

in patients it would be of interest to investigate whether period length is shorter under LD conditions specifically 

in females.  

Robustness of the circadian rhythm was significantly altered in DD compared to LD, resulting in the 

mice having a less robust rhythm in DD. However, RI (rhythmicity index) was unchanged under DD conditions. 

Although robustness and RI both measure the presence and strength of the rhythm, they address different 

aspects. In robustness, a single cosine curve is fitted on to a mean of the days measured and gives the variance 

that can be accounted for by this curve.  In RI, an autocorrelation comparison of elements within a series (i.e. 

across days) is performed.  Thus, a high value of robustness refers to variance within the mean 24h period i.e. it 

is a smooth rhythm with minimal noise. APPSwe/PS1dE9 mice showed increased robustness of their activity 
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rhythm compared to WT but no differences in RI value, suggesting a smoother rhythm within 24h periods 

measured for APPSwe/PS1dE9 mice but similar consistency between genotypes across days. 

Abnormality of the circadian system at the behavioural level is potentially supported by gene 

expression studies. Increases in clock gene expression at night (ZT14) versus day (ZT2) were found in mice 

sacrificed under LD conditions in both the hippocampus and the medulla/pons regions in these mice. This 

increase extends previous studies conducted in the SCN region of this strain of mice (32), and further indicates 

that changes in clock gene expression can be detected in multiple brain regions.  

In APPSwe/PS1dE9 mice the ZT14 increase was blunted for Cry1 and Cry2 genes. Kume et al.,  (49) 

showed that mCRY1 and mCRY2 are potent inhibitors of CLOCK:BMAL1-mediated transcription. All of the 

four genes implicated in this loop of transcription regulation are differentially expressed in the medulla/pons at 

ZT14 in 2 months old APPSwe/PS1dE9 mice compared to WT mice at ZT14. Previous studies have shown that 

the medulla and pons play a critical role in promoting wakefulness (50, 51).  Patients with Alzheimer’s disease 

suffer from a disrupted sleep-wake cycle (6, 52, 53). It is possible that there is an association between these 

findings and the disrupted sleep-wake cycle observed in AD. Besides their role in directly inhibiting 

CLOCK:BMAL1-mediated transcription, (54), the mCRY proteins play a critical role in the translocation of 

mPER1 and mPER2 proteins from the cytoplasm to the nucleus (49).   

In terms of the general effect of time of day (TOD), our study demonstrates that there was an increase 

in expression of Per1, Per2 and Rev-erb in the hippocampus at ZT14 compared to ZT2.  We have also 

observed an increase in gene expression levels of Per1, Per2, Cry1 and Cry2 at ZT14 compared to ZT2 in the 

medulla/pons. Somewhat contrastingly, studies by (28) showed that peak expression of Per2 in the hippocampus 

was found between ZT23 and ZT2 while lowest expression was at ZT10. (12) showed that Per2 expression in 

the dentate gyrus, CA1 and CA3 sub-regions of the hippocampus peak at ZT22, ZT21.5 and ZT23.5 

respectively in rats. It is difficult to make direct comparisons as the rodent species, age, method of expression 

measurement, time-point and brain tissue sampling technique differs from the present study. The study by (32) 

found a significant upregulation of Per2 expression in the SCN at ZT10 compared to ZT2 in APPSwe/PS1dE9 

mice, which agrees with our findings in WT mice only. One crucial difference from the present study is a 

different background strain of mouse [c57BL/6 vs CD1/129]. Given that the WT expression patterns are similar 

between day and night between the studies, and differ in the effects of the transgene, epistatic effects of the 

transgene cannot be ruled out.  
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There was no effect of genotype on any of the clock genes investigated in the hippocampus. Similarly, 

(32) found that Per2 expression in the hippocampus, cingulate cortex and motor cortex were not significantly 

affected by  genotype or time of day. The overall expression level of clock genes relative to GAPDH was 

significantly lower in the hippocampus compared to the medulla/pons, which may have made it more difficult to 

detect changes, however we did show a clear day/night increase for Per1, Per2 and Rev-erb.  An increase in 

Per2 at night has recently been shown in a similar background strain and has been shown to be compromised by 

