34 research outputs found

    The need for a network to establish and validate predictive biomarkers in cancer immunotherapy.

    Get PDF
    Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, the entire medical oncology field has been revolutionized by the introduction of immune checkpoints inhibitors. Despite success in a variety of malignancies, responses typically only occur in a small percentage of patients for any given histology or treatment regimen. There are also concerns that immunotherapies are associated with immune-related toxicity as well as high costs. As such, identifying biomarkers to determine which patients are likely to derive clinical benefit from which immunotherapy and/or be susceptible to adverse side effects is a compelling clinical and social need. In addition, with several new immunotherapy agents in different phases of development, and approved therapeutics being tested in combination with a variety of different standard of care treatments, there is a requirement to stratify patients and select the most appropriate population in which to assess clinical efficacy. The opportunity to design parallel biomarkers studies that are integrated within key randomized clinical trials could be the ideal solution. Sample collection (fresh and/or archival tissue, PBMC, serum, plasma, stool, etc.) at specific points of treatment is important for evaluating possible biomarkers and studying the mechanisms of responsiveness, resistance, toxicity and relapse. This white paper proposes the creation of a network to facilitate the sharing and coordinating of samples from clinical trials to enable more in-depth analyses of correlative biomarkers than is currently possible and to assess the feasibilities, logistics, and collated interests. We propose a high standard of sample collection and storage as well as exchange of samples and knowledge through collaboration, and envisage how this could move forward using banked samples from completed studies together with prospective planning for ongoing and future clinical trials

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Get PDF
    Background: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non-oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non-OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    Future perspectives in melanoma research "Melanoma Bridge", Napoli, November 30th-3rd December 2016

    Get PDF
    Major advances have been made in the treatment of cancer with targeted therapy and immunotherapy; several FDA-approved agents with associated improvement of 1-year survival rates became available for stage IV melanoma patients. Before 2010, the 1-year survival were quite low, at 30%; in 2011, the rise to nearly 50% in the setting of treatment with Ipilimumab, and rise to 70% with BRAF inhibitor monotherapy in 2013 was observed. Even more impressive are 1-year survival rates considering combination strategies with both targeted therapy and immunotherapy, now exceeding 80%. Can we improve response rates even further, and bring these therapies to more patients? In fact, despite these advances, responses are heterogeneous and are not always durable. There is a critical need to better understand who will benefit from therapy, as well as proper timing, sequence and combination of different therapeutic agents. How can we better understand responses to therapy and optimize treatment regimens? The key to better understanding therapy and to optimizing responses is with insights gained from responses to targeted therapy and immunotherapy through translational research in human samples. Combination therapies including chemotherapy, radiotherapy, targeted therapy, electrochemotherapy with immunotherapy agents such as Immune Checkpoint Blockers are under investigation but there is much room for improvement. Adoptive T cell therapy including tumor infiltrating lymphocytes and chimeric antigen receptor modified T cells therapy is also efficacious in metastatic melanoma and outcome enhancement seem likely by improved homing capacity of chemokine receptor transduced T cells. Tumor infiltrating lymphocytes therapy is also efficacious in metastatic melanoma and outcome enhancement seem likely by improved homing capacity of chemokine receptor transduced T cells. Understanding the mechanisms behind the development of acquired resistance and tests for biomarkers for treatment decisions are also under study and will offer new opportunities for more efficient combination therapies. Knowledge of immunologic features of the tumor microenvironment associated with response and resistance will improve the identification of patients who will derive the most benefit from monotherapy and might reveal additional immunologic determinants that could be targeted in combination with checkpoint blockade. The future of advanced melanoma needs to involve education and trials, biobanks with a focus on primary tumors, bioinformatics and empowerment of patients and clinicians

    The need for a network to establish and validate predictive biomarkers in cancer immunotherapy

    No full text
    Abstract Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, the entire medical oncology field has been revolutionized by the introduction of immune checkpoints inhibitors. Despite success in a variety of malignancies, responses typically only occur in a small percentage of patients for any given histology or treatment regimen. There are also concerns that immunotherapies are associated with immune-related toxicity as well as high costs. As such, identifying biomarkers to determine which patients are likely to derive clinical benefit from which immunotherapy and/or be susceptible to adverse side effects is a compelling clinical and social need. In addition, with several new immunotherapy agents in different phases of development, and approved therapeutics being tested in combination with a variety of different standard of care treatments, there is a requirement to stratify patients and select the most appropriate population in which to assess clinical efficacy. The opportunity to design parallel biomarkers studies that are integrated within key randomized clinical trials could be the ideal solution. Sample collection (fresh and/or archival tissue, PBMC, serum, plasma, stool, etc.) at specific points of treatment is important for evaluating possible biomarkers and studying the mechanisms of responsiveness, resistance, toxicity and relapse. This white paper proposes the creation of a network to facilitate the sharing and coordinating of samples from clinical trials to enable more in-depth analyses of correlative biomarkers than is currently possible and to assess the feasibilities, logistics, and collated interests. We propose a high standard of sample collection and storage as well as exchange of samples and knowledge through collaboration, and envisage how this could move forward using banked samples from completed studies together with prospective planning for ongoing and future clinical trials

    MGMT promoter methylation in triple negative breast cancer of the GeparSixto trial

    No full text
    Triple-negative breast cancer (TNBC) is typically treated with chemotherapeutic agents, including carboplatin (Cb), an DNA platinating agent. The O6-methylguanine-DNA-methyltransferase gene (MGMT) encodes for the protein O6-alkylguanine-DNA-alkyltransferase (MGMT protein). MGMT protein is involved in DNA repair mechanisms to remove mutagenic and cytotoxic adducts from O6-guanine in DNA. In glioblastoma multiforme, MGMT methylation status is a predictive biomarker for increased response to temozolomide therapy. It has been suggested, that MGMT protein may have relevance for cellular adaptation and could have an influence on resistance to carboplatin therapy. We investigated the influence of MGMT promoter methylation on pathologic complete response and survival of patients with TNBC treated in the neoadjuvant GeparSixto trial. In 174 of 210 available TNBC tumors a valid MGMT promoter methylation status was determined by pyrosequencing of 5 CpG islands. In 21.8%, we detected a mean MGMT promoter methylation >10%. Overall, MGMT promoter methylation was not significantly associated with pathological complete response (pCR) rate. After stratification for the two therapy arms with and without Cb no statistically significant differences in therapy response rates between the two MGMT promoter methylation groups could be observed. Our results show that different MGMT promoter methylation status is not related to different chemotherapy response rates in the TNBC setting in GeparSixto
    corecore