1 Characterization of patients in the International Severe Asthma Registry with high steroid

2 exposure who did or did not initiate biologic therapy

3 Wenjia Chen, PhD¹; Mohsen Sadatsafavi, MD, PhD²; Trung N. Tran, MD, PhD³; Ruth B. Murray, PhD⁵; 4 Chong Boon Nigel Wong, B.Soc.Sci. (Hons)¹; Nasloon Ali, PhD^{4,5}; Cono Ariti, MSc^{4,5}; Esther Garcia Gil, 5 MD⁶; Anthony Newell, PhD^{4,7}; Marianna Alacqua, MD, PhD⁸; Mona Al-Ahmad, MD, FRCPC⁹; Alan Altraja, MD, PhD¹⁰; Riyad Al-Lehebi, MD, FRCPC^{11,12}; Mohit Bhutani, MD, FRCPC¹³; Leif Bjermer, MD, 6 7 PhD¹⁴; Anne Sofie Bjerrum, MD, PhD¹⁵; Arnaud Bourdin, MD, PhD¹⁶; Lakmini Bulathsinhala, MPH^{4,5}; Anna von Bülow, MD, PhD¹⁷; John Busby, PhD¹⁸; Giorgio Walter Canonica, MD^{19,20}; Victoria Carter, 8 9 BSc^{4,5}; George C. Christoff, MD, PhD, MPH²¹; Borja G. Cosio, MD, PhD²²; Richard W. Costello, MB, 10 MD, FRCPI²³; J. Mark FitzGerald, MD, FRCPC²⁴; João A. Fonseca, MD, PhD²⁵; Kwang Ha Yoo, MD, PhD²⁶; Liam G. Heaney, MD²⁷; Enrico Heffler, MD, PhD^{19,20}; Mark Hew, MBBS, PhD, FRACP^{28,29}; Ole 11 Hilberg, MD, DMSc³⁰; Flavia Hoyte, MD^{31,32}; Takashi Iwanaga, MD, PhD³³; David J. Jackson, MBBS, 12 MRCP (UK), PhD^{34,35}; Rupert C. Jones, MD³⁶; Mariko Siyue Koh, MBBS, MRCP (UK), FCCP^{37,38}; Piotr 13 Kuna, MD, PhD³⁹; Désirée Larenas-Linnemann, MD, FAAAAI, Dist.Intl.FACAAI⁴⁰; Sverre Lehmann, 14 MD, PhD⁴¹; Lauri A. Lehtimäki, MD, PhD^{42,43}; Juntao Lyu, PhD^{4,7}; Bassam Mahboub, MD^{44,45}; Jorge 15 16 Maspero, PhD^{46,47}; Andrew N. Menzies-Gow, PhD, FRCP⁴⁸; Concetta Sirena, PhD⁴⁹; Nikolaos G. 17 Papadopoulos, MD, PhD, FRCP^{50,51}; Andriana I. Papaioannou, MD, PhD⁵²; Luis Perez-de-Llano, MD, PhD^{53,54}; Diahn-Warng Perng, MD, PhD^{55,56}; Matthew Peters, MD, PhD⁵⁷; Paul E. Pfeffer MRCP(UK), 18 19 PhD^{58,59}; Celeste M. Porsbjerg, MD, PhD⁶⁰, Todor A. Popov, MD, PhD⁶¹; Chin Kook Rhee, MD, PhD⁶²; Sundeep Salvi, MD, PhD⁶³; Camille Taillé, MD, PhD⁶⁴; Christian Taube, MD⁶⁵; Carlos A. Torres-Duque, 20 MD⁶⁶; Charlotte S. Ulrik, MD, DMSc, FERS⁶⁷; Seung Won Ra, MD, PhD⁶⁸; Eileen Wang MD, MPH^{31,32}; 21 Michael E. Wechsler, MD⁶⁹; David B. Price, FRCGP^{4,5,70} 22

23 Authors Affiliations:

¹Saw Swee Hock School of Public Health, National University of Singapore, Singapore; ²Respiratory
Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia,
Vancouver, British Columbia, Canada; ³AstraZeneca, Gaithersburg, MD, USA; ⁴Observational and
Pragmatic Research Institute, Singapore, Singapore; ⁵Optimum Patient Care, Cambridge, UK;
⁶AstraZeneca, Barcelona, Spain; ⁷Optimum Patient Care, Queensland, VIC, Australia; ⁸AstraZeneca,
Cambridge, United Kingdom; ⁹Microbiology Department, Faculty of Medicine, Kuwait University, AlRashed Allergy Center, Ministry of Health, Kuwait; ¹⁰Department of Pulmonology, University of Tartu

31 and Lung Clinic, Tartu University Hospital, Tartu, Estonia; ¹¹Department of Pulmonology, King Fahad 32 Medical City, Riyadh, Saudi Arabia; ¹²College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; ¹³Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Western Canada, 33 34 Alberta, Canada; ¹⁴Department of Clinical Sciences, Respiratory Medicine and Allergology, Skåne 35 University Hospital, Lund University, Lund, Sweden; ¹⁵Department of Respiratory Medicine and Allergy, 36 Aarhus University Hospital, Jutland, Aarhus, Denmark; ¹⁶PhyMedExp, Univ Montpellier, CNRS, 37 INSERM, CHU Montpellier, Montpellier, France; ¹⁷Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark; ¹⁸Centre for Public Health, Queen's University Belfast, Belfast, 38 39 Northern Ireland; ¹⁹Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research 40 Center IRCCS, Rozzano, Milan, Italy; ²⁰Department of Biomedical Sciences, Humanitas University, 41 Pieve Emanuele, Milan, Italy; ²¹Medical University-Sofia, Faculty of Public Health, Sofia, Bulgaria; ²²Son Espases University Hospital-IdISBa-Ciberes, Mallorca, Spain; ²³Department of Respiratory Medicine, 42 43 Clinical Research Centre, Smurfit Building Beaumont Hospital, RCSI, Dublin, Ireland; ²⁴Department of 44 Medicine, The University of British Columbia, British Columbia, Vancouver, Canada; ²⁵Comunity Health, Information and Decision Sciences Department (MEDCIDS) & Center for Health Technology and 45 46 Services Research (CINTESIS), Faculty of Medicine of University of Porto, Porto, Portugal; ²⁶KonKuk 47 University School of Medicine in Seoul, Seoul, Korea; ²⁷Wellcome-Wolfson Centre for Experimental 48 Medicine, Queen's University Belfast, Belfast, Northern Ireland; ²⁸Allergy, Asthma & Clinical Immunology Service, Alfred Health, Melbourne, VIC, Australia; ²⁹Public Health and Preventive 49 50 Medicine, Monash University, Melbourne, VIC, Australia; ³⁰Medical department, Vejle University Hospital, Jutland, Vejle, Denmark; ³¹Department of Medicine, Division of Allergy and Clinical 51 Immunology, National Jewish Health, Denver, CO, USA; ³²Department of Internal Medicine, Division of 52 53 Allergy & Clinical Immunology, University of Colorado School of Medicine, Aurora, CO, USA; ³³Center for General Medical Education and Clinical Training, Kindai University Hospital, Osakasayama, Japan; 54 55 ³⁴UK Severe Asthma Network and National Registry, Guy's and St Thomas' NHS Trust, London, United Kingdom; ³⁵School of Immunology & Microbial Sciences, King's College London, London, UK; 56 57 ³⁶Research and Knowledge Exchange, Plymouth Marjon University, Plymouth, UK; ³⁷Respiratory & 58 Critical Care Medicine, Singapore General Hospital, Singapore; ³⁸SingHealth Duke-NUS Lung Centre, Singapore; ³⁹Division of Internal Medicine, Asthma and Allergy Medical University of Łódź, Łódź, 59 Poland; ⁴⁰Directora Centro de Excelencia en Asma y Alergia, Hospital Médica Sur, Ciudad de México, 60

61 Mexico; ⁴¹Section of Thoracic Medicine, Department of Clinical Science, University of Bergen, Bergen, 62 Norway; ⁴²Allergy Centre, Tampere University Hospital, Tampere, Finland; ⁴³Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; ⁴⁴College of Medicine, University of 63 64 Sharjah, Sharjah, United Arab Emirates; ⁴⁵Rashid Hospital, Dubai Health Authority, Dubai, United Arab 65 Emirates; ⁴⁶Clinical Research for Allergy and Respiratory Medicine, CIDEA Foundation, Buenos Aires, 66 Argentina; ⁴⁷University Career of Specialists in Allergy and Clinical Immunology at the Buenos Aires University School of Medicine, Buenos Aires, Argentina; ⁴⁸Royal Brompton & Harefield Hospitals, 67 68 London, UK; ⁴⁹Severe Asthma Network in Italy (SANI), Milano, Italy; ⁵⁰Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK; ⁵¹Allergy Department, 2nd Pediatric 69 70 Clinic, University of Athens, Athens, Greece; ⁵²2nd Respiratory Medicine Department, National and Kapodistrian University of Athens Medical School, Attikon University Hospital, Athens, Greece; 71 72 ⁵³Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo; ⁵⁴Biodiscovery 73 Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, 74 Spain; ⁵⁵Division of Clinical Respiratory Physiology Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan; ⁵⁶COPD Assembly of the Asian Pacific Society of Respirology; ⁵⁷Department 75 76 of Thoracic Medicine, Concord Hospital, Sydney, NSW, Australia; ⁵⁸Department of Respiratory 77 Medicine, Barts Health NHS Trust, London, UK; ⁵⁹Barts and the London School of Medicine and 78 Dentistry, Queen Mary University of London, London, UK; ⁶⁰Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark; ⁶¹University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria; 79 80 ⁶²Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's 81 Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; ⁶³Pulmocare Research and Education Foundation, Pune, India; ⁶⁴Department of Respiratory Diseases, Bichat 82 83 Hospital, AP-HP Nord-Université de Paris, Paris, France; ⁶⁵Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany; ⁶⁶CINEUMO, Respiratory Research 84 85 Center, Fundación Neumológica Colombiana, Bogotá, Colombia; ⁶⁷Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark; ⁶⁸Department of Internal 86 87 Medicine, Division of Pulmonology, Ulsan University Hospital, University of Ulsan College of Medicine, 88 Nam-gu, Ulsan, South Korea; ⁶⁹Department of Medicine, NJH Cohen Family Asthma Institute, National Jewish Health, Denver, CO, USA. ⁷⁰Centre of Academic Primary Care, Division of Applied Health 89 Sciences, University of Aberdeen, Aberdeen, United Kingdom. 90

- 91 Correspondence: Professor David B Price
- 92 Observational and Pragmatic Research Institute
- 93 22 Sin Ming Lane, #06 Midview City
- 94 Singapore 573969
- 95 Tel: +65 3105 1489
- 96 Email: dprice@opri.sg
- 97
- 98

99 Abstract

Background: Many severe asthma patients with high oral corticosteroid exposure (HOCS) often do not
 initiate biologics despite being eligible. This study aimed to compare the characteristics of severe
 asthma patients with HOCS who did and did not initiate biologics.

