

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Impact of the East African Rift System on the routing of the deep water drainage network offshore Tanzania, western Indian Ocean

Citation for published version:

Maselli, V, Kroon, D, Iacopini, D, Wade, BS, Pearson, PN & De Haas, H 2019, 'Impact of the East African Rift System on the routing of the deepwater drainage network offshore Tanzania, western Indian Ocean', *Basin Research*. https://doi.org/10.1111/bre.12398

Digital Object Identifier (DOI):

10.1111/bre.12398

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Basin Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Impact of the East African Rift System on the routing of the deep-water drainage network offshore Tanzania, western Indian Ocean.

Journal:	Basin Research
Manuscript ID	BRE-164-2018.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	20-Jun-2019
Complete List of Authors:	Maselli, Vittorio; University of Aberdeen, Department of Geology and Petroleum Geology; Dalhousie University, Department of Earth Sciences, Life Sciences Centre Kroon, Dick; University of Edinburgh School of GeoSciences Iacopini, David; University of Aberdeen, School of Geosciences Pearson, Paul; Cardiff University, School of Earth and Ocean Sciences Wade, Bridget; University College London, Earth Sciences de Haas, Henk; Utrecht University, Royal Netherlands Institute for Sea Research, National Marine Facilities Department
Keywords:	East African Rift System (EARS), Indian Ocean, Davie Ridge, Submarine Canyons, Tanzania, Sediment routing system

1	Title: Impact of the East African Rift System on the routing of the deep-water drainage
2	network <u>offshore Tanzania</u> , western Indian Ocean.
3	
4	Authors
5	Vittorio Maselli ^{1,2} , Dick Kroon ³ , David Iacopini ⁴ Iacopini ² , Bridget S. Wade ⁴ , Paul N.
6	Pearson ⁵ , Henk de Haas ⁶ .
7	
8	Affiliations
9	²¹ Department of Earth Sciences, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax,
10	Nova Scotia, Canada.
11	⁴² School of Geosciences, University of Aberdeen, Meston Bld., King's College, Aberdeen, United
12	Kingdom.
13	² Department of Earth Sciences, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax,
14	Nova Scotia, Canada.
15	³ School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom.
16	⁴ Department of Earth Sciences, University College London, Gower Street, London, United Kingdom.
17	⁵ School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom.
18	⁶ Royal Netherlands Institute for Sea Research, National Marine Facilities Department and Utrecht
19	University, Netherlands.
20	
21	Corresponding Author: vittorio maselli@dal.ca_vittorio maselli@abdn.ac.uk
	<u>corresponding radiors radional and and and and and and and and and and</u>
22	

- 23 Keywords: East African Rift System (EARS), Indian Ocean, Davie Ridge, Submarine
- 24 Canyons, DrainageSediment routing system, Submarine Canyons, Tanzania, Indian
- 25 <u>Ocean</u>.

26 Abstract

27 The East African Rift Systems (EARS) exertedhas had a major influence on river 28 drainage basins and the regional climate of east Africa during the Cenozoic. Recent 29 studies have highlighted an offshore branch of the EARS in the western Indian Ocean, 30 where the Kerimbas Graben and the Davie Ridge represent its sea floor expression. 31 HoweverTo date, a clear picture of the impact and timing of the this EARS offshore 32 branch EARS on the physiography of the continental margin of the western Indian 33 Ocean, and associated sediment dispersal pathways, is still missing, and associated 34 sediment dispersal pathways, is still missing. TThis study presents new evidence for 35 four giant and supra-elevated canyons along the northern portion of the Davie Ridge 36 offshore Tanzania. Seismic and multibeam bathymetric data highlight that the 37 southernmost three canyons which are now -inactive, supra-elevated relative to with the 38 adjacent sea floor of the Kerimbas Graben and disconnected from the modern slope 39 systems offshore the Rovuma and Rufiji River deltas. RRegional correlation of dated 40 seismic horizons, integrated with well data and sediment samples and high resolution 41 bathymetric data, proves that the tectonic activity driving the uplift of the Davie Ridge 42 in this area -started in the Plio-Quaternaryduring the middle-upper Miocene and is still 43 active, as suggested by the presence of fault escarpments at the sea floor and by the 44 location and magnitude of recent earthquakes. Our findings contribute toin placing the 45 Kerimbas Graben and the Davie Ridge offshore Tanzania in the regional geodynamic 46 context of the the western Indian Ocean and , show how the tectonics of the the effect of 47 the offshore branch of the EARS modified the physiography of the margin, re-routing 48 the deep-water drainage network since the middle Miocene. Future studies are needed to 49 understand the influence of changing sea floor topography on the western Indian Ocean circulationon sediment distribution pathways, and to evaluate the potential of the EARS 50

51 underline the need of considering the offshore tectonics-activity in generating
52 tsunamigenic events in future tsunami hazards assessments in East Africa.
53

54 **1. Introduction**

55 Tectonics exerts an overarching control on the evolution of terrestrial and marine 56 topographylandscapes, mainly through the modification of surface the topographic relief 57 (Leeder and Jackson, 1993; Schumm et al., 2000). In the last decades, a huge effort has 58 increased our understanding of geodynamic processes leading to the onset of the East 59 African Rift Systems (EARS; (Ebinger and Sleep, 1998; Moucha and Forte, 2011 and 60 references therein). However, there is very little knowledge of the links between the 61 Neogene EARS tectonics of the EARS and the development of structural features in the 62 western Indian Ocean. 63 The timing of the iInitiation of the EARS can be trace, datesd backd back to the an 64 Oligocene (Macgregor, 2015, and references therein)., The origin of the EARS has been 65 related to , when the onset of a mantle plume, which generated a topographic anomaly 66 beneath the Ethiopian and East Africa plateaux (Ebinger and Sleep, 1998) generated a 67 topographic anomaly(Ebinger and Sleep, 1998). referred to as the EARS. Normal faulting and regional uplift associated with the EARS exerted a major control on the 68 69 evolution development of the drainage basins of large African rivers, such as the Congo, 70 Nile and Zambesi (Goudie, 2005; Stankiewicz and de Wit, 2006; Roberts et al., 2012), 71 and on the formation of rift lakes (Cohen et al., 1993; MacGregor Macgregor, 2015). 72 After the seminal work of Mougenot et al. (1986), a recent study by Franke et al. (2015) 73 highlighted the stratigraphy and architecture of the offshore branch of EARS in the 74 western Somali Indian Ocean Basin offshore Mozambique, Here, the rift consists of a

75	juvenile fault zone at about 17° S, and of the Lacerda half-graben and the southern part
76	of the Kerimbas graben up to ca. 10° S following previous results using remote sensing
77	data, earthquakes distribution and focal mechanisms (Franke et al., 2015), and
78	references therein) Farther north, offshore of Tanzania, the EARS stretches along the
79	northern part of Kerimbas Graben, which is characterized by a well-developed N-S
80	trending depression bordered by normal faults and confined on its eastern side by the
81	Davie Ridge (Fig. 1). Although the effects of EARS in modifying subaerial landscapes,
82	and its consequence on the evolution of early hominids humans evolution and
83	atmospheric circulation, have been investigated established (Sepulchre et al., 2006;
84	Maslin et al., 2014), the control of EARS on location and shape of the deep-water
85	drainage network have has not been investigated researched, and a clear picture of the
86	evolution of the western Indian Ocean is still missing.
87	Our-This contribution presents the discovery of four giant deep-water canyons (up to 15
88	km wide and up to 850 m deep in water depths >2,500 mxxxwidth xxx depth), herein
89	named C-1 to C-4 from north to south, incising the Davie Ridge and of which three (C-2
90	to C-4) are currently disconnected from the active slope channels offshore the Rovuma
91	and Rufiji River deltas. The three canyonsse appear to be relict features corroborating
92	the existence of an older drainage network that was destroyed by recent the tectonic
93	activity associated with the offshore branch of EARS. Our findings reveal how EARS
94	affected the physiography of the western Indian Ocean, resulting in the formation of a
95	new sediment routing system, and provides new insights in the chronology and
96	outbuilding architectural features of the margin.
97	

