487 research outputs found

    MK571 inhibits phase-2 conjugation of flavonols by Caco-2/TC7 cells, but does not specifically inhibit their apical efflux

    Get PDF
    AbstractMK571 is a multidrug resistance protein-2 (ABCC2, Mrp2) inhibitor and has been widely used to demonstrate the role of Mrp2 in the cellular efflux of drugs, xenobiotics and their conjugates. Numerous reports have described modulation of Caco-2 cellular efflux and transport of flavonoids in the presence of MK571. Since flavonoids are efficiently conjugated by Caco-2/TC7 cells, we investigated the effects of MK571 on the efflux of flavonoid conjugates. The flavonol aglycones kaempferol, quercetin and galangin were efficiently taken up, conjugated and effluxed by Caco-2/TC7 cells. Apically-applied MK571 caused significant reductions in both the apical and basolateral efflux of flavonol conjugates from Caco-2/TC7 monolayers. MK571 did not significantly alter the apical:basolateral efflux ratio for flavonol conjugates, however, which is not consistent with MK571 specifically inhibiting only apical Mrp2. Since MK571 decreased the total amounts of conjugates formed, and increased cellular flavonol aglycone concentrations, we explored the possibility that MK571 also inhibits phase-2 conjugation of flavonols. MK571 dose-dependently inhibited the intracellular biosynthesis of all flavonol glucuronides and sulphates by Caco-2 cells. MK571 significantly inhibited phase-2 conjugation of kaempferol by cell-free extracts of Caco-2, and production of kaempferol-4â€Č-O-glucuronide was competitively inhibited. These data show that MK571, in addition to inhibiting MRP2, is a potential inhibitor of enterocyte phase-2 conjugation

    The Effects of Anthocyanins and Their Microbial Metabolites on the Expression and Enzyme Activities of Paraoxonase 1, an Important Marker of HDL Function

    Get PDF
    High circulating HDL concentrations and measures of various HDL functions are inversely associated with cardiovascular disease (CVD) risk. Paraoxonase 1 (PON1) contributes to many of the athero-protective functions of HDL, such as promoting the reverse cholesterol transport process and reducing the levels of oxidized LDL. PON1 activities are influenced by several factors, the most important being diet and genetic polymorphisms. Reported data from randomized controlled trials have shown that anthocyanin consumption increased PON1 activity. However, the underlying molecular mechanisms by which anthocyanins increase PON1 activity are not understood. Therefore, the aim of this research was to investigate the ability of anthocyanins and their metabolites to increase PON1 gene expression and/or enzyme activities as potential mechanisms. The effect of the two predominant dietary anthocyanins and 18 of their recently identified microbial metabolites including their phase-II conjugates on PON1 gene expression was studied using a PON1-Huh7 stably-transfected cell line and reporter gene assay. The effects of these compounds on PON1 arylesterase and lactonase activities were investigated using two isoforms of the PON1 enzyme that are the phenotypes of the 192Q/R polymorphism. None of the compounds caused even modest changes in PON1 promoter activity (p ≄ 0.05). Further, none of the compounds at physiological concentrations caused any significant changes in the arylesterase or lactonase activity of either of the iso-enzymes. Cyanidin reduced the lactonase activity of the PON1-R192R enzyme at high concentrations (-22%, p < 0.001), but not at physiologically achievable concentrations. In conclusion, none of the data reported here support the notion that anthocyanins or their metabolites affect PON1 transactivation or enzyme activities

    Differential effects of quercetin and its two derivatives (isorhamnetin and isorhamnetin-3- glucuronide) in inhibiting proliferation of human breast cancer MCF-7 cells