Methods: Baseline characteristics of patients with HOCS (long-term maintenance OCS therapy for at least 1 year, or ≥4 courses of steroid bursts in a year) from the International Severe Asthma Registry (ISAR; https://isaregistries.org/), who initiated or did not initiate biologics (anti-IgE, anti-IL5/5R or anti-IL4R), were described at the time of biologic initiation or registry enrolment. Statistical relationships were tested using Pearson's chi-squared tests for categorical variables, and t-tests for continuous variables, adjusting for potential errors in multiple comparisons.

109 Results: Between January 2015 and February 2021, we identified 1,412 adult patients with severe 110 asthma from 19 countries that met our inclusion criteria of HOCS, of whom 996 (70.5%) initiated a biologic and 416 (29.5%) did not. The frequency of biologic initiation varied across geographical regions. 111 112 Those who initiated a biologic were more likely to have higher blood eosinophil count (483 vs 399 113 cells/µL, p=0.003), serious infections (49.0% vs 13.3%, p<0.001), nasal polyps (35.2% vs 23.6%, 114 p<0.001), airflow limitation (56.8% vs 51.8%, p=0.013), and uncontrolled asthma (80.8% vs 73.2%, 115 p=0.004) despite greater conventional treatment adherence than those who did not start a biologic. 116 Both groups had similar annual asthma exacerbation rates in the previous 12 months (5.7 vs 5.3, 117 p=0.147).

118 **Conclusion:** Around one third of severe HOCS asthma patients did not receive biologics despite a 119 similar high burden of asthma exacerbations as those who initiated a biologic therapy. Other disease 120 characteristics such as eosinophilic phenotype, serious infectious events, nasal polyps, airflow limitation

121 and lack of asthma control appear to dictate biologic use.

122 Keywords: severe asthma, biologics, real-world, treatment pattern, patient characteristics

123 Word count: 289/350 words.

124

125

127 Introduction

128 A major burden of severe asthma (SA) is the ongoing risk of severe exacerbations defined (according 129 to the American Thoracic Society [ATS]/European Respiratory Society [ERS] Task Force) as a 130 worsening of asthma which require use of oral corticosteroid (OCS) for at least 3 days, hospitalization, 131 or emergency department (ED) visit.¹ The ongoing risk of recurrent severe exacerbations and other 132 chronic daily symptoms lead to substantially increased healthcare resource use and costs and impaired 133 quality of life^{2,3} due to both acute care as well as the onset of various OCS-related side-effects and 134 adverse outcomes.^{4,5} OCS are commonly prescribed to treat or reduce the risk of inflammatory flare-135 ups after an asthma exacerbation (episodic use) or when asthma is still uncontrolled despite standard 136 high-dose inhaled therapy (long-term maintenance use).⁶ In Europe, 14–44% of all asthma patients 137 studied used OCS, 6-9% were high OCS users (defined as OCS use of at least 450 mg prescribed in 138 3 months) at some point.⁷ In the United States, the prevalence of OCS use is even higher: 65% of SA 139 patients used OCS and 19% were classified as high OCS users, using the same definition.⁸ In particular, 140 long-term (maintenance) OCS is prevalent in approximately 20% to 60% of SA patients.⁹⁻¹¹

141

142 In previous studies, the available therapeutic monoclonal antibodies ("biologics", including omalizumab, 143 mepolizumab, reslizumab, benralizumab and dupilumab) were found to reduce exacerbation frequency 144 when used as add-on therapies to standard asthma therapies.¹² They can also improve asthma control 145 and lung function, and some (mepolizumab, reslizumab, benralizumab and dupilumab) have shown 146 OCS-sparing effects.^{12,13} In a preliminary study of a large international SA cohort,¹¹ we have previously 147 detected marked variability in the prescription criteria of biologics across country settings, assessed using the biologic accessibility score (BACS), a composite score incorporating 10 commonly used 148 149 biologic eligibility criteria.¹⁴ Referenced to European Medicines Agency marketing authorization 150 specifications, a higher score reflected easier biologic access. The study found that for omalizumab, 151 mepolizumab, benralizumab and dupilumab, only two, one, four and seven countries out of a total of 152 28, had equivalent or easier biologic access than that advocated by the EMA, and in all countries 153 reslizumab was more difficult to access when compared to EMA eligibility criteria.¹⁴ Biologic prescription 154 criteria are informed by the strict inclusion/exclusion criteria in randomized controlled trials (RCTs) that show higher efficacy among T2-high patients, as well as differences in national prescribing criteria and 155 156 reimbursement considerations. However, only about 10% of SA patients are eligible for enrollment in

the phase III trials, with a significant number of patients being excluded because of stipulations for airflow limitation, bronchodilator reversibility and smoking history.¹⁵ For this reason, it is important to characterize SA patients with high oral corticosteroid exposure (HOCS) who were stepped up to a biologic therapy in real world settings. Precise profiling of these patients versus those who were not initiated on biologics will provide insight into this important segment of SA patients, enabling subsequent investigation into the real-world effects and cost-effectiveness of biologics in patients with HOCS.

163

Based on a large international cohort of SA patients with HOCS exposure, this study aims to identify the demographic and clinical features, including medication usage and co-morbidities, that are associated with those who were initiated on biologic therapy, compared to those who were not.

168 Materials and methods

169 Study Design and Data Source

International Severe Asthma Registry (ISAR; http://isaregistries.org/), the largest adult SA registry in 170 171 the world, and which is continually expanding, comprises de-identified, patient-level, longitudinal, real-172 life, standardized data from existing and newly created SA registries of 29 countries for over 10,000 173 patients.¹⁶⁻¹⁹ For this study in particular, ISAR initially collected data for 5,379 patients, using a core set 174 of variables, from 19 countries (Argentina, Australia, Bulgaria, Canada, Colombia, Denmark, Greece, 175 India, Ireland, Italy, Japan, Kuwait, Mexico, Saudi Arabia, South Korea, Spain, Taiwan, United Arab 176 Emirates and the United Kingdom) between January 2015 and February 2021.¹⁸ The ISAR database 177 has ethical approval from the Anonymised Data Ethics Protocols and Transparency (ADEPT) committee (ADEPT0218). This study was designed, implemented, and reported in compliance with the 178 179 European Network Centres for Pharmacoepidemiology and Pharmacovigilance Code of Conduct (EMA 180 2014; EUPAS33582) and with all applicable local and international laws and regulations.

181

182 Study Cohort

183 This study included patients aged 18 years or older at enrolment and who have SA (i.e. receiving 184 treatment at GINA 2018 Step 5 or with uncontrolled asthma at GINA Step 4).²⁰ A summary of how each 185 registry diagnoses asthma and categorizes SA is provided in **Supplementary Table 1.** In addition, 186 patients in the study cohort were also required to have a history of HOCS exposure use for at least 12 187 months prior to the index date, defined as either having long-term (maintenance) use of OCS for at 188 least 12 months prior, or using 4 or more courses of rescue steroid bursts for a 12-month period at 189 baseline; a more strict definition than used in previous studies.^{7,8} Patients who had received bronchial 190 thermoplasty, any prior history of biologic use, or who had inadequate background data at the date of 191 initiation, were excluded from the analysis.

The index date was defined as the date of biologic initiation for the *Biologic Initiated* group, assigned for those who received biologics (hereafter referred to as biologic initiators), and the date of ISAR enrolment for the *Biologic not Initiated group* (hereafter referred to as biologic non-initiators), assigned for those who never received biologics. The baseline period covers the 12 months prior to index date.

198 Study Variables

199 Variables of interest included demographic variables (e.g., age, age of asthma onset, gender, ethnicity, 200 body mass index), smoking history, asthma duration, frequency of exacerbation, severity of 201 exacerbation, asthma control status, positive testing for allergen tests, co-morbidities (OCS related and 202 un-related), healthcare resource utilization (HCRU), biomarker concentrations (fractional exhaled nitric 203 oxide [FeNO], total and specific serum IgE, and blood eosinophil count [BEC]), lung function, and 204 treatment regimen. In addition, patients were also classified into different grades of eosinophilic 205 phenotype likelihood, following a predefined eosinophilic asthma phenotype algorithm, based on 206 highest BEC, long-term maintenance OCS use, elevated FeNO, presence of nasal polyps, and adult-207 onset of asthma.²¹ A full description of variables collected is provided in Supplementary Table 2 and 208 Supplementary Table 3. We also calculated the Biologic Accessibility Score (BACS) for different 209 groups of biologics associated with each country, which incorporates ten access prescription criteria, 210 reflecting that country's criteria to prescribe a particular biologic, and the "ease" of receiving the various 211 biologics in asthma. A full description of the BACS index scores and the prescription criteria components are provided in **Supplementary Table 4.14** Range of exacerbation counts is provided by counter in 212 213 Supplementary Table 5.

214

215 Statistical Analyses

216 Descriptive statistics were computed for all demographic and clinical characteristics at baseline, based 217 on whether they were continuous variables or categorical measures, as appropriate. These statistics 218 were reported separately for those who did and did not initiate biologic therapy. Statistical relationships 219 were tested using Pearson's chi-squared tests for categorical variables, and t-tests for continuous 220 variables. To account for potential errors in multiple comparisons, we applied the robust Benjamini -Hochberg (B-H) procedure,²² which calculated the critical p-value for significance in multiple testing, 221 222 accepting up to 10% of false discovery rate. Statistical significance was defined as a p-value lower than 223 the B-H critical p-value for multiple comparisons. Stata version 17 (College Station, TX, USA) was used 224 to conduct all statistical analyses.