98 <u>23. Geological setting</u>

99	The history of the Wwestern Indian Ocean can be traced back to the Early Jurassic,
100	when the onset of rifting occurred between Madagascar and Africa (Revees and de Wit,
101	2000; Revees et al., 2016). Sea floor spreading started in the Middle Jurassic and
102	continued until the Early Cretaceous (Coffin and Rabinowitz, 1992), leading to the
103	southward drift of Madagascar along the dextral strike-slip structures of the Davie
104	Fracture (or at least along part of it, see below and discussion in Klimke and Franke,
105	2016) and the Lebombo-Explora Fracture Zones (Revees and de Wit, 2000). From the
106	Cretaceous to the Paleogene (mid-Oligocene), the East African margin was
107	characterized by a period of stability and thermal subsidence (Kent et al., 1971; Salman
108	and Abdula,; 1995), which was recorded by deposition of the Kilwa Group in Tanzania
109	(Nicholas et al., 2006; 2007). The passive margin phase was interrupted by a period of
110	neo-rifting and tectonic reactivation: the onset of new mantle circulation beneath the
111	African continent (Ebinger and Sleep; 1998; Moucha and Forte, 2011), known as the
112	African super-swell (Nyblade and Robinson, 1994), evolved into the EARS (Chorowitz,
113	2005), with synchronous initiation along its western and eastern branches (Roberts et al.,
114	2012). Normal faulting and rifting wasere widespread along the Tanzanian margin
115	during the Miocene, promoting the formation of topographic highs, such as Zanzibar,
116	Pemba and Mafia Islands, and lows, such as the coastal basins and the Kerimbas Graben
117	(Kent et al., 1971; Mougenot et al., 1986). Recent studies, however, highlighted the
118	presence of folding and inversion structures on a seismic profile across the channel north
119	of Zanzibar Island (Sii and Underhill, 2015), suggesting that the islands are
120	compressional features associated with fault reactivation and basin inversion.
121	
122	<u>32.1. Kerimbas Graben and Davie Ridge in the offshore of Tanzania</u>

123	The EARS consists of a series of tectonic basins bordered by uplifted shoulders, which
124	extend for thousands of kilometres along two main lineaments, called the western and
125	eastern branches (Chorowitz, 2005). The continuation of the eastern branch offshore of
126	Tanzania can be traced along the Pemba and Mafia basins, while farther to the south it
127	runs-and along the Kerimbas and LucernaLacerda Ggrabens (Fig. 1), until ending in a
128	juvenile fault zone at about 17° S-further to the south, in the offshore Mozambique (Fig.
129	1; Mougenot et al., 1988; Franke et al., 2015).
130	The Kerimbas Graben was firstly recognised by Mougenot et al. (1988) north of the
131	Saint-Lazare Seamount (Fig. 1). A compilation of recently acquired multibeam data
132	(Dorschel et al., 2018) highlight that the graben, north of a 12° S, can be divided in
133	threefour zones based on sea floor morphology and water depth (Fig. Figs. 1 and 2). In
134	zone The southern part (zone-1, which extends from the ; Fig. 2), between the Saint-
135	Lazare Seamount up to 11.5° S (Fig. 2), the graben is asymmetric, with the western side
136	running along the base of the slope of the northern Mozambique margin and gently
137	dipping at ca. 0.7° to the east, whereas the eastern flank corresponds to a 12° west-
138	dipping fault escarpment (Fig. 2, blue arrow). The sea floor eastward of the escarpment
139	shows a series of morphological steps related to N-S trending faults before gently
140	dipping towards the Indian Ocean (Fig. 2). In zone 2, between 11.5° S and 10°-20' S, the
141	Kerimbas S, is a 30-40 km wide symmetric graben bounded by ca. 15° steep flanks (Fig.
142	2, green and red arrows);. N-S trending lineaments, representing fault escarpments, are
143	visible at the flat-sea floor,, which -and it shows a flat floor lying lies at an average water
144	maximum depth of ca. 2,900 m and, gently dippings to the north (Figs. 1, 2). The
145	western side of the basingraben runs along the base of the slope in the offshore Rovuma
146	River delta, whereas-while the eastern side corresponds to the Davie Ridge (Fig. 42). A
147	series of channels and gullies cut the western flank and are visible on the sea floor (Figs.

148	<u>1, -12). The second third-z zone, located just offshore the Rovuma River between at 10°</u>
149	S (Fig. 2), corresponds to a bathymetric sill with a maximum water depth of ca. 2,750 m
150	(Fig. 2), located just offshore the main Rovuma Channel between 10° 20' S and 9° 05' S
151	(Fig. 1). Here, and it is lying at ca. 2,750 metres of water depth (Fig. 2). In this area, the
152	Kerimbas gGraben shows asymmetric flanks, with a gentler western side up to 1.5° and
153	a 12° dipping eastern side. In the third zone 4, reaching approximately 8.5° 40'-S, the
154	graben shows a different morphology with a maximum water depth up to ca. 3,500
155	metres and a maximum width up to 90 km (Figs. 1, 2). In this area, the western flank of
156	the graben partially corresponds to a structural high (the -Seagap Ridge) generated by
157	the movement tectonics of the Seagap transform fault Seagap Ridge (Fig. 2; Revees et
158	al., 2016), while the western side corresponds to the northern termination of the Davies
159	Ridge (Fig. 21). A series of arcuate steps are visible on the sea floor of the graben, likely
160	associated to normal faults developing at the base of the Davie Ridge (see
161	supplementary Figure S1).
162	The Davie Ridge appears as a bathymetric high roughly extending N-S that dissects the
163	continental slope in the offshore East Africa for more than 1,000 km south of 9° S
164	(Mahanjane, 2014; Courgeon et al., 2018). The ridge shows different maximum
165	elevation of the Davie Ridges (calculated as the depth difference between the top of the
166	ridge and the floor of the Kerimbas Graben along a section, see Figs. 1 and -2) shows in
167	the different zones described above (Fig. 2), with an overall decrease in elevation to the
168	north (Fig. 2). Heirtzler and Burroughs (1971) when discovering the firstly described the
169	Davie Ridge-described it as a ridge-like feature, asymmetric, with a steep western flank
170	(up to 30°) and a gently dipping eastern flank (ca. 0.65° in the offshore Rovuma delta;
171	Γ_{i} (1) Π_{i} (1071) interpreted the ride of the rest from Γ_{i}
	Fig. 1). Heirtzier and Burroughs (1971) interpreted the fidge as a transform fault
172	resulting from the southward drift of Madagascar relative to the African continent. The

