5 research outputs found

    Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions, improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells

    Synthesis and in vitro phototoxicity of multifunctional Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin-coated gold nanoparticles assembled via axial coordination with imidazole ligands

    Get PDF
    Hypothesis Metalloporphyrins are extensively investigated for their ability to form reactive oxygen species and as potent photosensitisers for use in photodynamic therapy. However, their hydrophobicity generally causes solubility issues concerning in vivo delivery due to lack of distribution and low clearance from the body. Immobilising porphyrins on carriers, such as gold nanoparticles (GNP), can overcome some of these drawbacks. The mode of assembling the porphyrins to the carrier influences the properties of the resulting drug delivery systems. Experiments We describe the synthesis and characterisation of new porphyrin decorated water soluble GNP and we explore Zn-imidazole axial coordination as the mode of linking the porphyrin to the metallic core of the nanoparticles. Quantification of singlet oxygen production, toxicity in dark, cellular uptake by SK-BR-3 cells and phototoxicity have been assessed. Findings Axial coordination limits the number of porphyrins on the gold surface, reduces the formation of aggregates, and diminishes metal exchange in the porphyrin, all of which contribute to enhance the efficiency of singlet oxygen generation from the immobilised porphyrin. In vitro experiments on SK-BR-3 cells reveal a fast uptake followed by more than 80% cell death after irradiation with low doses of light

    Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer

    Get PDF
    Gold nanoparticles (AuNPs) have been extensively studied within biomedicine due to their biocompatibil- ity and low toxicity. In particular, AuNPs have been widely used to deliver photosensitiser agents for photodynamic therapy (PDT) of cancer. Here we review the state-of-the-art for the functionalisation of the gold nanoparticle surface with both photosensitisers and targeting ligands for the active targeting of cancer cell surface receptors. From the initial use of the AuNPs as a simple carrier of the photosensitiser for PDT, the field has significantly advanced to include: the use of PEGylated modification to provide aqueous compatibility and stealth properties for in vivo use; gold metal-surface enhanced singlet oxygen generation; functionalisation of the AuNP surface with biological ligands to specifically target over- expressed receptors on the surface of cancer cells and; the creation of nanorods and nanostars to enable combined PDT and photothermal therapies. These versatile AuNPs have significantly enhanced the efficacy of traditional photosensitisers for both in vitro and in vivo cancer therapy. From this review it is apparent that AuNPs have an important future in the treatment of cancer

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Implementing stakeholder engagement to explore alternative models of consent: An example from the PREP-IT trials

    No full text
    Introduction: Cluster randomized crossover trials are often faced with a dilemma when selecting an optimal model of consent, as the traditional model of obtaining informed consent from participant's before initiating any trial related activities may not be suitable. We describe our experience of engaging patient advisors to identify an optimal model of consent for the PREP-IT trials. This paper also examines surrogate measures of success for the selected model of consent. Methods: The PREP-IT program consists of two multi-center cluster randomized crossover trials that engaged patient advisors to determine an optimal model of consent. Patient advisors and stakeholders met regularly and reached consensus on decisions related to the trial design including the model for consent. Patient advisors provided valuable insight on how key decisions on trial design and conduct would be received by participants and the impact these decisions will have. Results: Patient advisors, together with stakeholders, reviewed the pros and cons and the requirements for the traditional model of consent, deferred consent, and waiver of consent. Collectively, they agreed upon a deferred consent model, in which patients may be approached for consent after their fracture surgery and prior to data collection. The consent rate in PREP-IT is 80.7%, and 0.67% of participants have withdrawn consent for participation. Discussion: Involvement of patient advisors in the development of an optimal model of consent has been successful. Engagement of patient advisors is recommended for other large trials where the traditional model of consent may not be optimal
    corecore