226 **Results**

227 Study Cohorts

Among 5,379 prospective adult patients with SA from the 19 ISAR participating countries, 1,412 were HOCS patients who met the inclusion criteria, as shown in **Figure 1**. Of these, 996 (70.5%) initiated biologics and 416 (29.5%) did not. Of the biologic therapies, mepolizumab made up the majority (n=604, 62.7%; first available since 2015), followed by omalizumab (n=260; 27.0%; since 2003). A relatively smaller proportion of patients initiated benralizumab (n=82; 8.5%; since 2017), reslizumab (n=12, 1.2%; since 2016), or dupilumab (n=6; 0.6%; since 2016).

234 Geographic Distribution

Geographical variation in the initiation of biologics was noted (Figure 2). However, there was no clear
 relationship between the proportion of patients who initiated biologics and the country-specific BACS
 scores.

238 <u>Demographic Characteristics (Table 1)</u>

Mean age and BMI were similar across biologic initiated and non-initiated groups (age, 51.7 vs 53.2 years, p=0.08; BMI, 29.3 vs 29.7 kg/m², p=0.28). However, compared to those who did not initiate biologics, biologic initiators were more likely to be Caucasian (77.7% vs 65.1%, p<0.001).

242 <u>Clinical Characteristics (Table 2 and Figure 3)</u>

Asthma status: Biologic initiators were comparable to non-initiators with regard to age of onset of asthma (year, 27.9 vs 29.5, p=0.15), duration of asthma (year, 23.7 vs 23.8, p=0.91), and number of asthma exacerbations over the past year (5.7 vs 5.3, p=0.15). However, patients who initiated biologics were more likely to have uncontrolled asthma (80.8% vs 73.2%, p=0.004) as defined by either GINA criteria, Asthma Control Questionnaire or Asthma Control Test, as well as better treatment adherence as defined by a mix of setting-specific methods (88.7% vs 76.2%, p<0.001), compared to those who did not initiate biologics.

Lung function: Patients who initiated biologics had similar post-bronchodilator FEV₁ as a percentage of predicted FEV₁ (73.1% vs 72.7%, p=0.85), and a modestly greater degree of airflow limitation according

to the proportion with a FEV₁/FVC ratio of less than 0.7 (56.8% vs 51.8%, p=0.013), compared to noninitiators.

Eosinophilic asthma: Patients who initiated biologics also had a higher mean BEC (483/µL vs 399/µL, p=0.003), slightly higher FeNO concentrations (25-50 ppb, 31.4% vs 24.3%; >50 ppb, 39.4% vs 35.8%, p=0.010), and were more likely to be of ISAR Grade 3 eosinophilic phenotype (90.8% vs 68.0%, p<0.001), compared to non-initiators. Of note, there were fewer biologic initiators with low T2 biomarkers compared to non-initiators (8.7% vs 16.4%, p=0.003), defined as BEC <150/µL and FeNO<25ppb. However, the proportion of high T2 biomarkers were similar between biologic initiators and non-initiators (42.3% vs 41.0%, p=0.742), defined as BEC ≥300/µL and FeNO≥30 ppb.

<u>Allergic asthma:</u> Similar proportions of patients tested positive for skin prick allergen tests (32.9% vs
 29.1%, p=0.20), but more biologic initiators had a positive serum allergen test (42.8% vs 32.9%,
 p=0.002) compared to non-initiators.

264 Current medication and comorbidities: The distribution of ICS/LABA add-on therapies and most co-265 morbidities were similar across groups. However, patients who initiated biologics were less likely to 266 have osteoporosis (11.0% vs 17.1%, p=0.009), allergic rhinitis (31.4% vs 40.4%, p=0.001), cancer (2.0% vs 6.5%, p=0.005), and anaphylaxis (0.5% vs 2.5%, p=0.030), compared to non-initiators. On the 267 268 other hand, biologic initiators were more likely to have a serious infection, defined as an infection that 269 required hospitalization, invasive or non-invasive ventilation, IV antibiotics, or that resulted in a fatal 270 outcome (49.0% vs 13.3%, p<0.001), and were also more likely to have nasal polyps (35.2% vs 23.6%, 271 p<0.001).

Health services use in the past year: Both biologic initiators and non-initiators had similar proportions of patients with hospital admissions (28.7% vs 31.5%, p=0.30) and ICU admissions involving use of invasive ventilations (6.9% vs 6.5%, p=0.77). Although biologic initiators tended to have a lower proportion of patients with emergency department visits (32.2% vs 37.7%), the difference did not reach significance after the B-H adjustment for multiple comparison errors (p-value of 0.046 > B-H significance threshold of 0.038).

279 Discussion

280 In the ISAR cohort, the initiation of biologic therapies varied across countries. Nearly one third of SA patients with HOCS did not receive biologics, but these patients had similarly high frequencies of 281 asthma exacerbation and HCRU as biologic initiators, suggesting that exacerbation history was not 282 283 driving biologic prescription even though it is an important prescription criterion in many countries.¹⁴ On 284 the other hand, eosinophilic asthma defined in terms of elevated biomarkers for airway inflammation 285 (e.g., BEC, nasal polyps), uncontrolled asthma despite treatment adherence, and airway limitation, as 286 well as other co-morbidities that often accompany severe disease such as the occurrence of serious 287 infection, appeared to be potential decision determinants for biologic initiation. The use of both endotype 288 and phenotype biomarkers to direct biologic prescription decisions is in line with a precision medicine-289 based approach, and the 2021 GINA strategy recommendations.²³

290 The decision to initiate biologics exhibited a clear geographic pattern. For instance, SA patients with 291 HOCS in UK, Denmark, Italy and Kuwait were more likely to initiate biologics than not. This pattern was 292 related to country-income level (E.g., East Asia versus Middle East and developed countries versus 293 low-to-middle income countries). Others have found that higher income level and better insurance coverage are associated with biologic initiation.²⁴ There was also noticeable inconsistency between the 294 295 initiation of biologics and country-specific biologic accessibility, suggesting that prescription criteria, and 296 by extension, biologic accessibility, were not the sole determinants for biologic initiation in certain 297 countries. Moreover, as a number of biologics only became available in 2015 and 2016, and our data 298 were retrieved from 2015 to 2021, the lack of biologic availability may have hindered biologic initiation 299 in some countries.

Our finding that a considerable portion (29%) of SA patients with HOCS did not receive biologics was in agreement with a recent ISAR publication, which showed that 51.1% of patients with SA (but not necessarily HOCS) received regular intermittent OCS, whereas only 25.4% were on biologics.¹¹ Although long-term OCS use is associated with numerous adverse health outcomes,^{4,5} greatly increased healthcare costs and impaired quality of life,^{2,3} biologics such as mepolizumab, benralizumab and dupilumab have demonstrated steroid sparing effect in large clinical trials.²⁵⁻²⁷ Considering the further benefits of biologics in reducing the burden of asthma exacerbations, our finding highlights the need to weigh up the potential harms of long-term OCS use with the benefits of biologics whenconsidering the treatment of severe asthma.

309 Interestingly, exacerbation frequency and HCRU did not appear to increase the likelihood of biologic 310 initiation in our cohort of SA patients; a surprising finding when bearing in mind that these patients in 311 both groups were on HOCS but still experienced on average more than 5 exacerbations in the prior 312 year, and that a history of exacerbation is a prerequisite of biologic use according to both biologic 313 indications and country-specific eligibility criteria.¹⁴ A recent international study by Porsbjerg and 314 colleagues found that approximately half of the 28 countries included required two or more severe 315 exacerbations in the previous year (i.e., exacerbations that require treatment with OCS or led to ED visit and/or hospitalization) for a biologic prescription.¹⁴ Indeed, 'frequent exacerbators' are increasingly 316 317 recognized as an important subgroup for targeted therapy, because these patients account for a 318 disproportionately high proportion of the total asthma exacerbation burden, with frequent exacerbations 319 associated with greatly increased risk of adverse health events and compromised quality of life.13 320 Recent studies have found that 'frequent exacerbators' have the most room for improvement²⁸⁻³⁰ and 321 so should be particularly considered for biologics.¹³

322 Over 40% of SA HOCS patients were with high T2 biomarkers regardless of whether a biologic was 323 initiated. Nonetheless, our study further showed that the initiation of biologic therapy was more likely in 324 those with greater degree of eosinophilic asthma (indicated by higher baseline BEC and greater 325 prevalence of nasal polyps in the biologic initiator group), which was in agreement with recent studies 326 from both the US²⁴ and UK³¹. Use of BEC as a criterion for biologic initiation aligns with country-specific 327 biologic eligibility criteria,¹⁴ and is likely informed by the positive correlation between higher BEC and better biologic response.³² Similarly, the greater likelihood of biologic initiation in patients with nasal 328 329 polyps is likely due to the greater exacerbation frequency seen in SA patients with nasal polyps, more OCS bursts, a greater reduction of exacerbation burden on biologics in these patients,³³ and the fact 330 331 that omalizumab, mepolizumab and dupilumab are also indicated for the treatment of nasal polyps.³⁴ 332 In addition, the much higher frequency of severe infectious events in biologic initiators might be another trigger for physicians to initiate biologics,³⁵ because viral respiratory infections are a major cause of 333 334 asthma exacerbations.36

335 We found no significant difference between biologic initiators and non-initiators with regard to asthma 336 therapy at baseline. Although patients who initiated biologics were more likely to be fully adherent to their treatment regimen compared to those who did not initiate biologics, they were also more likely to 337 338 have uncontrolled asthma. A recent ISAR study on global biologic accessibility found that between 43% 339 to 60% of countries surveyed did not require or had not decided on adherence as a criterion for biologic 340 eligibility.¹⁴ However, a large systematic review reported that nearly 70% of mepolizumab users with 341 SA have good ICS adherence before and on mepolizumab, while good ICS adherence is associated with greater reductions in OCS dose and exacerbations.³⁷ On the contrary, low adherence to OCS was 342 reported in roughly 40% of SA patients in the U-BIOPRED cohort.³⁸ Of note, treatment adherence was 343 344 defined by prescription records and clinical impressions, which varied by settings of ISAR cohort. 345 Regardless of subjective or objective measures, the findings that biologic initiators have more 346 uncontrolled asthma and mostly full treatment adherence to ICS was in line with GINA 347 recommendations.23

348 This study has several limitations. First, given its observational nature, recall bias was almost inevitable. 349 Second, other factors such as biologic affordability, insurance coverage administrative burdens, and 350 government reimbursement criteria (all of which are country specific) likely influenced the decision to 351 initiate biologics. Future research to investigate physician reasons to prescribe and not prescribe 352 biologics is warranted. In addition, there was also potential for confounding by country (e.g., the UK 353 was over-represented in the biologic initiator group which may have skewed findings) and, like with 354 other registries, patients may not have been truly representative of the real-life asthma population (albeit 355 more representative than RCT populations). Notwithstanding these limitations, we are confident of the 356 representativeness of the ISAR population as the vast majority of severe asthma patients included in 357 all asthma specialist centres elected to participate in ISAR, or else data were collected directly from 358 EMR embedded registries. A major strength of this study is its size, including a more heterogenous 359 population than that included in randomized controlled trials, with greater generalizability to real life. 360 The global coverage of ISAR, including standardized data from 19 countries, enabled us to explore the 361 clinical characteristics driving initiation of biologics in everyday clinical practice. Our study cohort 362 possessed an extensive collection of clinical information, social and health determinants, enabling a 363 thorough investigation of patient characteristics and a longitudinal follow-up for risk prediction modelling 364 and/or comparative effectiveness study of biologic initiation.