173	continuation of the Davie Ridge north of 9° S, where the ridge does not have a
174	prominent morphological expression on the sea floor (Fig. 1), has been derived by
175	gravimetric and magnetic data showing a series of anomalies, up to 2.5° S (Rabinowitz,
176	1971; Scrutton, 1978; Coffin and Rabinowitz, 1987). The entire lineament, extending
177	from ca. 20° S to 2.5° S, named the Davie Fracture Zone by Scrutton (1978), was
178	interpreted as the bathymetric expression of the transform fault that accommodated
179	southward drift of Madagascar (Scrutton, 1978). A recent study from Klimke and
180	Franke (2016), however, argued the existence of a transform fault extending from
181	northern Mozambique-up to Kenya and interpreted the Davie Ridge visible on the
182	bathymetry between 15° S and 9° S (on the eastern side of the Lacerda and Kerimbas
183	grabens) as a rift-flank uplift, originated during the Neogene and probably correlated
184	with the evolution of the EARS in the offshore domain. This interpretation is in
185	agreement with GPS vector data (Calais et al., 2006), and focal mechanisms of recorded
186	earthquakes, showing pure normal faulting with N-NW trending nodal planes and
187	roughly E-W extensional failure (Grimison and Chen, 1988; Yang and Chen, 2010).
188	
189	<u>3</u> 2. Data and Methods
190	<u>3</u> 2.1. 2D Seismic data
191	The present study uses two seismic datasets: (1) the GLOW survey (Paleogene GLObal
192	Warming events, GLOW Cruise; Kroon and the Shipboard Scientific Party, 2010)
193	performed onboard of the R/V Pelagia in 2009 and consisting of 2,450 km of seismic
194	lines; and (2) the multi-client 2D seismic dataset Tanzania, acquired by WesternGeco-
195	Schlumberger in 1999-2000 and consisting of 5,550 km of seismic lines.

Page 10 of 48

Basin Research

196	The GLOW seismic survey was performed using an array of four airgun sources (10, 20,
197	and 2×40 in ³) and a 24-channel streamer as a receiver. The seismic data were recorded
198	using the GeoResources Geo-Trace 24 system. The peak frequency of the combined
199	signal of the guns is within the range of 50-150 Hz, with lower amplitude frequencies up
200	to 400 Hz. The guns were towed in a frame at a depth of 1.7 metres, 42 metres behind
201	the stern of the ship, and fired every 10 seconds at a pressure of 115 bars. The average
202	sailing speed was 4.2 knots that which resulted in an average distance between the shots
203	of 21 metres. The streamer consisted of four 63 m long active sections with 6 channels
204	each (channel interval 10.5 metres). Each channel consists of ten 1-m-spaced Teledyne
205	T2 hydrophones. The streamer is ended by a 0.5 m tail-end, which contains the last
206	terminating end connector. The receiver was attached to the ship by a tow leader of 60 m
207	and a stretch member of 25 m. The streamer was towed at a depth of 1 metre below the
208	surface. Three (front, mid, end) I/O systems 5010 DigiBIRDS were used to keep the
209	streamer at depth. During the recording of line 2 one bird failed. From line 3 onwards
210	only 2 birds (front, end) were used. This had no noticeable effect on the streamer
211	position. The record length was 7,500 ms (including the water column) and the sampling
212	rate was 2 kHz for the first lines. From line 5 onwards the sampling rate was 1 kHz. The
213	data were recorded with a 10 Hz high pass filter. The vertical resolution of the seismic
214	data in the investigated section ranges between 2.5 and 5 metres, calculated considering
215	a peak frequency of 150-200 Hz and interval velocities of 1,800-2,900 msec ⁻¹ .
216	Processing of the data was performed at NIOZ by means of the software package
217	RadexPro (DECO Geophysical, Moscow). The processing sequence included data
218	loading, 30-700 Hz bandpass filtering, amplitude correction, an interactive velocity
219	analysis, NMO correction, 6 fold CDP-stacking, Stolt F-K migration and water column
220	muting. The present study uses two seismic datasets: (1) a seismic survey (Paleogene

GLObal Warming events, 'GLOW' Cruise, Kroon and the Shipboard Scientific Party,
2010) performed on board of the RV Pelagia in 2009 consisting of 2,450 km of seismic
lines, and (2) the multi-client 2D seismic dataset Tanzania, acquired by WesternGecoSchlumberger in 1999-2000 consisting of 5,550 km of seismic lines.

225

226 The GLOW seismic survey was performed carried using three3 airgun s sources (of 20, 227 30 and 40 in^{cubic inch3}) each as a source and a 24-channel streamer as a receiver. The 228 streamer consisteds of four 63 m long active sections with 6 channels each, and the 229 seismic data were recorded. Data recording was performed using the Geo-Resources 230 Marine MultiGeo-Trace 24 hard- and software. The system has a 24 channel digital pre-231 amplification system and 24 channel bandpass filter already integrated. The record 232 length was 7,500 ms (including the water column) and , the sampling rate was 2 kHz. 233 The data were recorded with a 10 Hz high pass filter. Processing of the data was 234 performed at NIOZ by means of the software package RadexPro (DECO Geophysical, 235 Moscow). The processing sequence included data loading, 30-700 Hz bandpass filtering, 236 amplitude correction, an interactive velocity analysis, NMO correction, CDP-stacking, 237 Stolt F-K migration and water column muting.

238 The 2D survey offshore Tanzania was shot by Western-Ggecophysical using a 5,200-m-239 long streamer length and with hydrophones at a 12.5 m receiver interval. In 2012, the 240 legacy 2D was reprocessed by WesternGeco using Anisotropic Kirchoff pre-stack Time 241 time Mmigration (add ref), to obtain an improved signal resolution. One of the key 242 processing challenges was represented by the presence of strong sea-bed multiples and 243 inter-bed multiples. The reprocessed 2D seismic lines has produced an overall better 244 overall-reflection detail, -enhanced data resolution, and improved fault definitions and 245 events continuity, thus which providinges much higher confidence during interpretation

246	of geological features. The vertical resolution of the seismic data in the investigated
247	section ranges between 7 and 14 metres, calculated considering a peak frequency of 50-
248	60 Hz and interval velocities of 1,800-2,900 msec ⁻¹ .
249	
250	A post-stack seismic attribute, the Seismic attributes were generated for helping
251	interpretation. In particular, the r_root-mean-square (RMS) seismic-amplitude, was used
252	to support the interpretation. In detail, the RMS, which which represents the square root
253	of the arithmetic mean of the squares of the <u>seismic</u> amplitudes within a defined window
254	interval, helpedwere used_to unravel the presence of coarse-grained facies (Rijks and
255	Jauffred, 1991; Chen and Sidney, 1997; Brown, 2004).
256	Additional data used in this study include the multichannel seismic profiles acquired
257	during the R/V VEMA cruises 3618 and 3619 (Coffin and Rabinowitz, 1982), and
258	available through the Marine Geoscience Data System (http://www.marine-
259	geo.org/index.php), and published seismic profiles (Mougenot et al., 1986; Franke et al.,
260	<u>2015).</u>
261	Three seismic horizons, named H1 to H3, and associated seismic sequences (S1 to S4),
262	were identified based on seismic facies and reflector terminations, mapped throughout
263	the study area, and integrated with all the data available in literature in order to develop
264	a chronological framework for the Davie Ridge.
265	
266	
267	<u>32.2. Multibeam Echosounder echosounder data</u>
268	During the GLOW survey, Multibeam survebathymetricys data were collectedearried
269	out with a with the Konggsberg EM302 multibeam echosounder, permanently installed