    Get PDF
    Quercetin (Que) has consistently been reported to be useful cytotoxic compound in vivo and in vitro, but little is known on its metabolites. Here we examined and compared cytotoxic effect of Que and its water-soluble metabolites, isorhamnetin (IS) and isorhamnetin-3-glucuronide (I3G) in human breast cancer MCF-7 cells, and explain their tumor-inhibitory mechanism and structure-function relationship. The results showed that Que, IS and I3G could dose-dependently inhibit the growth of MCF-7 cells, and the cytotoxic effect was ranked as Que > IS > I3G. Furthermore, Que, IS and I3G mediated the cell-cycle arrest principally in S phase, followed by the decrease in the number of G0/G1 and G2/M, and 70.8%, 68.9% and 49.8% MCF-7 tumor cells entered early phase apotosis when treated with 100 ”M Que, IS and I3G for 48 h, respectively. Moreover, induction of apoptosis by Que, IS and I3G were accompanied with the marginal generation of intracellular ROS. Given these results, Que, IS and I3G possess strong cytotoxic effect through a ROS-dependent apoptosis pathway in MCF-7 cells

    Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3'-sulfate with different albumins

    Get PDF
    Quercetin is one of the most commonly occurring flavonoids in nature. Although, quercetin and its metabolites express negligible fluorescence, the albumin-bound form of quercetin has a strong fluorescence property. Considering the structural variance of different albumins, we hypothesized that the fluorescence of albumin complexes of quercetin and its metabolites may vary significantly. Therefore, in this study the fluorescence enhancement of quercetin and some of its major metabolites in the presence of bovine (BSA), human (HSA), porcine (PSA), and rat serum albumins (RSA) were investigated by steady-state fluorescence spectroscopy in PBS buffer (pH 7.4). Among the tested quercetin metabolites, significant fluorescence signal was shown by albumin complexes of quercetin, isorhamnetin, and quercetin-3’-sulfate, while other metabolites (tamarixetin, quercetin-3-glucuronide, and isorhamnetin-3-glucuronide) expressed negligible fluorescence. BSA was the most potent enhancer of quercetin-3’-sulfate but it showed poor effects regarding other flavonoids. The strongest enhancement of isorhamnetin was caused by HSA, while it was less effective enhancer of quercetin and quercetin-3’-sulfate. PSA showed a strong fluorescence enhancement of quercetin and quercetin-3’-sulfate but it was poorly effective regarding isorhamnetin. RSA was the most potent enhancer of quercetin but it caused only a weak enhancement of isorhamnetin and quercetin-3’-sulfate. Large changes of the pH (such as pH 5.0 and pH 10.0) almost completely abolished the fluorescence signals of the complexes. Nevertheless, slight decrease (pH 7.0) reduced and slight increase (pH 7.8) generally enhanced the fluorescence of flavonoid-albumin complexes (only exceptions were quercetin-PSA and quercetin-RSA). Complex formations were also investigated by fluorescence quenching studies. Based on our results, the formations of quercetin-BSA, quercetin-HSA, isorhamnetin-BSA, isorhamnetin-HSA, isorhamnetin-PSA, and quercetin-3’-sulfate – HSA complexes followed 1:1 stoichiometry, while the presence of a secondary binding site of flavonoids was assumed regarding other tested albumin complexes. Our study highlights that albumins can induce significantly different fluorescence enhancement of flavonoids, and even the stoichiometry of flavonoid-albumin complexes may differ

    Degradation mechanisms in organic photovoltaic devices

    Get PDF
    \u3cp\u3eIn the present review, the main degradation mechanisms occurring in the different layer stacking (i.e. photoactive layer, electrode, encapsulation film, interconnection) of polymeric organic solar cells and modules are discussed. Bulk and interfacial, as well as chemical and physical degradation mechanisms are reviewed, as well as their implications and external or internal triggers. Decay in I-V curves in function of time is usually due to the combined action of sequential and interrelated mechanisms taking place at different locations of the device, at specific kinetics. This often makes the identification of specific root causes of degradation challenging in non-model systems. Additionally, constant development and refinement in terms of type and combination of materials and processes render the ranking of degradation mechanisms as a function of their probability of occurrence and their detection challenging. However, it clearly appears that for the overall stability of organic photovoltaic devices, the actual photoactive layer, as well as the properties of the barrier and substrate (e.g. cut of moisture and oxygen ingress, mechanical integrity), remain critical. Interfacial stability is also crucial, as a modest degradation at the level of an interface can quickly and significantly influence the overall device properties.\u3c/p\u3

    Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate

    Get PDF
    AbstractTo understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin’s UV–visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240–280nm) on the intermicellar phase and Peak B (340–440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin’s interaction with SDS micelles. Pyrene fluorescence and the quercetin UV–visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties

    Quantitative Dietary Fingerprinting (QDF)-A Novel Tool for Comprehensive Dietary Assessment Based on Urinary Nutrimetabolomics

    Get PDF
    Accurate dietary assessment is a challenge in nutritional research, needing powerful and robust tools for reliable measurement of food intake biomarkers. In this work, we have developed a novel quantitative dietary fingerprinting (QDF) approach, which enables for the first time the simultaneous quantitation of about 350 urinary food-derived metabolites, including (poly)phenolic aglycones, phase II metabolites, and microbial-transformed compounds, as well as other compounds (e.g., glucosinolates, amino acid derivatives, methylxanthines, alkaloids, and markers of alcohol and tobacco consumption). This method was fully validated for 220 metabolites, yielding good linearity, high sensitivity and precision, accurate recovery rates, and negligible matrix effects. Furthermore, 127 additional phase II metabolites were also included in this method after identification in urines collected from acute dietary interventions with various foods. Thus, this metabolomic approach represents one-step further toward precision nutrition and the objective of improving the accurateness and comprehensiveness in the assessment of dietary patterns and lifestyles

    Hepatic transcriptomic profiles from barramundi, Lates calcarifer, as a means of assessing organism health and identifying stressors in rivers in northern Queensland

    Get PDF
    Resource managers need to differentiate between sites with and without contaminants and those where contaminants cause impacts. Potentially, transcriptomes could be used to evaluate sites where contaminant-induced effects may occur, to identify causative stressors of effects and potential adverse outcomes. To test this hypothesis, the hepatic transcriptomes in Barramundi, a perciforme teleost fish, (Lates calcarifer) from two reference sites, two agriculturally impacted sites sampled during the dry season, and an impacted site sampled during the wet season were compared. The hepatic transcriptome was profiled using RNA-Seq. Multivariate analysis showed that transcriptomes were clustered based on site and by inference water quality, but not sampling time. The largest differences in transcriptomic profile were between reference sites and a site sampled during high run-off, showing that impacted sites can be identified via RNA-Seq. Transcripts with altered abundance were linked to xenobiotic metabolism, peroxisome proliferation and stress responses, indicating putative stressors with the potential for adverse outcomes in barramundi

    Anti-Inflammatory Effects of Quercetin on High-Glucose and Pro-Inflammatory Cytokine Challenged Vascular Endothelial Cell Metabolism

    Get PDF
    SCOPE: Pro-inflammatory stimuli such as hyperglycemia and cytokines have been shown to negatively affect endothelial cell functions. The aim of this study is to assess the potential of quercetin and its human metabolites to overcome the deleterious effects of hyperglycemic or inflammatory conditions on the vascular endothelium by modulating endothelial cell metabolism. METHODS AND RESULTS: A metabolomics approach enabled identification and quantification of 27 human umbilical vein endothelial cell (HUVEC) metabolites. Treatment of HUVECs with high-glucose concentrations causes significant increases in lactate and glutamate concentrations. Quercetin inhibits glucose-induced increases in lactate and adenosine 5'-triphosphate (ATP) and also increased inosine concentrations. Tumor necrosis factor α-treatment (TNFα) of HUVECs causes increases in asparagine and decreases in aspartate concentrations. Co-treatment with quercetin reduces pyruvate concentrations compared to TNFα-only treated controls. Subsequently, it was shown that quercetin and its HUVEC phase-2 conjugates inhibit adenosine deaminase, xanthine oxidase and 5'nucleotidase (CD73) but not ectonucleoside triphosphate diphosphohydrolase-1 (CD39) or purine nucleoside phosphorylase activities. CONCLUSION: Quercetin was shown to alter the balance of HUVEC metabolites towards a less inflamed phenotype, both alone and in the presence of pro-inflammatory stimuli. These changes are consistent with the inhibition of particular enzymes involved in purine metabolism by quercetin and its HUVEC metabolites
    • 

    corecore