365

366 Conclusions

Eosinophilic phenotype, serious infectious events, nasal polyps, airflow limitation and inadequate 367 368 asthma control appear to encourage physicians to prescribe biologic therapy for SA patients with HOCS 369 in real life. On the other hand, one third of severe HOCS asthma patients did not receive biologics 370 despite similar exacerbation frequency and HCRU as those who initiated a biologic therapy. These 371 findings suggest the need to consider multiple characteristics to guide the initiation of biologics in SA patients, which will optimize efficiency and cost-effectiveness.³⁹⁻⁴¹ Future research should include a 372 rigorous method to ensure comparability of the treatment arms, such as propensity scores, to assess 373 374 the real-world effectiveness of biologics over time in SA patients with HOCS. In addition, we need to 375 develop an individualized treatment algorithm to guide the initiation of biologics. The ISAR cohort could 376 be suitable for both of these studies.

377

378 Ethics Approval

379 This study was designed, implemented, and reported in compliance with the European Network Centres 380 for Pharmacoepidemiology and Pharmacovigilance Code of Conduct (EMA 2014; EUPAS33582) and 381 with all applicable local and international laws and regulation. Registration of the ISAR database with 382 the European Union Electronic Register of Post-Authorization studies was also undertaken 383 (ENCEPP/DSPP/23720). ISAR has ethical approval from the Anonymised Data Ethics Protocols and 384 Transparency (ADEPT) committee (ADEPT0218). Governance was provided by The Anonymous Data 385 Ethics Protocols and Transparency (ADEPT) committee (registration number: ADEPT0420). All data 386 collection sites in the International Severe Asthma Registry (ISAR) have obtained regulatory agreement 387 in compliance with specific data transfer laws, country-specific legislation, and relevant ethical boards 388 and organizations.

389

390 Acknowledgements

The authors would like to acknowledge Dr. James Zangrilli and Dr. Alex de Giorgio-Miller for their instrumental contributions to the study concept, Mr. Joash Tan (BSc, Hons) of the Observational and Pragmatic Research Institute (OPRI), for editorial and formatting assistance that supported the development of this publication.

396 The authors also thank the investigators and participating sites in ISAR for making this research

- 397 possible.
- 398 ISAR Participating Sites:

3 99 •	Argent	ina
400	0	Fundacion CIDEA
401	0	Fernandez Hospital Buenos Aires
402	0	Investigaciones en Patologias Respiratorias
403 •	Austra	ia
404	0	Austin Hospital, VIC
405	0	Campbelltown Hospital, NSW
406	0	Concord Hospital, NSW
407	0	Fiona Stanley Hospital, WA
408	0	Flinders Medical Centre, SA
409	0	Frankston Hospital, VIC
410	0	John Hunter Hospital, NSW
411	0	Monash Health, VIC
412	0	Princess Alexandra Hospital, QLD
413	0	Royal Adelaide Hospital, SA
414	0	Royal Prince Alfred Hospital, NSW
415	0	St George Specialist Centre, NSW
416	0	St Vincent Clinic, NSW
417	0	The Alfred Hospital, VIC
418	0	The Prince Charles Hospital, QLD
419	0	Western Health, Footscray, VIC
420	0	Woolcock Institute of Medical Research, NSW
421 •	Bulgari	a
422	0	Cvetanka Odjakova, Varna
423	0	Darina Dimova , Plovdiv
424	0	Diana Hristova , Sofia
425	0	Eleonora Stamenova, Sofia

426		0	Katya Noleva, Pazardzhik
427		0	Violina Vasileva , Dupnica
428	•	Canada	a
429		0	University of British Columbia- Vancouver Coastal Health
430		0	University of British Columbia- Providence Health Care
431		0	University of Alberta
432		0	Toronto Western Hospital
433		0	University Institute of Cardiology and Respirology of Quebec
434	•	Colomb	ia
435		0	Fundacion Neumologica Colombiana, Bogotá
436		0	Institituto Neumológico del Oriente, Bucaramanga
437		0	Hospital Universitario San Ignacio, Bogotá
438	•	Denma	rk
439		0	Bispebjerg University Hospital
440		0	Aarhus University Hospital
441		0	Gentofte University Hospital
442		0	Hvidovre University Hospital
443		0	Naestved University Hospital
444		0	Odense University Hospital
445		0	Roskilde University Hospital
446		0	Vejle Hospital
447	•	Greece	
448		0	Attikon University Hospital, Chaidari
449		0	University Hospital of Ioannina, Ioánnina
450	•	India	
451		0	Fortis Hospital, Kolkatta
452		0	West Bengal, D. Y. Patil hospital, Navi Mumbai, Maharashtra
453	•	Ireland	
454		0	Royal College of Surgeons
455	•	Italy	

- 456 o Personalized Medicine, Asthma & Allergy, Humanitas Clinical and Research Center,
 457 IRCCS, Rozzano, MI
- 458 o UOC Allergology Department, Piacenza
- 459 o Department of Experimental and Clinical Biomedical Sciences "Mario Serio",
 460 Respiratory Unit, Careggi University Hospital, Florence
- 461 o Departmental Unit of Allergology and Pneumology, Hospital Institute Fondazione
 462 Poliambulanza, Brescia
- 463 o Department of Internal Medicine, Clinical Immunology, Clinical Pathology and
 464 Infectious Diseases, Azienda Ospedaliera Universitaria Federico II, Naples
- 465 o Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital,
 466 Orbassano, Turin
- 467 o Department of Clinical and Biomedical Sciences, University of Milan, Respiratory
 468 Diseases, Sacco University Hospital, ASST Fatebenefratelli-Sacco, Milan
- 469 o Pneumology Unit, Santa Maria Nuova Hospital, Azienda USL di Reggio Emilia IRCCS
- 470 o Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele
 471 Scientific Institute, Milan
- 472 o Division of Respiratory Diseases, Department of Promoting Health, Maternal-Infant.
 473 Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro,
 474 University of Palermo, Palermo
- 475 o Allergy and Clinical Immunology Unit, Department of Medicine, "Carlo Poma" Hospital,
 476 Mantova
- 477 o Respiratory Medicine, Department of Medical Sciences, University of Turin
- 478 o Respiratory Unit and Adult Cystic Fibrosis Center, And Department of Pathophysiology
 479 and Transplantation, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico,
 480 University of Milan
- 481 o Department of Medicine and Surgery, University of Parma
- 482 Division of Allergy and Clinical Immunology, University of Salerno, Fisciano
- 483 o Respiratory Department, Division of Respiratory Diseases "Federico II" University, AO
 484 Dei Colli, Naples
- 485 o Allergy and Clinical Immunology, University of Turin & AO Mauriziano, Turin

486	0	Division of Pneumology and Allergology, Policlinico, University of Catania
487	0	Allergy Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome
488	0	Department of Medicine, Allergy Unit Asthma Center, University of Verona
489	0	Department of Translational Medical Sciences, University of Campania "L. Vanvitelli",
490		Naples
491	0	Department of Clinical and Experimental Sciences, University of Brescia, Spedali Civili,
492		Brescia
493	0	Department of Emergency and Organ Transplantation, School and Chair of Allergology
494		and Clinical Immunology, University of Bari Aldo Moro, Bari
495	0	Fondazione Policlinico Universitario A. Gemelli, IRCCS Catholic University of Rome
496	0	Department of Pharmacology, Faculty of Medicine Catholic, University of the Sacred
497		Heart Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
498	0	Division of Respiratory Diseases, IRCCS Policlinico San Matteo, Foundation and
499		Department of Internal Medicine and Therapeutics, University of Pavia
500	0	University of Insubria, ICS Maugeri, IRCCS, Varese
501	0	Section of Respiratory Diseases, Medical and Surgical Sciences Department,
502		University of Foggia
503	0	Department of Medical and Surgical Sciences, Section of Respiratory Diseases,
504		University Magna Graecia, Catanzaro
505	0	Department of Surgery, Medicine, Molecular Biology and Critical Care, University of
506		Pisa
507	• Japan	
508	0	Hiroshima Allergy and Respiratory Clinic
509	0	Kindai University Hospital
510	0	Idaimae Minamiyojo Clinic
511	0	National Mie Hospital
512	0	Kobe University Hospital
513	0	Kyoto University Hospital
514	0	Mie University Hospital
515	0	Sagamihara National Hospital

516		0	Kochi Medical School Hospital
517		0	Nagoya City University Hospital
518		0	Dokkyo Medical University Hospital
519		0	Iwasaki Clinic
520		0	Kinki Hokuriku Airway disease Conference
521	•	Kuwait	
522		0	Kuwait University, Faculty of Medicine
523		0	Al-Rashed Allergy center, Ministry of Health, Kuwait
524		0	The Kuwait Foundation for the Advancement of Sciences
525	•	Mexico	
526		0	Hospital Médica Sur, Mexico City
527		0	Centro de Atención de Enfermedades Cardiopulmonares, Guadalajara
528		0	ISSSTE Hospital Regional Lic. Adolfo López Mateos, Mexico City
529	•	South k	Korea
530		0	Seoul St. Mary's Hospital
531		0	Konkuk University Hospital
532		0	Yeouido St. Mary's Hospital
533		0	Ulsan University Hospital
534		0	Haeundae Paik Hospital
535		0	Hallym University Chuncheon Sacred Heart Hospital
536		0	Hanyang University Hospital
537		0	Hallym University Kangdong Sacred Heart Hospital
538	•	Saudi A	vrabia
539		0	King Fahad Medical City, Riyadh
540		0	King Abdul Aziz University, Jeddah
541	•	Spain	
542		0	Hospital Lucus Augusti. Lugo. EOXI Lugo, Cervo e Monforte
543		0	Hospital Universitario Son Espases, Palma de Mallorca
544		0	Hospital Universitario de Cruces. Barakaldo, Bizkaia
545		0	Hospital Sta Creu i Sant Pau. Barcelona