270 on board the R/V Pelagia. The maximum swath opening angle is-was 150 degrees. The 271 transmitter array hasd a beam opening angle of 1 degree while the receiver array hads a 272 beam opening angle of 2 degrees. These arrays are-were connected to a transceiver unit 273 (TRU). The TRU receiveds the ships attitude (corrections for heave, roll, and pitch and 274 heading.) from a Kongsberg MRU5 motion sensor. A Seapath200 serveds as positioning 275 and heading system and also sends its data to the TRU. The sound velocity in the water 276 column was is determined from a salinity/temperature CTD deployment and calculated 277 using the Chen-Millero formula (Chen and Millero, 1977). Processing of the Ddata 278 Processing wasas performed using the Neptune -(Kongsberg) and Fledermaus (QPS) 279 software packages. The data were presented as a $100 \times \frac{100}{100}$ m surface grid, that has 280 beenand integrated with the Southwest Indian Ocean Bathymetric Compilation 281 (swIOBC; Dorschel et al., 2018), available at a 250 m horizontal resolution.

282

283 <u>3</u>2.3. Sediment samples

284 Short seabed samples were collected during the GLOW cruise using a NIOZ designed 285 box corer with a . The box core has a barrel with a diameter of 30 cm and a height of 55 286 cm. The box corer wasis supplied with a lid that closes the box from the top as soon as it 287 has penetrated the sediment. This configuration avoided the In this way sloshing of the 288 water above the sediment surface is avoided when tduring the recoveryhe core is 289 retrieved and hoisted on deck, resulting in an undisturbed sample of the seabed surface 290 sediments. On deck the bottom water was siphoned off and the surface sediments were 291 described and photographed. Four plastic liners were inserted and retrieved from the 292 core. These subsamples were stored at a temperature of 4° C. A key objective of the 293 GLOW survey was to take sediment cores where fossil stratigraphic layers crop out at 294 the sea floor in order to provide age control on seismic reflectors. This occurred on

flanks of submarine channels (see supplementary material). Samples were washed over
a 63 micron sieve and dried at 40° C in an oven. Washed residues were studied for index
fossils, and biostratigraphic age assignments were made <u>using-following</u> Wade et al.
(2011).

299	
300	<u>3.4. Well data</u>
301	Eight exploration wells (Fig. 1) with check-shots, velocity models, and biostratigraphic
302	information were made available for this study by Royal Dutch Shell and Shell
303	Tanzania. The wells were tied to specific the seismic reflectors -allowing the age
304	determination of the seismic horizons.ascorrelating specific reflectors to
305	3. Geological setting
306	3.5. Seismic interpretation
307	Three seismic horizons, named H1-to H3, and associated seismic sequences, were
308	identified based on seismic facies and reflector terminations and mapped throughout the
309	study area. In detail, the three sequences, named S1 to S3 from deep to shallow, show
310	diagnostic seismic facies, reflection geometries, and RMS amplitude values. Sequence
311	S2 was further subdivided in two units (named S2a and S2b) by horizon J (Figs. 3, 4).
312	
313	The history of the Western Indian Ocean can be traced back to the Early Jurassic, when
314	the onset of rifting occurred between Madagasear and Africa (Revees and de Wit, 2000;
315	Revees et al., 2016). Sea floor spreading started in the Middle Jurassie and continued
316	until the Early Cretaceous (Coffin and Rabinowitz, 1992), leading to the southward drift
317	of Madagasear along the dextral strike-slip structures of the Davie Fracture (or at least
318	along part of it, see below and discussion in Klimke and Franke, 2016) and the

319	Lebombo-Explora Fracture Zones (Revees and de Wit, 2000). From the Cretaceous to
320	the Paleogene (mid-Oligoeene), the East African margin was characterized by a period
321	of stability and thermal subsidence (Kent et al., 1971; Salman and Abdula; 1995), which
322	was recorded by deposition of the Kilwa Group in Tanzania (Nicholas et al., 2006;
323	2007). The passive margin phase was interrupted by neo-rifting and tectonic
324	reactivation: the onset of new mantle circulation beneath the African continent (Ebinger
325	and Sleep; 1998; Moucha and Forte, 2011), known as the African super-swell (Nyblade
326	and Robinson, 1994), evolved into the EARS (Chorowitz, 2005), with synchronous
327	initiation along its western and eastern branches (Roberts et al., 2012). Normal faulting
328	and rifting was widespread along the Tanzanian margin during the Miocene, promoting
329	formation of topographic highs, as Zanzibar, Pemba and Mafia Islands, and lows, such
330	as the coastal basins and the Kerimbas Graben (Kent et al., 1971; Mougenot et al.,
331	1986). Recent studies, however, highlighted the presence of folding and inversion
332	structures on a seismic profile across the channel north of Zanzibar Island (Sii and
333	Underhill, 2015), suggesting that the islands are compressional features associated with
334	fault reactivation and basin inversion.
335	
336	3.1. Kerimbas Graben and Davie Ridge in the offshore of Tanzania
337	The EARS consists of a series of tectonic basins bordered by uplifted shoulders, which
338	extend for thousands of kilometres along two main lineaments, called the western and
339	eastern branches (Chorowitz, 2005). The continuation of the eastern branch offshore of
340	Tanzania can be traced along the Pemba and Mafia basins and along the Kerimbas and
341	Lucerna Grabens further to the south (Fig. 1; Mougenot et al., 1988; Franke et al., 2015).

Page 16 of 48

342	The Kerimbas Graben was firstly recognised by Mougenot et al. (1988) north of the
343	Saint-Lazare Seamount (Fig. 1). A compilation of recently acquired multibeam data
344	highlight that the graben, north of a 12° S, can be divided in three zones based on sea
345	floor morphology and water depth (Figs. 1 and 2). The southern part (zone 1; Fig. 2),
346	between the Saint-Lazare Seamount up to 10° 20' S, is a 30-40 km wide symmetric
347	graben bounded by ca. 15° steep flanks, and it shows a flat floor lying at a maximum
348	depth of ca. 2900 m, gently dipping to the north (Figs. 1, 2). The western side of the
349	basin runs along the base of the slope in the offshore Rovuma delta while the eastern
350	side corresponds to the Davie Ridge (Fig. 1). A series of channels and gullies cut the
351	western flank and are visible on the sea floor (Fig. 1). The second zone corresponds to a
352	bathymetric sill, located just offshore the main Rovuma Channel between 10° 20' S and
353	9° 05' S (Fig. 1), and it is lying at ca. 2750 metres of water depth (Fig. 2). In this area,
354	the graben shows asymmetric flanks, with a gentler western side up to 1.5° and a 12°
355	dipping eastern side. In the third zone, reaching approximately 8° 40' S, the graben
356	shows a different morphology with a maximum water depth up to ca. 3500 metres and a
357	maximum width up to 90 km (Figs. 1, 2). In this area, the western flank of the graben
358	partially corresponds to a structural high generated by movement of the Seagap Ridge
359	(Fig. 2; Revees et al., 2016), while the western side corresponds to the northern
360	termination of the Davies Ridge (Fig. 1). A series of arcuate steps are visible on the
361	floor of the graben, likely associated to normal faults developing at the base of the Davie
362	Ridge (see supplementary Figure S1).
363	The Davie Ridge appears as a bathymetric high roughly extending N-S that dissects the
364	continental slope in the offshore East Africa for more than 1000 km south of 9° S
365	(Mahanjane, 2014; Courgeon et al., 2018). The ridge shows different maximum
366	elevations (calculated as the depth difference between the top of the ridge and the floor

