4,177 research outputs found

    Sensory Difference of Bio-Dynamically, Organically and Conventionally Produced Wheat from the DOK Long-Term Field Trial

    Get PDF
    There is a need of scientific evidence on the differentiation of organic from conventional produce concerning health, nutrition and sensory related qualities (Leifert et al., 2007). Analysis of wheat from the DOK long-term system comparison trial near Basel, Switzerland (MĂ€der et al., 2002) showed that organic wheat differed in contents of 16 “diagnostic” proteins from conventional wheat (Zörb et al., 2009a), had higher concentrations of K+ and Mg2+ cations and lower concentrations of six amino acids, and a different seed ripening metabolism (Zörb et al., 2009b). In a previous sensory test with cooked porridge of wheat (cv. Tamaro) from the DOK trial (harvest 1999), the biodynamic samples had been preferred (Arncken et al., 2007). In the present work we aimed to corroborate these results with dry samples of three harvest years

    A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear.</p> <p>Results</p> <p>Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords.</p> <p>Conclusions</p> <p>Our results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.</p

    Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 1: Concepts and activity descriptions

    Get PDF
    The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE)

    Urban Evolution: The Role of Water

    Get PDF
    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is thesequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1) urban drainage from stream burial to stormwater management; (2) sewage flows and water quality in response to wastewater treatment; (3) amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4) salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban landscapes, waterways, and civilizations over time

    VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    Get PDF
    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7-20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models

    Identifying priority sites for low impact development (LID) in a mixed-use watershed

    Get PDF
    AbstractLow impact development (LID), a comprehensive land use planning and design approach with the goal of mitigating land development impacts to the environment, is increasingly being touted as an effective approach to lessen runoff and pollutant loadings to streams. Broad-scale approaches for siting LID have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity. Here, we introduce a spatially-explicit approach to assist landscape architects, urban planners, and water managers in identifying priority sites for LID based exclusively on freely available data. We use a large, mixed-use watershed in central Oklahoma, the United States of America, as a case-study to demonstrate our approach. Our results indicate that for one sub-catchment of the Lake Thunderbird Watershed, LID placed in 11 priority locations can facilitate reductions in nutrient and sediment loading to receiving waters by as much as 16% and 17%, respectively. We had a high rate of correctly identified sites (94±5.7%). Our systematic and transferable approach for prioritizing LID sites has the potential to facilitate effective implementation of LID to lessen the effects of urban land use on stream ecosystems

    Ionized o-, m-, and p-Difluorobenzene Dissociate Through Ring-Opened Intermediates: A TPEPICO Investigation

    Get PDF
    Threshold photoelectron photoion coincidence (TPEPICO) experiments have shown that o-, m-, and p-difluorobenzene ions dissociate via a common, ring-opened intermediate and not via ionized p-difluorobenzene. Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental breakdown curves yields activation energies for the initial isomerization of 4.48 ± 0.05, 4.55 ± 0.05, and 4.68 ± 0.05 eV for o-, m-, and p-difluorobenzene, respectively. These values place each ion at a similar absolute energy and thus similar transition states. A large positive ΔS‡ for each ion (ca 100 J K−1 mol−1) suggests a ring-opened structure for these transition states

    The final COS-B database now publicly available

    Get PDF
    The data obtained by the gamma ray satellite COS-B was processed, condensed and integrated together with the relevant mission and experiment parameters into the Final COS-B Database. The database contents and the access programs available with the database are outlined. The final sky coverage and a presentation of the large scale distribution of the observed Milky Way emission are given. The database is announced to be available through the European Space Agency

    Evaluation of intravenous voriconazole in patients with compromised renal function

    Get PDF
    BACKGROUND: Incorporation of the solubilizing excipient, sulfobutylether-ÎČ-cyclodextrin (SBECD), in the intravenous (IV) formulation of voriconazole has resulted in the recommendation that this formulation be used with caution in patients with creatinine clearances (Clcr) \u3c 50 mL/min. This study evaluated the safety of IV voriconazole compared with two other IV antifungals not containing SBECD in patients with compromised renal function. METHODS: A total of 128 patients aged 11-93 years who had a baseline Clcr \u3c 50 mL/min between January 1, 2007 and December 31, 2010 were identified from a database of a university-affiliated inpatient healthcare system; of these, 55 patients received caspofungin, 54 patients received fluconazole, and 19 patients received voriconazole. Changes in serum creatinine (Scr) and Clcr levels while on therapy were compared with baseline values and between groups. RESULTS: The groups had similar characteristics apart from the larger proportion of females that received fluconazole. Baseline Scr was higher in those receiving caspofungin, but maximal increases of Scr and decreases in Clcr were greatest for the fluconazole group. Acute kidney injury (AKI), assessed by RIFLE criteria, was more frequent in the fluconazole vs. the caspofungin group (p \u3c 0.01); incidence of AKI in the voriconazole group was not significantly different than found in the other two groups. The infecting organism was a predictor of AKI and formulation with SBECD was not. CONCLUSIONS: Treatment of fungal infections in patients with compromised renal function with an SBECD-containing antifungal agent was not associated with AKI in clinical practice. Since the infecting organism was associated with AKI, decision on which antifungal to use should be determined by susceptibilities to the organism and not the incorporation of SBECD in the IV formulation
    • 

    corecore