546	 University Hospital San Agustín. Avilés 				
547	 Hospital Bellvitge. Barcelona 				
548	 Hospital 12 de Octubre. Madrid 				
549	• Taiwan				
550	 Taipei Veterans General Hospital 				
551	 Taipei Medical University, Shuang Ho Hospital 				
552	 China Medical University Hospital 				
553	 Kaohsiung Medical University Hospital 				
554	United Arab Emirates				
555	 Rashid Hospital, Dubai 				
556	• UK				
557	 Belfast Health & Social Care Trust 				
558	 Royal Brompton and Harefield Hospitals, London 				
559	 Guy's and St Thomas' NHS Foundation Trust 				
560	 Barts Health NHS Trust 				
561					
562	Funding				
563	This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and				
564	was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. No funding was received				
565	by the Observational & Pragmatic Research Institute Pte Ltd (OPRI) for its contribution.				
566	Disclosure				
567	Wenjia Chen declares no relevant conflicts of interest.				
568	Mohsen Sadatsafavi has received honoraria from AZ, BI, and GSK for purposes unrelated to the				
569	content of this manuscript and has received research funding from AZ and BI directly into his research				
570	account from AZ for unrelated projects.				
571	Trung N. Tran is an employee of AstraZeneca. AstraZeneca is a co-funder of the International Severe				
572	Asthma Registry.				
573	Ruth B. Murray declares no relevant conflicts of interest.				
574	Nigel Chong Boon Wong declares no relevant conflicts of interest.				

575 Nasloon Ali was an employee of Observational and Pragmatic Research Institute (OPRI) at the time
576 this research was conducted. OPRI conducted this study in collaboration with Optimum Patient Care
577 and AstraZeneca.

578 **Con Ariti** is an employee of the Observational and Pragmatic Research Institute (OPRI). OPRI 579 conducted this study in collaboration with Optimum Patient Care and AstraZeneca.

580 Esther Garcia Gil was an employee of AstraZeneca at the time this research was conducted.
581 AstraZeneca is a co-funder of the International Severe Asthma Registry.

582 **Anthony Newell** was an employee of Optimum Patient Care (OPC) at the time this research was 583 conducted. OPC is a co-funder of the International Severe Asthma Registry.

584 Marianna Alacqua was an employee of AstraZeneca at the time this research was conducted.

585 AstraZeneca is a co-funder of the International Severe Asthma Registry.

586 Mona Al-Ahmad has received advisory board and speaker fees from AstraZeneca, Sanofi, Novartis,
587 and GlaxoSmithKline.

Alan Altraja has received lecture fees from AstraZeneca, Berlin-Chemie Menarini, Boehringer
Ingelheim, Chiesi, GlaxoSmithKline, MSD, Norameda, Novartis, Orion, Sanofi, and Zentiva;
sponsorships from AstraZeneca, Berlin-Chemie Menarini, Boehringer Ingelheim, Chiesi,
GlaxoSmithKline, MSD, Norameda, Sanofi, and Novartis; and has been a member of advisory boards
for AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Sanofi, and Teva.

593 **Riyad Al-Lehebi** has given lectures at meetings supported by AstraZeneca, Boehringer Ingelheim,
594 GlaxoSmithKline, and Sanofi, and participated in advisory board fees from GlaxoSmithKline.

595 **Mohit Bhutani:** has received advisory board and speaker fees from AstraZeneca, GlaxoSmithKline,

596 Pfizer, Sanofi Genzyme, Covis pharmaceuticals; has been an investigator on clinical trials sponsored

597 by AstraZeneca, GlaxoSmithKline, Sanofi Genzyme, Boehringer Ingelheim

598 Leif Bjermer has (in the last three years) received lecture or advisory board fees from Alk-Abello,

AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Mundipharma, Novartis, Sanofi,
Genzyme/Regeneron, and Teva.

601 Anne-Sofie Bjerrum has received lecture fees from Astra Zeneca, GlaxoSmithKline, Novartis.

602 Arnaud Bourdin has received industry-sponsored grants from AstraZeneca-MedImmune, Boehringer-

603 Ingelheim, Cephalon/Teva, GlaxoSmithKline, Novartis, Sanofi-Regeneron and consultancies with

- AstraZeneca-MedImmune, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, Regeneron-Sanofi, Med in-Cell, Actelion, Merck, Roche, and Chiesi.
- 606 **Lakmini Bulathsinhala** is an employee of the Observational and Pragmatic Research Institute (OPRI).
- 607 OPRI conducted this study in collaboration with Optimum Patient Care and AstraZeneca.

608 Anna von Bülow reports speakers fees and consultancy fees from AstraZeneca and Novartis, outside

609 the submitted work. She has also attended advisory board for Novartis and AstraZeneca.

John Busby declares no relevant conflicts of interest.

Giorgio Walter Canonica has received research grants, as well as lecture or advisory board fees from
A. Menarini, Alk-Albello, Allergy Therapeutics, Anallergo, AstraZeneca, MedImmune, Boehringer
Ingelheim, Chiesi Farmaceutici, Circassia, Danone, Faes, Genentech, Guidotti Malesci,
GlaxoSmithKline, Hal Allergy, Merck, MSD, Mundipharma, Novartis, Orion, Sanofi Aventis, Sanofi,
Genzyme/Regeneron, Stallergenes, UCB Pharma, Uriach Pharma, Teva, Thermo Fisher, and Valeas.
Victoria Carter is an employee of Optimum Patient Care, a co-funder of the International Severe

617 Asthma Registry.

618 George C. Christoff declares no relevant conflicts of interest.

Borja G. Cosio declares grants from Chiesi and GSK; personal fees for advisory board activities from
Chiesi, GSK, Novartis, Sanofi and AstraZeneca; and payment for lectures/speaking engagements from
Chiesi, Novartis, GSK, Menarini, and AstraZeneca, outside the submitted work.

Richard W. Costello has received honoraria for lectures from Aerogen, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, and Teva. He is a member of advisory boards for GlaxoSmithKline and Novartis, has received grant support from GlaxoSmithKline and Aerogen and has patents in the use of acoustics in the diagnosis of lung disease, assessment of adherence and prediction of exacerbations.

- J. Mark FitzGerald reports grants from AstraZeneca, GSK, Sanofi Regeneron, Novartis paid directly to
 UBC. Personal fees for lectures and attending advisory boards: AstraZeneca, GSK, Sanofi Regeneron,
 TEVA.
- 630 João A Fonseca reports grants from or research agreements with AstraZeneca, Mundipharma, Sanofi
- 631 Regeneron and Novartis. Personal fees for lectures and attending advisory boards: AstraZeneca, GSK,
- 632 Mundipharma, Novartis, Sanofi Regeneron and TEVA.
- 633 **Kwang Ha Yoo**: declares no relevant conflicts of interest.

634 Liam G. Heaney declares he has received grant funding, participated in advisory boards and given 635 lectures at meetings supported by Amgen, AstraZeneca, Boehringer Ingelheim, Circassia, Evelo 636 Biosciences, Hoffmann la Roche, GlaxoSmithKline, Novartis, Theravance and Teva; he has taken part 637 in asthma clinical trials sponsored by Boehringer Ingelheim, Hoffmann la Roche, and GlaxoSmithKline 638 for which his institution received remuneration; he is the Academic Lead for the Medical Research 639 Council Stratified Medicine UK Consortium in Severe Asthma which involves industrial partnerships 640 with a number of pharmaceutical companies including Amgen, AstraZeneca, Boehringer Ingelheim, 641 GlaxoSmithKline, Hoffmann la Roche, and Janssen.

Enrico Heffler participates in speaking activities and industry advisory committees for AstraZeneca,
Sanofi-Genzyme, GSK, Novartis, TEVA, Circassia and Nestlè Purina.

Mark Hew declares grants and other advisory board fees (made to his institutional employer) from
AstraZeneca, GlaxoSmithKline, Novartis, Sanofi, and Seqirus, for unrelated projects.

646 **Ole Hilberg**: declares no relevant conflicts of interest.

Flavia Hoyte declares honoraria from AstraZeneca. She has been an investigator on clinical trials
sponsored by GlaxoSmithKline, Genentech, Teva, Sanofi and National Institute of Allergy and Infectious
Diseases (NIAID), for which her institution has received funding.

Takashi Iwanaga declares grants from Astellas, Boehringer Ingelheim, Daiichi-Sankyo, Kyorin,
MeijiSeika Pharma, Teijin Pharma, Ono, and Taiho, and lecture fees from Kyorin, GlaxoSmithKline,
Sanofi and AstraZeneca.

David J. Jackson has received advisory board and speaker fees from AstraZeneca, GlaxoSmithKline,
Boehringer Ingelheim, Teva, Napp, Chiesi, Novartis and research grant funding from AstraZeneca.

655 **Rupert C. Jones** declares grants from Astra Zeneca, Glaxo Smith Kline, Novartis and Teva and 656 personal fees for consultancy, speakers' fees or travel support from Astra Zeneca, Boehringer 657 Ingelheim, Glaxo Smith Kline, Novartis and OPRI.

658 Mariko Siyue Koh reports grant support from AstraZeneca, and honoraria for lectures and advisory

- board meetings paid to her hospital (Singapore General Hospital) from GlaxoSmithKline, AstraZeneca,
- 660 Sanofi and Boehringer Ingelheim, outside the submitted work.