367	of the Kerimbas Graben along a section, see Fig. 2) in the different zones described
368	above (Fig. 2), with an overall decrease in elevation to the north. Heirtzler and
369	Burroughs (1971) when discovering the Davie Ridge described it as a ridge-like feature,
370	asymmetric, with a steep western flank (up to 30°) and a gently dipping castern flank
371	(ca. 0.65° in the offshore Rovuma delta; Fig. 1). Heirtzler and Burroughs (1971)
372	interpreted the ridge as a transform fault resulting from the southward drift of
373	Madagascar relative to the African continent. The continuation of the Davie Ridge north
374	of 9° S, where the ridge does not have a prominent morphological expression on the sea
375	floor (Fig. 1), has been derived by gravimetric and magnetic data showing a series of
376	anomalies, up to 2.5° S (Rabinowitz, 1971; Scrutton, 1978; Coffin and Rabinowitz,
377	1987). The entire lineament, extending from ca. 20° S to 2.5° S, named the Davie
378	Fracture Zone by Scrutton (1978), was interpreted as the bathymetric expression of the
379	transform fault that accommodated southward drift of Madagascar (Scrutton, 1978). A
380	recent study from Klimke and Franke (2016), however, argued the existence of a
381	transform fault extending from northern Mozambique up to Kenya and interpreted the
382	Davie Ridge visible on the bathymetry between 15° S and 9° S (on the eastern side of
383	the Lacerda and Kerimbas grabens) as a rift-flank uplift, originated during the Neogene
384	and probably correlated with the evolution of the EARS in the offshore domain. This
385	interpretation is in agreement with GPS vector data (Calais et al., 2006), and focal
386	mechanisms of recorded earthquakes, showing pure normal faulting with N-NW
387	trending nodal planes and roughly E-W extensional failure (Grimison and Chen, 1988;
388	Yang and Chen, 2010).
 389	

- **390 4. Results**
- 391 *4.1. Stratigraphy of the Davie Ridge*

392	The stratigraphy of the of the Davie Ridge is highlighted in Figure 3, on a seismic
393	profileoriented NNSW-SSE along the crest of the ridge, and in Figure 4, on a section
394	oriented W-E crossing the eastern side of the Kerimbas Graben. (see Fig. 1 for location).
395	Three laterally-continuous seismic horizons, named H1 to H3, and associated seismic
396	sequences (S1 to S3), were identified based on seismic facies and reflector terminations,
397	mapped throughout the study area, and integrated with all the data available in literature
398	in order to develop a chronological framework for the Davie Ridge. The Tthree
399	sequences, bounded by three key stratigraphic horizons (H1 to H3) plus the sea floor,
400	are recognised. Each sequence, n, named S1 to S3 from shallow deep to deepshallow,
401	shows diagnostic seismic facies, reflection geometries, and RMS amplitude values and
402	reflection geometries.
403	Horizon H1 at the base of sequence S1 presents a laterally variable seismic reflection
404	amplitude (Fig. 3). At places, H1 shows channel-like erosional features that cuts older
405	sediments, as highlighted by the presence of the presence of truncated reflectors (Fig. 4)
406	(add in figure). Overall, Ssequence S1 (, conficonfined between H1 and H2), shows
407	Llow amplitude to transparent reflections, wavy and discontinuous (Fig. 3).,
408	characterize sequence 3 (confined between H2 and H3). When visible, seismic
409	reflections are often wavy to discontinuous (Fig. 3). Overall, S3-S1 shows-has low RMS
410	amplitude values (Fig. 4). Higher amplitude reflections, sub-horizonal or shingled,
411	characterize the infill of the erosional features (Fig. 4) The base of the sequence (H3)
412	corresponds to an erosional surface showing a laterally variable seismic reflection
413	amplitude. Below horizon H3H1, seismic reflections are mainly sub-parallel, with -small
414	lateral changes of seismic amplitude response and overall-low RMS amplitude values.
415	Horizon 2 shows a lateral change in seismic reflection amplitude and a marked erosional
416	character, as highlighted by truncated reflectors belonging to S1Sequence S2

417	(confined between H2 and H3) is dived in two units by horizon J (Figs. 3, 4). Unit S2a
418	(between H2 and J) shows complicated seismic facies, comprising parallel to wavy
419	reflection packages laterally changing from low to high amplitude often accompanied by
420	a change in thickness (Figs. 3, 4). High amplitude reflections characterize the infill of v-
421	shaped (channel-like) erosional depressions (Fig. 4). Overall, S2a shows high RMS
422	amplitude values (Fig. 3). Tabular to lens-shaped deposits showing chaotic to
423	transparent reflections are widespread within S2a and are characterized by low RMS
424	amplitude values (Fig. 4). Unit S2b (between H1J and H2H3) is characterized by an
425	upper unit (2a) with continuous, high-frequency and low amplitude reflections, mainly
426	with low RMS amplitude values (Figs. 3, 4). The unit presents intervals characterized by
427	higher-amplitude and wavy reflections, wavy or showing a v-shaped basal contact-with
428	higher RMS amplitude values. The upper part of S2b is concordant with the overlying
429	sequence S3, and the main difference is a downwardupward decrease in the
430	reflection amplitude, as shown by the RMS profile (Fig. 3). Horizon J mainly develops
431	at the top of a series of high-RMS-amplitude reflection packages (Fig. 3). In the high-
432	resolution GLOW seismic profiles, sequence - The lower part of S2 (2b) shows a more
433	complicated seismic facies, comprising parallel to wavy reflection packages laterally
434	changing from low to high amplitude often accompanied by a change in thickness (Fig.
435	3). High amplitude reflections often characterize the infill of v-shaped (channel-like)
436	erosional depressions. Tabular to lens-shaped deposits showing chaotic to transparent
437	reflections are widespread within the lower part of the sequence, and are characterized
438	by low RMS amplitude values.
439	S1-S3 (between H3 and the sea floor and H1) is characterized by presents a lower unit
440	(S13ba) mainly characterized by an alternation of parallel and continuous reflections,
441	organized in high- and low-amplitude packages (Fig. 3),- an upper unit (S34ba) showing

442 discontinuous to chaotic seismic reflections with a laterally variable amplitude., and a 443 lower unit (1b) mainly characterized by an alternation of parallel and continuous 444 reflections, organized in high- and low-amplitude packages (Fig. 3). Overall, S1-S3 445 shows low RMS amplitude values, and a continuous positive reflection defines horizon 446 1-3 (Fig. 3). S2 (between H1 and H2) is characterized by an upper unit (2a) with 447 continuous, high-frequency and low amplitude reflections, mainly with low RMS 448 amplitude values (Fig. 3). In places, the unit presents intervals characterized by higher-449 amplitude reflections, wavy or showing a v-shaped basal contact with high RMS 450 amplitude values. The upper part of S2 is concordant with the overlying S1, and the 451 main difference is a downward increase in the reflection amplitude, as shown by the 452 RMS. The lower part of S2 (2b) shows a more complicated seismic facies, comprising 453 parallel to wavy reflection packages laterally changing from low to high amplitude often 454 accompanied by a change in thickness (Fig. 3). High amplitude reflections often 455 characterize the infill of v-shaped (channel-like) erosional depressions. Tabular to lens-456 shaped deposits showing chaotic to transparent reflections are widespread within the 457 lower part of the sequence, and are characterized by low RMS amplitude values. 458 Horizon 2 shows a lateral change in seismic reflection amplitude and a marked erosional 459 character. Low amplitude to transparent reflections characterize sequence 3 (confined 460 between H2 and H3). When visible, seismic reflections are often wavy to discontinuous 461 (Fig. 3). Overall, S3 shows low RMS amplitude values. The base of the sequence (H3) 462 corresponds to an erosional surface showing a laterally variable seismic reflection 463 amplitude. Below horizon H3, seismic reflections are mainly sub-parallel, with small 464 lateral changes of seismic amplitude response and overall low RMS amplitude values. 465