A31-35 peptide delivered directly into the hippocampus (55).  An increase in Rev-erb in the hippocampus at 

night replicates findings from (56) who showed this effect for both mRNA expression and protein levels in the 

hippocampus in WT mice of a similar background strain.  This suggests these are robust effects. One limitation 

of the dissection technique we used is that we do not differentiate subregions with differing projection regions 

and functions.  Thus, it is possible that while we could detect relatively large effects in the medulla/pons region, 

subtle effects in some hippocampal subregions or cell types in APPSwe/PS1dE9 might be more difficult to 

detect using this approach. One further limitation of the present study is that we were only able to assess two 

time points throughout the 24hr period. While we ensured to select points corresponding to the lowest and 

highest activity peaks, wider effects could be missed. Equally expression levels of different genes such as Clock 

and Bmal may have different rhythms in different tissues as has been suggested previously, the same time point 

may not  be appropriate for all genes measured (29, 57). In the light of these limitations, null results for any 

given gene or tissue in this study must be interpreted with caution. 

Many studies have shown day-night rhythmicity of clock genes. For e.g. Harbour et al.,  (12) analysing 

Per2 expression in 20 forebrain areas showed that peak expression of Per2 immunoreactive cells in the SCN 

occurred in the early part of the dark phase, at ZT 14.25. Using transgenic rats expressing the firefly luciferase 

gene under the control of the mouse Per1 promoter, (25) investigated the intrinsic rhythmicity of Per1 in isolated 

brain regions. 14 out of 27 Per1 expressing regions were found to be rhythmic.  Peak Per1 bioluminescence in 

the extra-SCN regions was in the dusk and at night while that in the SCN was in the day. This is consistent with 

our findings of a night-time increase although (25) failed to show intrinsic rhythmicity in the hippocampus, 

median (MR) and dorsal (DR) raphe, substantia nigra (SN) and ventral tegmental area (VTA) regions of the 

midbrain.  

Using siRNA-mediated gene dosage analysis, (58)  showed that expression of clock genes responds to 

genetic perturbations in a compensatory manner. For example, they found that Cry2 was upregulated 

proportionally when Cry1 was knocked down in a dose-dependent manner. Also, down regulation of Bmal1 by 
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siRNA revealed that its immediate downstream effector, Rev-erb, was also downregulated, subsequently 

increasing the expression of Per2.   It is likely that a disruption of clock gene expression rhythms in a specific 

brain region has a corresponding effect in the function of that region. For instance, in AD patients, there is a loss 

of diurnal rhythmic expression of hBmal1, hCry1 and hPer1 in the pineal gland (which secretes melatonin) of 

both preclinical (Braak stages I-II) and clinical AD subjects (Braak stages V-VI) (59). This loss of clock gene 

rhythmicity in the pineal gland is associated with a dramatic decrease in nocturnal melatonin concentrations as 

well as a loss of the circadian rhythm in melatonin production (60, 61).  

The APPSwe/PS1dE9 mice used in the present experiment were tested at 2 months of age. Typically 

these mice display Aβ deposition by 4 months with the appearance of plaques from 6 up to 12 months 

accompanied by concomitant increase of Aβ levels. Behavioural deficits such as memory deficits typically 

manifest at 5-6 months of age (35, 62, 63). This suggests that the effects we may not be consequent to amyloid 

plaques. One pathology that has been described for these mice at a similarly young age is abnormal long-term 

potentiation, a neuronal phenomenon proposed to be a synaptic index of learning (64) but not seen in all studies 

(65). Increased levels of oligomeric Aβ have been observed in young “pre-plaque” mice of a similar age 

(PND60), while neurogenesis in the dentate gyrus area of the hippocampus has been also been shown to be 

reduced in APPSwe/dE9 mice (65). Busche et al (66, 67) showed in an APP/PS1 AD mouse model that plaque 

formation is preceded by specific neural hyperactivity (in these experiments in the hippocampus) possibly via a 

soluble A mechanism. These changes may be of interest to explore in the context of the behavioural changes 

we report, as they are detectable at an age that has consistently been shown to be prior to plaque pathology or 

profound memory deficits. Our unpublished preliminary data for 9month APPSwe/PS1dE9 males suggest that 

the behavioural abnormalities we report here are also seen in males at an older age suggesting the effect persists 

beyond that at which amyloid plaque deposition occurs. 

The present study was carried out in female mice only. Whether these results generalise to young males remains 

to be investigated. Sex differences have been reported for APPSwe/dE9 mice in the amount of Aβ deposited 

though this has been measured at 4 months of age (68) or across a range of ages [2-5 months] (69). At 4 months 

of age, females show higher levels of Aβ40 and Aβ42 in the hippocampus (68). This might explain why we 

have been able to detect such early behavioural changes compared to prior studies that have used mixed sex 

cohorts.  