661 Piotr Kuna reports personal fees from Adamed, personal fees from AstraZeneca, personal fees from
 662 Berlin Chemie Manarini, personal fees from Boehringer Ingelheim, personal fees from Lekam, personal

fees from Novartis, personal fees from Chiesi, personal fees from Polpharma, personal fees from
Sanofi, personal fees from Teva, personal fees from Zentiva, outside the submitted work

Désirée Larenas Linnemann reports speaker or personal fees from ALK, Alakos, Armstrong,
AstraZeneca, Boehringer Ingelheim, Chiesi, DBV Technologies, Gossamer, Grunenthal, GSK,
Menarini, MSD, Novartis, Pfizer, Purina institute, Sanofi, Siegfried, UCB, Viatris, and grants from Sanofi,
AbbVie, ALK, AstraZeneca, Chiesi, GSK, Lilly, Novartis, Pfizer and UCB, outside the submitted work
Sverre Lehmann declares receipt of lecture (personal) and advisory board (to employer) fees from

670 AstraZeneca, Boehringer Ingelheim, and Novartis.

671 Lauri A. Lehtimäki declares personal fees for consultancy, lectures and attending advisory boards

672 from ALK, AstraZeneca, Boehringer Ingelheim, Circassia, Chiesi, GlaxoSmithKline, Mundipharma,

673 Novartis, Orion Pharma, Sanofi, and Teva.

Juntao Lyu is an employee of Optimum Patient Care (OPC). OPC is a co-funder of the International
Severe Asthma Registry.

676 Bassam Mahboub declares no relevant conflicts of interest.

Jorge Maspero reports personal fees from AstraZeneca, grants and personal fees from Sanofi,
personal fees from IMMUNOTEK, personal fees from SANOFI, outside the submitted work.

679 Andrew N. Menzies-Gow has attended advisory boards for AstraZeneca, GlaxoSmithKline, Novartis,

680 Regeneron, Sanofi and Teva, and has received speaker fees from AstraZeneca, Novartis, Teva and

681 Sanofi. He has participated in research with AstraZeneca for which his institution has been remunerated

and has attended international conferences with Teva. He has had consultancy agreements with

- 683 AstraZeneca and Sanofi.
- 684 **Concetta Sirena** declares no relevant conflicts of interest.

685 Nikolaos G. Papadopoulos declares research support from Gerolymatos, Menarini, Nutricia, and Vian;

and consultancy/speaker fees from ASIT, AZ, Boehringer Ingelheim, GSK, HAL Allergy, Medscape,

687 Menarini, MSD, Mylan, Novartis, and Nutricia, OM Pharma, Sanofi, and Takeda.

Andriana I. Papaioannou has received fees and honoraria from Menarini, GSK, Novartis, Elpen,
Boehringer Ingelheim, AstraZeneca, and Chiesi.

690 **Luis Perez-de-Llano** declares non-financial support, personal fees, and grants from Teva; non-691 financial support and personal fees from Boehringer Ingelheim, Esteve, GlaxoSmithKline, Mundipharma, and Novartis; personal fees and grants from AstraZeneca and Chiesi; personal fees from
Sanofi; and non-financial support from Menairi outside the submitted work.

Diahn-Warng Perng (Steve) received sponsorship to attend or speak at international meetings,
 honoraria for lecturing or attending advisory boards, and research grants from the following companies:
 AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Daiichi Sankyo, Shionogi and Orient
 Pharma

698 **Matthew Peters** declares personal fees and non-financial support from AstraZeneca and 699 GlaxoSmithKline.

Paul E. Pfeffer has attended advisory boards for AstraZeneca and GSK; has given lectures at meetings
 supported by AstraZeneca and GlaxoSmithKline; has taken part in clinical trials sponsored by
 AstraZeneca, GlaxoSmithKline, Sanofi and Novartis, for which his institution received remuneration;
 and has a current research grant funded by GlaxoSmithKline.

Celeste M. Porsbjerg has attended advisory boards for AstraZeneca, Novartis, TEVA, and Sanofi-Genzyme; has given lectures at meetings supported by AstraZeneca, Novartis, TEVA, Sanofi-Genzyme, and GlaxoSmithKline; has taken part in clinical trials sponsored by AstraZeneca, Novartis, MSD, Sanofi-Genzyme, GlaxoSmithKline, and Novartis; and has received educational and research grants from AstraZeneca, Novartis, TEVA, GlaxoSmithKline, ALK, and Sanofi-Genzyme.

709 **Todor A. Popov** declares relevant research support from Novartis and Chiesi Pharma.

710 Chin Kook Rhee declares consultancy and lecture fees from AstraZeneca, Boehringer Ingelheim,

711 GlaxoSmithKline, Mundipharma, MSD, Novartis, Sandoz, Sanofi, Takeda, and Teva-Handok.

712 Sundeep Salvi declares research support and speaker fees from Cipla, Glenmark, GSK

713 Camille Taillé has received lecture or advisory board fees and grants to her institution from

AstraZeneca, Sanofi, GlaxoSmithKline, Chiesi and Novartis, for unrelated projects.

715 Christian Taube declares no relevant conflicts of interest.

716 Carlos A. Torres-Duque has received fees as advisory board participant and/or speaker from 717 AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, and Sanofi-Aventis; has taken part in 718 clinical trials from AstraZeneca, Novartis and Sanofi-Aventis; has received unrestricted grants for 719 investigator-initiated studies at Fundacion Neumologica Colombiana from AstraZeneca, Boehringer-720 Ingelheim, GlaxoSmithKline, Grifols and Novartis. Charlotte S. Ulrik has attended advisory boards for AstraZeneca, ALK-Abello, GSK, Boehringer-Ingelheim, Novartis, Chiesi, TEVA, and Sanofi-Genzyme; has given lectures at meetings supported by AstraZeneca, Sandoz, Mundipharma, Chiesi, Boehringer-Ingelheim, Orion Pharma, Novartis, TEVA, Sanofi-Genzyme, and GlaxoSmithKline; has taken part in clinical trials sponsored by AstraZeneca, Novartis, Merck, InsMed, ALK-Abello, Sanofi-Genzyme, GlaxoSmithKline, Boehringer-Ingelheim, Regeneron, Chiesi and Novartis; and has received educational and research grants from AstraZeneca, MundiPharma, Boehringer-Ingelheim, Novartis, TEVA, GlaxoSmithKline and Sanofi-Genzyme.

Seung Won Ra has received lecture fees from AstraZeneca, Boehringer Ingelheim, Chiesi,
GlaxoSmithKline, and Novartis.

Eileen Wang has received honoraria from AstraZeneca, GlaxoSmithKline, Wefight, and Clinical Care
Options. She has been an investigator on clinical trials sponsored by AstraZeneca, GlaxoSmithKline,
Genentech, Novartis, Teva, and Sanofi, for which her institution has received funding.

Michael E. Wechsler reports receiving consulting honoraria from AstraZeneca, Boehringer Ingelheim,
Genentech, GSK, Novartis, Regeneron, Sanofi and Teva.

David B. Price has advisory board membership with Amgen, AstraZeneca, Boehringer Ingelheim, 735 736 Chiesi, Circassia, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, Sanofi Genzyme, Teva 737 Pharmaceuticals, Thermofisher; consultancy agreements with Amgen, AstraZeneca, Boehringer 738 Ingelheim, Chiesi, GlaxoSmithKline, Mylan, Mundipharma, Novartis, Pfizer, Teva Pharmaceuticals, 739 Theravance; grants and unrestricted funding for investigator-initiated studies (conducted through 740 Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, 741 Chiesi, Circassia, Mylan, Mundipharma, Novartis, Pfizer, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Teva Pharmaceuticals, Theravance, UK National Health 742 743 Service; payment for lectures/speaking engagements from AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, Sanofi 744 745 Genzyme, Teva Pharmaceuticals; payment for the development of educational materials from 746 Mundipharma, Novartis; payment for travel/accommodation/meeting expenses from AstraZeneca, 747 Boehringer Ingelheim, Mundipharma, Mylan, Novartis, Thermofisher; funding for patient enrolment or 748 completion of research from Novartis; stock/stock options from AKL Research and Development Ltd 749 which produces phytopharmaceuticals; owns 74% of the social enterprise Optimum Patient Care Ltd 750 (Australia and UK) and 74% of Observational and Pragmatic Research Institute Pte Ltd (Singapore);

- 5% shareholding in Timestamp which develops adherence monitoring technology; is peer reviewer for
 grant committees of the Efficacy and Mechanism Evaluation programme, and Health Technology
 Assessment; and was an expert witness for GlaxoSmithKline.
- 754

755 Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work. The study was supervised by David B. Price.

762 References

- Reddel HK, Taylor DR, Bateman ED, *et al.* An official American Thoracic Society/European
 Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for
 clinical asthma trials and clinical practice. *Am J Respir Crit Care Med* 2009;**180**:59–99.
 doi:10.1164/rccm.200801-060ST
- Luskin AT, Antonova EN, Broder MS, *et al.* Health care resource use and costs associated with
 possible side effects of high oral corticosteroid use in asthma: a claims-based analysis.
 Clinicoecon Outcomes Res 2016;8:641–8. doi:10.2147/CEOR.S115025
- Canonica GW, Colombo GL, Bruno GM, *et al.* Shadow cost of oral corticosteroids-related
 adverse events: A pharmacoeconomic evaluation applied to real-life data
 from the Severe Asthma Network in Italy (SANI) registry. *World Allergy Organization Journal*2019;**12**:100007. doi:10.1016/j.waojou.2018.12.001
- Price DB, Trudo F, Voorham J, *et al.* Adverse outcomes from initiation of systemic corticosteroids
 for asthma: long-term observational study. *J Asthma Allergy* 2018;**11**:193–204.
 doi:10.2147/JAA.S176026
- 5 Sweeney J, Patterson CC, Menzies-Gow A, *et al.* Comorbidity in severe asthma requiring
 systemic corticosteroid therapy: cross-sectional data from the Optimum Patient Care Research
 Database and the British Thoracic Difficult Asthma Registry. *Thorax* 2016;**71**:339–46.
 doi:10.1136/thoraxjnl-2015-207630
- Fardet L, Petersen I, Nazareth I. Prevalence of long-term oral glucocorticoid prescriptions in the
 UK over the past 20 years. *Rheumatology (Oxford)* 2011;**50**:1982–90.
 doi:10.1093/rheumatology/ker017
- 784 7 Tran TN, King E, Sarkar R, *et al.* Oral Corticosteroid Prescription Patterns for Asthma in France,
 785 Germany, Italy, and the United Kingdom. *European Respiratory Journal* Published Online First: 1
 786 January 2020. doi:10.1183/13993003.02363-2019
- Tran TN, MacLachlan S, Hicks W, *et al.* Oral Corticosteroid Treatment Patterns of Patients in the
 United States with Persistent Asthma. *J Allergy Clin Immunol Pract* 2021;9:338-346.e3.
 doi:10.1016/j.jaip.2020.06.019
- Bleecker ER, Menzies-Gow AN, Price DB, *et al.* Systematic Literature Review of Systemic
 Corticosteroid Use for Asthma Management. *Am J Respir Crit Care Med* 2020;**201**:276–93.
 doi:10.1164/rccm.201904-0903SO
- Voorham J, Xu X, Price DB, *et al.* Healthcare resource utilization and costs associated with
 incremental systemic corticosteroid exposure in asthma. *Allergy* 2019;**74**:273–83.
 doi:10.1111/all.13556
- Wang E, Wechsler ME, Tran TN, *et al.* Characterization of Severe Asthma Worldwide: Data From
 the International Severe Asthma Registry. *Chest* 2020;**157**:790–804.
 doi:10.1016/j.chest.2019.10.053
- Agache I, Beltran J, Akdis C, *et al.* Efficacy and safety of treatment with biologicals
 (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic
 asthma. A systematic review for the EAACI Guidelines recommendations on the use of
 biologicals in severe asthma. *Allergy* 2020;**75**:1023–42. doi:10.1111/all.14221
- Krings JG, McGregor MC, Bacharier LB, *et al.* Biologics for Severe Asthma: Treatment-Specific
 Effects Are Important in Choosing a Specific Agent. *The Journal of Allergy and Clinical Immunology: In Practice* 2019;**7**:1379–92. doi:10.1016/j.jaip.2019.03.008