466 *4.2. Super-elevated abandoned canyons on the Davie Ridge*

467	Four giant canyons intersect the crest of the Davie Ridge, approximately running WSW
468	to ENE and named C-1 to C-4 from north to south (Figs. 3, 45). C-1 likely represents the
469	landward continuation of the Tanzania Channel, discovered by Bourget et al. (2008) in
470	the Indian Ocean abyssal plain (Fig. 1). Where highlighted by multibeam bathymetry,
471	The the canyons are up to 15 km wide and up to 850 metres deep (Fig. 45), and their -
472	The thalweg of each canyon, measured on the crest of the Davie Ridge, lies at
473	progressively deeper water depths northward, changing from ca. 2,700 meters for C-4 to
474	ca. $3_{2}500$ meters of water depth for C-1, which is located about 100 kilometres to the
475	north (Fig. 4 <u>5</u>). While canyons C-4 to C-2 show a U-shaped basal surface, canyon C-1
476	presents has aa flat bottom (Fig. 5)topography. Seismic profiles highlight that most of
477	the canyons lack a sedimentary infill, except for canyon C-1, showing ca. 0.10013 -
478	mseceters-thick -of basal deposits characterized by with high-amplitude and parallel
479	reflections (Fig. 5). Due to the northward thinning of S1 S3 and S2, While canyon C-4
480	only cuts across horizon H1H3, while canyon C-1 cuts down to horizon H3-H1 (Figs. 3,
481	4 <u>5</u>). Multibeam data acquired along the crest of the Davie Ridge show <u>the</u> morphology
482	of the canyons (Fig. 4 <u>5</u>). Channel C-1 shows presents steep flanks, up to 25°, with the
483	southern one hosting the escarpments of two small landslides (Fig. 4 <u>5,</u> -and see
484	supplementary Figure S2). The lack of landslide deposits along the canyon axis suggests
485	that the slumped material was removed by turbidity currents flowing along the canyon,
486	indicating a recent activity. Direct sampling of the canyon supports this hypothesis, as
487	coarse-grained turbidite deposits are present closely below the sea floor (see
488	supplementary figure Figure <u>8182</u>). A gentler topography characterizes canyon C-2,
489	showing $< 10^{\circ}$ dipping flanks (Fig. 4 <u>5</u>). The canyon is cut by a normal fault that creates
490	a step on the sea floor on which sediments, probably transported by bottom currents,
491	may accumulate forming a field of sediment waves (Fig. 4-5 and see supplementary
- 1	

492 Figure S3). A small sediment drift forms is visible on its northern side and is probably 493 originated by the action of bottom currents as well, which can be also related to bottom 494 current activity (Fig. 45). The North Atlantic Deep Water (NADW) current is 495 responsible of the deep-water circulation in the western Indian Ocean along the Davie 496 Ridge (van Aken et al., 2004). The orientation of the crest of the sediment waves 497 suggests that bottom currents are directed towards NNE, in agreement with direct 498 observations of the NADW in this area (van Aken et al., 2004). Canyon C-3 is the most 499 noticeable feature on the sea floor as it shows a strong meandering behaviour while 500 crossing the ridge (Fig. 45). The canyon presents up to 25° steep flanks, with normal 501 faults on its western side (Fig. 45). The multibeam data reveal a small landslide 502 escarpment on the eastern side, with slumped material accumulating on the canyon 503 floor, suggesting that activity of turbidity currents along the canyon was ceased at the 504 time the landslide occurred (Fig. 4-5 and see supplementary Figure S4). In addition, the 505 smoothed surface topography of the landslide escarpment and of the deposits suggests 506 that bottom currents probably reworked this area. C-4 is the shallower canyon 507 discovered during the GLOW cruise (Fig. 45). The canyon shows a meander-like 508 morphology, with a gentler southern side and steep, up to 20°, northern flank presenting 509 a series of arcuate escarpments, probably generated by sediment failures (Fig. 4-5 and 510 see supplementary Figure S5). The lack of a thick pelagic cover on the canyon flanks 511 allowed direct sediment sampling of outcropping strata (Box-corer samples GW04 and 512 GW13), providing additional age constraints (Table 1). A 3D view of the area (Fig. 56) 513 highlights the geometric relation between the canyons, the Davie Ridge and the 514 Kerimbas Graben. The canyons only incise the Davie Ridge, without and are not visible 515 on the affecting the sea floor of the Kerimbas Graben, which shows a rather flat 516 topography only interrupted by N-S trending fault escarpments (Figs. 4, 6). Indeed, the

517	thalwegs s-of the southernmost three canyons are uplifted relatively to the adjacent
518	westward sea floor in the Kerimbas Graben, and the canyons on the Davie
519	Ridgeimplying that the canyons are disconnected from the active slope canyons canyons
520	in the offshore Rovuma <u>and Rufiji River</u> delta <u>s</u> . The <u>presence of N-S</u> fault systems
521	escarpments visible on the multibeam bathymetry and in in-cross section on seismic
522	lines data generate topographic steps on the sea floor (supplementary Figure S1),
523	suggestsing a recent activity of the offshore branch of the EARS, as discussed also by
524	Franke et al. (2015). This is further confirmed by the location and focal mechanism of
525	recent earthquakes (Grimison and Chen, 1988; Yang and Chen, 2010, and
526	supplementary Figure S1).
527	
528	4.3. Chronology of the Davie Ridge
529	The chronology of the Davie Ridge, summarized in Figure 7, was estimated using
530	biostratigraphic information from eight explorations wells, sediment samples, and
531	correlations with published data The correlation of horizons H1 to H3 with dated
532	stratigraphic horizons presented in previous studies (Scrutton, 1978; Mougenot et al.,
533	1986; Coffin and Rabinowitz, 1992; Coffin and Rabinowitz, 1992; McDonough et al.,
534	2013; O' Sullivan, 2013; Franke et al., 2015;-Sii and Underhill, 2015; Klimke and
535	Franke, 2016; Sansom, 2018)) allowed for the definition of the chronology of the Davie
536	Ridge, summarized in Figure 6. Additional chronological constraints come from the
537	results of the recent hydrocarbon exploration in the area (McDonough et al., 2013; Sii,
538	and Underhill, 2015; Sansom, 2018) and correlaton with DSDP Site 242 (Wade,
539	unpublished). Taking into account the vertical resolution of the seismic data, sediments
540	in proximity of Considering the above: Horizon H1 (Fig. 7) are dated by the Last
541	Occurrence of Sphenolithus delphix (top Chattian, ~23.1 Ma; Raffi et al., 2006) and

