19 research outputs found

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    One hundred years of EEG for brain and behaviour research

    Get PDF
    On the centenary of the first human EEG recording, more than 500 experts reflect on the impact that this discovery has had on our understanding of the brain and behaviour. We document their priorities and call for collective action focusing on validity, democratization and responsibility to realize the potential of EEG in science and society over the next 100 years

    Risk Mapping of Influenza D Virus Occurrence in Ruminants and Swine in Togo Using a Spatial Multicriteria Decision Analysis Approach

    Get PDF
    Influenza D virus (IDV) has been identified in several continents, with serological evidence for the virus in Africa. In order to improve the sensitivity and cost–benefit of IDV surveillance in Togo, risk maps were drawn using a spatial multicriteria decision analysis (MCDA) and experts’ opinion to evaluate the relevance of sampling areas used so far. Areas at highest risk of IDV occurrence were the main cattle markets. The maps were evaluated with previous field surveillance data collected in Togo between 2017 and 2019: 1216 sera from cattle, small ruminants, and swine were screened for antibodies to IDV by hemagglutination inhibition (HI) assays. While further samples collections are needed to validate the maps, the risk maps resulting from the spatial MCDA approach generated here highlight several priority areas for IDV circulation assessment

    Toxoplasma gondii seroprevalence among pregnant women attending antenatal clinic in Northern Tanzania

    Get PDF
    Abstract Background Acute Toxoplasma gondii infection during pregnancy represents a risk for congenital disease, especially among women without previous exposure to infection. There is, however, a paucity of information about the epidemiology of T. gondii infection in pregnant women in Tanzania. This study aimed to determine the seroprevalence of T. gondii infection and associated demographic, clinical, and behavioral risk factors in pregnant women attending ante-natal clinic (ANC) at Kilimanjaro Christian Medical Center (KCMC), a referral medical center in Northern Tanzania. Methods A hospital-based cross-sectional study was carried out from 1 February to 30 April 2017. Data on maternal demographic characteristics, obstetric history, knowledge, and practices related to T. gondii infection were collected from 254 pregnant women attending antenatal care at KCMC. A sample of 4 mL of blood was collected from each participant and sera prepared from each sample. Serum samples were tested for the presence of specific T. gondii IgG and IgM antibodies by indirect Enzyme-Linked Immunosorbent Assay (ELISA). DNA was extracted from whole blood for polymerase chain reaction (PCR) testing, targeting the DNA sequence coding for the Internal Transcribed Spacer 1 (ITS1). Results The overall T. gondii seroprevalence, including both IgM- and IgG-positive individuals, was 44.5%. Of the 254 tested women, 102 and 23 were seropositive for T. gondii-specific IgG and IgM antibodies respectively and 113 individuals had antibodies of either or both classes. All IgM-positive samples were also tested by PCR, and all were negative. The majority (90%) of the women surveyed had never heard about toxoplasmosis. Consumption of raw vegetables [aOR = 0. 344; 95% CI 0.151–0.784; p = 0.011] and having regular contact with soil [aOR = 0.482; 95% CI 0.268–0.8681; p = 0.015] were both associated with T. gondii antibody status. Inverse relationships with probability of T. gondii exposure were observed, such that these practices were associated with reduced probability of antibody detection. Conclusion Based on serology results, we report widespread exposure to T. gondii infection among pregnant women attending ANC in KCMC. The complex interaction of risk factors for T. gondii infection needs to be studied in larger longitudinal studies

    Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans

    No full text
    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin
    corecore