- Porsbjerg CM, Menzies-Gow AN, Tran TN, *et al.* Global Variability in Administrative Approval
 Prescription Criteria for Biologic Therapy in Severe Asthma. *J Allergy Clin Immunol Pract* 2022;**10**:1202–16. doi:10.1016/j.jaip.2021.12.027
- Brown T, Jones T, Gove K, *et al.* Randomised controlled trials in severe asthma: selection by
 phenotype or stereotype. *European Respiratory Journal* 2018;**52**. doi:10.1183/13993003.01444 2018
- FitzGerald JM, Tran TN, Alacqua M, *et al.* International Severe Asthma Registry (ISAR): protocol
 for a global registry. *BMC Medical Research Methodology*2020;20(1):212.
- 814 17 Bulathsinhala L, Eleangovan N, Heaney LG, *et al.* Development of the International Severe
 815 Asthma Registry (ISAR): A Modified Delphi Study. *J Allergy Clin Immunol Pract* 2019;**7**:578816 588.e2. doi:10.1016/j.jaip.2018.08.016
- 817 18 ISAR Study Group. International Severe Asthma Registry (ISAR): Mission Statement. *Chest* 2020;**157**:805–14.
- Wang, E., Wechsler, M. E., Tran, T. N., *et al.* Characterization of severe asthma worldwide: data from the International Severe Asthma Registry (ISAR). *Chest* 2020;**157**:805–14.
- 821 20 Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the diagnosis,
 822 management, and prevention of chronic obstructive pulmonary disease. 2018.
 823 2018https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20 824 Nov_WMS.pdf
- Heaney LG, Llano LP de, Al-Ahmad M, *et al.* Eosinophilic and Noneosinophilic Asthma: An
 Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma
 Cohort. *CHEST* 2021;**0**. doi:10.1016/j.chest.2021.04.013
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
 Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)* 1995;**57**:289–300.
- Reddel HK, Bacharier LB, Bateman ED, *et al.* Global Initiative for Asthma (GINA) Strategy 2021 Executive summary and rationale for key changes. *European Respiratory Journal* Published
 Online First: 1 January 2021. doi:10.1183/13993003.02730-2021
- Inselman JW, Jeffery MM, Maddux JT, *et al.* Trends and Disparities in Asthma Biologic Use in the
 United States. *J Allergy Clin Immunol Pract* 2020;**8**:549-554.e1. doi:10.1016/j.jaip.2019.08.024
- 836 25 Bel EH, Wenzel SE, Thompson PJ, *et al.* Oral Glucocorticoid-Sparing Effect of Mepolizumab in
 837 Eosinophilic Asthma. *New England Journal of Medicine* 2014;**371**:1189–97.
 838 doi:10.1056/NEJMoa1403291
- Nair P, Wenzel S, Rabe KF, *et al.* Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe
 Asthma. *New England Journal of Medicine* 2017;**376**:2448–58. doi:10.1056/NEJMoa1703501
- Rabe KF, Nair P, Brusselle G, *et al.* Efficacy and Safety of Dupilumab in GlucocorticoidDependent Severe Asthma. *New England Journal of Medicine* 2018;**378**:2475–85.
 doi:10.1056/NEJMoa1804093
- FitzGerald JM, Bleecker ER, Nair P, *et al.* Benralizumab, an anti-interleukin-5 receptor α
 monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic
 asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. *Lancet*2016;**388**:2128–41. doi:10.1016/S0140-6736(16)31322-8
- Castro M, Zangrilli J, Wechsler ME, *et al.* Reslizumab for inadequately controlled asthma with
 elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised,

- placebo-controlled, phase 3 trials. *Lancet Respir Med* 2015;3:355–66. doi:10.1016/S2213 2600(15)00042-9
- 852 30 Pavord ID, Korn S, Howarth P, *et al.* Mepolizumab for severe eosinophilic asthma (DREAM): a
 853 multicentre, double-blind, placebo-controlled trial. *Lancet* 2012;**380**:651–9. doi:10.1016/S0140 854 6736(12)60988-X
- 31 Jackson DJ, Busby J, Pfeffer PE, *et al.* Characterisation of patients with severe asthma in the UK
 Severe Asthma Registry in the biologic era. *Thorax* 2021;**76**:220–7. doi:10.1136/thoraxjnl-2020215168
- 32 Ortega H, Gleich G, Mayer B, *et al.* Reproducibility of a Single Blood Eosinophil Measurement as
 a Biomarker in Severe Eosinophilic Asthma. *Annals ATS* 2015;**12**:1896–7.
 doi:10.1513/AnnalsATS.201507-443LE
- Tinoco EM, Gigante AR, Fernandes AL, *et al.* Impact of biologic therapy in severe asthma with
 nasal polyps. *European Respiratory Journal* 2021;58. doi:10.1183/13993003.congress 2021.PA3739
- Bachert C, Han JK, Desrosiers M, *et al.* Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52):
 results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. *The Lancet* 2019;**394**:1638–50. doi:10.1016/S0140-6736(19)31881-1
- Rogliani P, Calzetta L, Matera MG, *et al.* Severe Asthma and Biological Therapy: When, Which, and for Whom. *Pulm Ther* 2020;**6**:47–66. doi:10.1007/s41030-019-00109-1
- Matera MG, Calzetta L, Sanduzzi A, *et al.* Effects of neuraminidase on equine isolated bronchi.
 Pulm Pharmacol Ther 2008;**21**:624–9. doi:10.1016/j.pupt.2008.02.003
- d'Ancona G, Kavanagh J, Roxas C, *et al.* Adherence to Inhaled Corticosteroids and Clinical
 Outcomes in Mepolizumab Therapy for Severe Asthma. *European Respiratory Journal* Published
 Online First: 1 January 2020. doi:10.1183/13993003.02259-2019
- Alahmadi FH, Simpson AJ, Gomez C, *et al.* Medication Adherence in Patients With Severe
 Asthma Prescribed Oral Corticosteroids in the U-BIOPRED Cohort. *Chest* 2021;**160**:53–64.
 doi:10.1016/j.chest.2021.02.023
- Tiotiu A. Applying personalized medicine to adult severe asthma. *Allergy Asthma Proc* 2021;42:e8–16. doi:10.2500/aap.2021.42.200100
- 40 Taillé C, Devillier P, Dusser D, *et al.* Evaluating response to biologics in severe asthma:
 881 Precision or guesstimation? *Respir Med Res* 2021;**80**:100813. doi:10.1016/j.resmer.2021.100813
- 41 Bossios A. Inflammatory T2 Biomarkers in Severe Asthma Patients: The First Step to Precision
 Medicine. J Allergy Clin Immunol Pract 2021;9:2689–90. doi:10.1016/j.jaip.2021.04.044

884

Table 1: Baseline demographic characteristics for ISAR patients with severe asthma and high

887 oral corticosteroid exposure who were and were not initiated on biologic (Bx) therapy

	BX not initiated	BX initiated	P-value	B-H critical P value threshold for significance in multiple testing
Age, yrs	n = 416	n = 996		
mean (SD)	53.2 (14.5)	51.7 (13.9)	0.075	
18-34, n (%)	50 (12.0)	131 (13.2)		
35-54, n (%)	153 (36.8)	418 (42.0)	0.010	0.028
55-79, n (%)	203 (48.8)	440 (44.2)	0.010	
80+, n (%)	10 (2.4)	7 (0.7)		
Gender	n = 416	n = 996		
Female, n (%)	277 (66.6)	609 (61.1)	0.050	0.040
Race/Ethnicity	n = 375	n = 887		
Caucasian, n (%)	244 (65.1)	689 (77.7)		
Asian, n (%)	65 (17.3)	62 (7.0)		
African, n (%)	10 (2.7)	36 (4.1)	<0.001	0.007
Mixed, n (%)	1 (0.3)	17 (1.9)		
Other†, n (%)	55 (14.7)	83 (9.4)		
BMI Category, Kg/m ²	n = 410	n = 960		
Mean (SD)	29.7 (7.7)	29.3 (6.8)	0.280	0.066
Underweight (BMI <18.5), n (%)	11 (2.7)	13 (1.4)		
Normal (BMI 18.5 to <25), n (%)	106 (25.9)	264 (27.5)	0.210	0.071
Overweight (BMI 25 to <30), n (%)	126 (30.7)	309 (32.2)	0.310	0.071
Obese (BMI ≥30), n (%)	167 (40.7)	374 (39.0)		
Tobacco smoking status †	n = 410	n = 936		
Current smoker, n (%)	23 (5.6)	23 (2.5)		
Ex-smoker, n (%)	106 (25.9)	267 (28.5)	0.010	0.029
Non-smoker, n (%)	281 (68.5)	646 (69.0)		
Tobacco smoking pack-years†	n = 117	n = 249		
Mean (SD)	15.25 (16.31)	18.97 (17.62)	0.050	0.041
<6, n (%)	41 (35.0)	56 (22.5)	0.011	0.033
≥6, n (%)	76 (65.0)	193 (77.5)	0.011	0.033
≤10, n (%)	67 (57.3)	105 (42.2)	0.007	0.021
>10, n (%)	50 (42.7)	144 (57.8)	0.007	