542	correlates with the base of Ng1 sequence of Sansom (2017), with the top Oligocene
543	reflector (O) of Franke et al. (2015), and with horizon A ₁ of Mougenot et al. (1986).
544	Hhorizon H2 is dated by the disappearance of Helicosphaera perch-nielseniae and
545	Sphenolithus heteromorphus (Serravallian, ~13.5 Ma; Raffi et al., 2006; Boesiger et al.,
546	2017) and correlates with horizon A ₃₂ of Mougenot et al. (1986). H,-orizon J, for which
547	biostratigraphic information is are not available in the wells, most likely corresponds to
548	horizon A ₃ of Mougenot et al. (1986), which has been also defined as the late Miocene
549	reflector (LM)which has been defined by Franke et al. (2015). H-as the late Miocene
550	reflector (LM); Horizon H1-H3 corresponds to the top of Ng1 sequence of Sansom
551	(2017), base Pliocene (5.3 Ma), and correlates with horizon A_4 of Mougenot et al.
552	(1986) and dates back to the Pliocene; horizon H2 correlates with horizon A3 of
553	Mougenot et al. (1986), which has been defined by Franke et al. (2015) as the late
554	Miocene reflector (LM); horizon H3 H1 most likely correlates with A1 of Mougenot et
555	al. (1986) and the top Oligocene reflector (O) of Franke et al. (2015). In addition, the
556	age of Sequence sequence S2, and consequently of horizon $H1H3$, is confirmed by the
557	planktonic foraminifer assemblages of outcropping stratigraphic layerssampled on Davie
558	Ridge (Table 1). In detail, box corer sample GW04, recovered from the northern flank of
559	C-1 (Fig. 4-5 and supplementary material), represents Zone M14 (age 5.57-6.13 Ma;
560	Wade et al., 2011), while box corer sample GW13, recovered from the southern flank of
561	C-4 (Fig. 4-5 and supplementary material), is constrained to Zone PL1 (age 5.54-5.82
562	Ma; Wade et al., 2011).

- 563
- 564 5. Discussion and Conclusions

565 Correlation of seismic data and related attributes allowed evaluation of the deep-water
566 depositional history in the offshore Tanzania. In detail₃₇ moving upward from Sequence

567	<u>sequence S</u> $3-1$ to <u>Sequence sequence S</u> 2 , the stratigraphy of the Davie Ridge record <u>sed</u> a
568	progressive increase in the accumulation of coarse-grained gravity-driven deposits,-
569	This is suggested by as highlighted by the presence of large turbidite channels, visible in
570	the seismic profiles as v-shaped erosional features hosting high-amplitude reflection
571	packages with shingled reflections (Abreu et al., 2003), -and by the overall increase in
572	the RMS amplitude (Figs. 3, 67), considered a proxy for sandy sediments (Rijks and
573	Jauffred, 1991; Chen and Sidney, 1997; Brown, 2004). In addition, in the lower part of
574	sequence S2, turbidity current deposits alternate with with debris flow and mass
575	transport deposits, as suggested by their seismic facies and internal architecture of
576	specific intervals (Fig. 3). (Hampton et al., 1996; Posamentier and Kolla, 2003). Mass
577	transport deposits are the result of gravity-induced remobilization of pre-existing
578	sediments on a submarine slope, and on seismic data are represented by a variety of
579	facies, spanning from chaotic or highly disrupted seismic facies to coherent reflections
580	(Hampton et al., 1996; Posamentier and Kolla, 2003; Frey-Martínez, 2010). The upper
581	part of sequence S1 and the lower unit of part of Sequence sequence S2, which mainly
582	accumulated between the lower and middle-is late_Miocene-in age, formedaccumulated
583	after the establishment of the during the onset of the EARS in Tanzania (Roberts et al.,
584	2012; Sansom, 2017; 2018): at that time, <u>it is possible that</u> topographic uplift in the
585	hinterland increased the progradation of the paleo-Ruvuma and paleo-Rufiji deltas,
586	enhancing deep-water sediment transport and triggering a widespread margin instability.
587	as also discussed in -(Sansom (, 2017; 2017 2018). The presence of turbidite channels
588	and coarse-grained deposits in this stratigraphic interval of the Davie Ridge suggests
589	that sediment sourced from the Tanzanian margin was directly delivered towards the
590	basin, also by means of the giant canyons now present on top of the Davie Ridge.
591	Indeed, considering that the canyons incise the Davie Ridge without reaching horizon

592 H3H1, a maximum age for their formation is the age of sequence S2, or even younger. 593 Moving progressively upward, the upper part of S2 marks a decrease in the activity of 594 turbidite channels, as testified by a reduction of channelized features, which are totally 595 absent in Sequence S43. The lack of deposits associated with turbidity currents 596 and debris flows, as highlighted by the seismic data (Figs. 3, 45), suggests that the Davie 597 Ridge was at that time a topographic relief bathymetric high on the sea floor that acted as 598 barrier for gravity-driven flows triggered-originated along the Tanzanian shelf and slope. 599 During deposition of sequence S1S3, turbidite channels were still active in the slope 600 area offshore the Rovuma River delta, and further to the north (Liu et al., 2016), and 601 thick turbidite sequences accumulated in the Kerimbas Graben (Franke et al., 2015; 602 Sansom, 2018). Box corer samples and sea floor features visible on the multibeam bathymetry (Fig. 4-5 and supplementary material) testify suggest that Canyon C-1, at the 603 604 northern end of the Davie Ridge, is the only active system and that sedimentation from 605 bottom currents and reduced pelagic and hemiplegic deposition dominates the 606 stratigraphy of the basin outside it. 607 All these evidences suggest that major the uplift of the Davie Ridge disconnected canyons C-4 to C-2 from their feeder systems, re-routing the sediments delivered into 608 609 the western Indian Ocean towards the north. Canyon C-1, which is one of the largest 610 deep-water system discovered so far (Fig. 78, supplementary S6), represents the 611 termination of a large drainage basin that extends from the Rovuma River to the 612 southern Rufiji River deltas, and that probably connects with the Tanzania Channel 613 about 500 km away towards NE (Bourget et al., 2008). Hence, the Tanzania Channel

- 614 currently is the main pathway of organic and inorganic particulate matter from the
- Tanzanian shelf and slope area towards the Indian Ocean abyssal plain. The
- 616 chronological constraints available show that the topographic deformation of the sea