Our data taken together suggest that female APPSwe/PS1dE9 mice have early (2 months of age) 

circadian abnormalities in home-cage locomotor activity rhythms and blunted day to night increases in the clock 
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genes Cry1 and Cry2 in the medulla/pons. These findings merit further investigation in the context of 

understanding how AD pathology leads to gene expression and behavioural symptoms related to “sundowning”.  

 

 

Figure Legends 

Figure 1: Mean distance travelled over a 24 hour period in 2 month old female WT and APPSwe/PS1dE9 

(APPSwe) mice under (A) LD conditions (mean of 6 days) and (B) constant darkness (DD) conditions (mean of 

24 days). 

 

Figure 2: Effect of genotype on mean activity as a percentage of total activity during first 2 hrs in light phase 

(A), last 2 hrs in light phase (B) , first 2 hrs in dark phase (C) and last 2 hrs in dark phase (D) in a study of 2 

months old APPSwe mice under LD conditions.  There was a significant effect (p<0.05) of genotype on all four 

measures. 

 

Figure 3: Effect of genotype on (A) Robustness, (B) Rhythmicity index (C) Acrophase (D) relative amplitude 

(E) activity offset (F) activity duration in LD and DD conditions. * p<0.05 **p<0.01 ***P<0.001 versus wild-

type (WT) in same light condition. #p<0.05 ##p<0.01 ###p<0.001 ####p<0.0001 main effect of light condition 

i.e. Light-dark (LD) Vs constant darkness (DD). 

 

Figure 4: (A) Double –plotted actograms illustrating delay in onset of active phase in WT moved to DD but not 

in APPSwe/PS1dE9 mice (red lines indicate line fitting to activity onset). (B) mean period length (+/- standard 

error of the mean) in DD. 

 

Figure 5: Day(ZT2) /night (ZT14) expression of core clock genes in the hippocampus (A) and medulla/pons (B) 

WT/ZT2 (n=3), WT/ZT14 (n=3), APPSwe/PS1dE9/ZT2 (n=4), APPSwe/PS1dE9/ZT14 (n=4). Values shown 

are mean (biological replicates) ± S.E with WT/ZT 2 normalized to 100%. * indicates a significant overall effect 

of ZT (day Vs night) p< 0.05, ANOVA). #indicates a significant genotype X ZT interaction (p<0.05 ANOVA). 
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Figure 1: Mean distance travelled over a 24 hour period in 2 month old female WT and APPSwe/PS1dE9 
(APPSwe) mice under (A) LD conditions (mean of 6 days) and (B) constant darkness (DD) conditions (mean 

of 24 days).  
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Figure 2: Effect of genotype on mean activity as a percentage of total activity during first 2 hrs in light 
phase (A), last 2 hrs in light phase (B) , first 2 hrs in dark phase (C) and last 2 hrs in dark phase (D) in a 
study of 2 months old APPSwe mice under LD conditions.  There was a significant effect (p<0.05) of 

genotype on all four measures.  
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Figure 3: Effect of genotype on (A) Robustness, (B) Rhythmicity index (C) Acrophase (D) relative amplitude 
(E) activity offset (F) activity duration in LD and DD conditions. * p<0.05 **p<0.01 ***P<0.001 versus 
wild-type (WT) in same light condition. #p<0.05 ##p<0.01 ###p<0.001 ####p<0.0001 main effect of 

light condition i.e. Light-dark (LD) Vs constant darkness (DD).  
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Figure 4: (A) Double –plotted actograms illustrating delay in onset of active phase in WT moved to DD but 
not in APPSwe/PS1dE9 mice (red lines indicate line fitting to activity onset). (B) mean period length (+/- 

standard error of the mean) in DD.  
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Figure 5: Day(ZT2) /night (ZT14) expression of core clock genes in the hippocampus (A) and medulla/pons 
(B) WT/ZT2 (n=3), WT/ZT14 (n=3), APPSwe/PS1dE9/ZT2 (n=4), APPSwe/PS1dE9/ZT14 (n=4). Values 
shown are mean (biological replicates) ± S.E with WT/ZT 2 normalized to 100%. * indicates a significant 
overall effect of ZT (day Vs night) p< 0.05, ANOVA). #indicates a significant genotype X ZT interaction 

(p<0.05 ANOVA).  
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