- 889 † does not include hookah smoking
- 890 B-H: Benjamini-Hochberg Procedure; BMI: body mass index; ISAR: International Severe Asthma
- 891 Registry; SD: standard deviation
- 892 Test statistics: Pearson Chi Square test for categorical variables with > 2 categories, McNemar's test
- 893 for categorical variables with 2 categories and T-test for continuous variables

895 Table 2. Baseline clinical characteristics for ISAR patients with severe asthma and high oral

896 corticosteroid exposure who were and were not initiated on biologic (Bx) therapy

		BX initiated	P-value	threshold for significance in multiple testing	
Age of asthma onset Mean (SD)	N=402 29.5 (18.7)	N=876 27.9 (18.7)	0.150	0.057	
Asthma duration Mean (SD)	N=394 23.8 (16.3)	N=859 23.7 (16.7)	0.910	0.098	
Asthma control* Controlled, n (%) Partially controlled, n (%) Uncontrolled, n (%)	N=381 26 (6.8) 76 (20.0) 279 (73.2)	N=777 51 (6.6) 98 (12.6) 628 (80.8)	0.004	0.017	
No. asthma exacerbations in the past year (excluding cases with 0 exacerbations)	N=334	N=849			
Mean (SD)	5.3 (4.0)	5.7 (3.9)	0.147	0.055	
1, n (%)	26 (7.8)	75 (8.8)			
2, n (%)	39 (11.7)	82 (9.7)			
3, n (%)	28 (8.4)	61 (7.2)	0.000	0.024	
4, n (%)	85 (25.5)	181 (21.3)	0.009		
5, n (%)	60 (18.0)	112 (13.2)			
≥6, n (%)	96 (28.7)	338 (39.8)			
Adherence*	N=327	N=873			
Adherent, n (%)	249 (76.2)	774 (88.7)			
Poor: Clinical impression, n (%)	25 (7.7)	12 (1.4)	<0.001	0.002	
Poor: Prescription records, n (%)	53 (16.2)	87 (10.0)			
	Positive allerge	en test			
Serum specific IgE test to allergens	N=340	N=926			
Positive, n (%)	112 (32.9)	396 (42.8)	0.002	0.012	
Skin prick test to allergens	N=340	N=926			
Positive, n (%)	99 (29.1)	305 (32.9)	0.196	0.060	
Hea	Ithcare resource	e utilization			
	N=416	N=996			
Emergency department visit, N (%)	157 (37.7)	321 (32.2)	0.046	0.038	
Hospital admission, N (%)	131 (31.5)	286 (28.7)	0.297	0.069	
Invasive ventilation (ever). N (%)	27 (6.5)	69 (6.9)	0.766	0.088	
Post-hri	nchodilator (BD)) lung function			
mean (SD)	72 60 (22 20)	73 00 (34 50)	0.854	0.001	
	12.09 (23.29)	13.09 (34.39)	0.004	0.091	

	BX not initiated	BX initiated	P-value	B-H critical P value threshold for significance in multiple testing
mean (SD)	0.71 (0.18)	0.67 (0.22)	0.008	0.022
Post-BD FEV1/FVC < 0.7, n (%)	N=282 136 (51.8)	N=826 469 (56.8)	0.013	0.034
	Biomarke	rs		-
Serum total IgE, IU (mL)	N=313	N=882		
<150, n (%)	165 (52.7)	396 (44.9)		
150-400, n (%)	67 (21.4)	229 (26.0)	0.055	0.045
>400, n (%)	81 (25.9)	257 (29.1)		
BEC (/µL)	N=329	N=919		
Highest, Mean (SD)	398.9 (371.4)	482.8 (468.7)	0.003	0.014
<150, n (%)	88 (26.8)	220 (23.9)		
>150 to ≤ 300, n (%)	90 (27.4)	220 (23.9)	0.057	0.047
>300 to ≤ 450, n (%)	43 (13.1)	99 (10.8)	0.057	0.047
>450, n (%)	108 (32.8)	380 (41.4)		
FeNO, ppb	N=218	N=701		
<25, n (%)	87 (39.9)	205 (29.2)	0.010	0.031
25-50, n (%)	53 (24.3)	220 (31.4)		
>50, n (%)	78 (35.8)	276 (39.4)		
Low T2 biomarker, n (%)	N=183	N=666		
	30 (16.4)	58 (8.7)	0.003	0.016
High T2 biomarker, n (%)	N=183	N=666		
	75 (41.0)	282 (42.3)	0.742	0.086
ISAR gradient eosinophilic phenotype	N=325	N=911		
Grade 0 (unlikely), n (%)	7 (2.2)	2 (0.2)		
Grade 1 (least likely), n (%)	35 (10.8)	20 (2.2)	<0.001	0.003
Grade 2 (Likely), n (%)	62 (19.1)	62 (6.8)		
Grade 3 (most likely), n (%)	221 (68.0)	827 (90.8)		
	Co-morbidi	ties		
Potential OCS-related co-morbidities				
Anxiety, n (%)	N=230 31 (13.5)	N=260 36 (13.9)	0.906	0.097
Depression, n (%)	N=227 25 (11.0)	N=254 23 (9.1)	0.474	0.079
Osteoporosis, n (%)	N=304	N=611	0.009	0.026

	BX not initiated	BX initiated	P-value	B-H critical P value threshold for significance in multiple testing
	52 (17.1)	67 (11.0)		
Peptic ulcer, n (%)	N=185 10 (5.4)	N=205 6 (2.9)	0.218	0.062
Type II diabetes, n (%)	N=170 31 (18.2)	N=210 29 (13.8)	0.239	0.064
History of Pneumonia, n (%)	N=184 15 (8.2)	N=205 16 (7.8)	0.900	0.095
Cataract, n (%)	N=128	N=108	0.437	0.076
	9 (7.0)	5 (4.6)		
Embolism, n (%)	N=126	N=105	0.854	0.093
	2 (1.6)	2 (1.9)		
Glaucoma, n (%)	N=128	N=108	0.166	0.059
	2 (1.6)	5 (4.6)		
Heart failure, n (%)	N=128	N=104	0.421	0.074
	3 (2.3)	1 (1.0)		
Myocardial infarction, n (%)	N=166	N=148	0.378	0.072
	3 (1.8)	5 (3.4)		
Renal failure, n (%)	N=185	N=205	0.136	0.053
	2 (1.1)	0 (0.0)		
Sleep apnea, n (%)	N=173	N=231	0.661	0.081
	29 (16.8)	35 (15.2)		
Stroke, n (%)	N=166	N=146	0.286	0.067
	0 (0.0)	1 (0.7)		
T2 Comorbidities (ever)	N=416	N=996		
Allergic rhinitis, n (%)	168 (40.4)	313 (31.4)	0.001	0.010

	BX not initiated	BX initiated	P-value	B-H critical P value threshold for significance in multiple testing
Chronic rhinosinusitis, n (%)	83 (20.0)	246 (24.7)	0.054	0.043
Eczema, n (%)	38 (9.1)	98 (9.8)	0.682	0.084
Nasal polyps, n (%)	98 (23.6)	351 (35.2)	<0.001	0.005
	Other			
Anaphylaxis event, n (%)	N=197 5 (2.5)	N=399 2 (0.5)	0.030	0.036
Cancer event, n (%)	N=199 13 (6.5)	N=393 8 (2.0)	0.005	0.019
Serious infection event, n (%)	N=196 26 (13.3)	N=396 194 (49.0)	<0.001	0.009
	Asthma ther	ару		
Add-on treatment to ICS/LABA	N=416	N=996		
Long term OCS, n (%)†	247 (59.4)	612 (61.5)	0.467	0.078
LTRA, n (%)	181 (43.5)	427 (42.9)	0.825	0.090
Long-term macrolide, n (%)	25 (6.0)	54 (5.4)	0.661	0.083
Steroid-sparing, n (%)	8 (1.9)	8 (0.8)	0.070	0.050
Theophylline, n (%)	64 (15.4)	169 (17.0)	0.465	0.100
LAMA, n(%)	216 (51.9)	463 (46.5)	0.062	0.048

897 BEC: blood eosinophil count; B-H: Benjamini-Hochberg Procedure; FeNO: fractional exhaled nitric 898 oxide; FEV₁: forced expiratory volume in one second; FVC: forced vital capacity; GINA: Global Initiative 899 for Asthma; ICS: inhaled corticosteroid; IgE: Immunoglobulin E; ISAR: International Severe Asthma 900 Registry; LABA: long-acting β_2 -agonist; LAMA, long-acting muscarinic; LTRA: leukotriene receptor 901 antagonist; OCS: oral corticosteroid; SD: standard deviation

902

⁹⁰³ *Treatment adherence was evaluated through a mix of methods in different countries in ISAR registry.

904 **†LTOCS: OCS** therapy for at least 3 months.

905

906

908 Legend to Figures

- 909 **Figure 1:** Flowchart of cohort creation
- 910 Figure 2: Geographic distribution of adult severe asthma patients with high oral corticosteroid exposure
- 911 enrolled in ISAR according to biologic initiation status.
- 912 ISAR: International Severe Asthma Registry
- 913 Data are presented as % not initiated/% initiated. Green: approximately equal proportion of biologic
- 914 non-initiators to initiators; Blue: More likely not to initiate biologics; Yellow: more likely to initiate915 biologics.
- 916 Figure 3: Clinical characteristics of adult severe asthma patients with high oral corticosteroid exposure
- 917 enrolled in ISAR who did and did not initiate biologic therapy.
- 918 BEC: blood eosinophil count; BD: bronchodilator; Bx: biologic; FEV₁: forced expiratory volume in one 919 second; FVC: forced vital capacity; IgE: immunoglobulin E; ISAR: International Severe Asthma
- 920 Registry; OCS: oral corticosteroid
- 921