617	floor associated with the offshore branch of the EARS can be traced back to the late
618	middle-upper Miocene, in agreement with previous studies (Franke et al., 2015). In
619	addition, our results suggest that the tectonic processes driving the uplift of the Davie
620	Ridge that progressively disconnected the deep-water canyons from their feeding
621	systems likely started in the Plio-Quaternary (Fig. 8). are still active today, as
622	demonstrated by the fault displacements visible on the modern sea floor (Figs. 5, 6) and
623	by the The recent recorded earthquakes (supplementary S1), showing a body magnitude
624	M _b up to 6.4 (Grimison and Chen, 1988; Yang and Chen, 2010)demonstrate that the
625	area is still tectonically active, as also indicated by the fault displacements visible on the
626	modern sea floor (Fig. 6). The rapid sea floor deformation triggered by an earthquake
627	may be a potential tsunamogenic source (Kanamori and Kikuchi, 1993), and as a
628	consequence the offshore tectonics of the EARS needs to be taken into account for
629	tsunami hazards assessment along the coastlines of southern Tanzania and Mozambique.
630	This study has two main implications about regarding how the formation of the the
631	meaning of the Davie Ridge relates within the regional geodynamic context and about
632	how the effects-tectonics of the offshore branch of the EARS controls the depositional
633	history of the western Indian Ocean. Based on gravimetric and magnetic data, previous
634	studies proposed the existence of a continuation of the Davie Ridge north of 9° S, where
635	it lacks a morphological expression on the sea floor (Coffin and Rabinowitz, 1987;
636	Revees and de Wit, 2000; Revees et al., 2016). With this assumption, the Davie Fracture
637	Zone was correlated up to 2.5° S (Scrutton, 1978; Rabinowitz, 1971; Coffin and
638	Rabinowitz, 1987), and was interpreted as the result of the southward drift of
639	Madagascar with respect to Africa, implying that Madagascar was previously part of the
640	modern Kenya. The inferred Plio-QuaternaryMiocene age for the Davie Ridge uplift
641	may suggest that its origin is unrelated with the initial opening of the western Indian

642	Ocean and with the strike-slip movement of Madagascar, as <u>also</u> proposed by Klimke
643	and Franke (2016). This result would imply the need of for new palaeogeographic
644	models to explain the Mesozoic evolution of the Indian Ocean and the position of
645	Madagascar when attached to Africa. Notwithstanding, it is also possible that the Davie
646	Ridge formed in the response to the recent reactivation of pre-existing Mesozoic
647	tectonic lineaments, but the lack of imaging of the deeper stratigraphic sequences down
648	to the basement does not allow to discuss this point any further.
649	The discovery of giant and abandoned canyons on the deep-water Davie Ridge
650	highlights that the tectonics of the offshore branch of the EARS has had a profound
651	control on the physiography of the margin and on the transport of sediment and organic
652	matter towards the Indian Ocean. Future studies supported by additional data
653	acquisitions are needed to have a full picture of the modern drainage system and its
654	distal continuation in water depths greater than 4000 metres. There are still outstanding
655	questions regarding Further studies are needed to have a full picture of the modern
656	drainage system and its distal continuation in water depth greater than 4000 metres, and
657	to understand the role of sea floor deformation on bottom current circulation in the
658	western Indian Ocean and -the potential of the offshore tectonic activity of the EARS in
659	generating tsunamigenic earthquakes or submarine landslides.
660	

661 Acknowledgments

- 662 The Paleogene GLObal Warming events (GLOW) cruise, onboard of RV Pelagia, was
- 663 funded by the <u>ESF EUROCORES program</u>Netherlands Organisation for Scientific
- 664 Research (NWO). PNP was supported by NERC UK-IODP grant NE/F523293/1. BW
- 665 <u>was supported by the Joint Oceanographic Institutions/US Science Support Program.</u>

000	we thank the Royal Netherlands Institute for Sea Research (NIOZ) for technical and
667	logistic support during and after the cruise. We thank the scientific party for all their
668	support on board the vessel, in particular Niamh O'Sullivan and Chris Nicholas are also
669	thanked We are grateful to the Tanzania Petroleum Development Corporation
670	(TPDC), -WesternGecoand-Schlumberger, Royal Dutch Shell and Shell Tanzania -for
671	giving access to the seismic and well data the possibil and allowing the publication of
672	this workity to work and publish the dataset. We would also like to thank,
673	Schlumberger and for providing academic licenses of the seismic interpretation software
674	Petreltheir software (Petrel). PNP was supported by NERC UK-IODP grant
675	NE/F523293/1. BW was supported by the Joint Oceanographic Institutions/US Science
676	Support Program. The Editor, an anonymous reviewer, and Marco Ligi are thanked for
677	their constructive and detailed comments which improved the manuscript significantly.
678	The authors have no conflict of interest to declare.
(70	
079	
680	Data Availability Statement
679 680 681	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick
679 680 681 682	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick Kroon and Henk de Haas. The bathymetric data are available at
679 680 681 682 683	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick Kroon and Henk de Haas. The bathymetric data are available at doi.org/10.1002/2017GC007274. The other data that support the findings of this study
 679 680 681 682 683 684 	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick Kroon and Henk de Haas. The bathymetric data are available at doi.org/10.1002/2017GC007274. The other data that support the findings of this study are not publicly available due to privacy restrictions.
 679 680 681 682 683 684 685 	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick Kroon and Henk de Haas. The bathymetric data are available at doi.org/10.1002/2017GC007274. The other data that support the findings of this study are not publicly available due to privacy restrictions.
 679 680 681 682 683 684 685 686 	Data Availability Statement For more information about the data acquired during the GLOW cruise contact Dick Kroon and Henk de Haas. The bathymetric data are available at doi.org/10.1002/2017GC007274. The other data that support the findings of this study are not publicly available due to privacy restrictions.

- 688 (LAPs): an important reservoir element in deep water sinuous channels. Marine
- 689 and Petroleum Geology 20, 631-648.

- Brown, A.R., 2004.:-Interpretation of three-dimensional seismic data, 5th edition.
- 691 AAPG Memoir 42, Tulsa, Oklahoma, pp. 514.
- Boesiger, T. M., de Kaenel, E., Bergen, J. A., Browning, E., Blair, S.A., 2017.
- 693 <u>Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera</u>
- 694 and other placolith taxa in the circum North Atlantic Basin. Journal of
- 695 Nannoplankton Research 37, 145-175.
- Bourget, J., Zaragosi, S., Garlan, T., Gabelotaud, I., Guyomard, P., Dennielou, B.,
- 697 Ellouz-Zimmermann, N., Schneider J.L., 2008. Discovery of a giant deep-sea
- 698 valley in the Indian Ocean, off eastern Africa: the Tanzania channel. Marine
- 699 Geology 255, 179-185.
- 700 Calais E., Ebinger C.J., Hartnady C., Nocquet J.M., 2006. Kinematics of the East
- 701 African rift from GPS and earthquake slip vector data. In: Yirgu, G., Ebinger, C.J.,
- 702 Maguire, P.K.H., (Eds.), The Afar Volcanic Province Within the East African Rift
- 703 System, Geological Society Special Publication 259, pp. 9-22.
- Chen C.T., Millero F.J., 1977. Speed of sound in seawater at high pressures. Journal of
 the Acoustic Society of America 62, 1129-1135.
- Chen, Q., Sidney, S., 1997. Seismic attribute technology for reservoir forecasting and
 monitoring. The Leading Edge 16, 445-448.
- 708 Chorowitz, J., 2005. The East African Rift System. Journal African Earth Sciences 43,
 709 379-410.
- Coffin, M.F., Rabinowitz, P.D., 1982. A multichannel seismic transect of the Somalian
 Continental Margin. Offshore Technology Conference, OTC4259, Houston,
- 712 <u>Texas.</u>

713	Coffin, M.F., Rabinowitz, P.D., 1987. Reconstruction of Madagascar and Africa:
714	evidence from the Davie Fracture Zone and Western Somali Basin. J. Geophys.
715	Res. 92, 9385-9406.
716	Coffin, M.F., Rabinowitz, P.D., 1992. The Mesozoic East African and Madagascan
717	conjugate continental margins; stratigraphy and tectonics. In: Watkins, J.S., Feng,
718	Z., McMillen, K.J., (Eds.), Geology and geophysics of continental margins. AAPG
719	Memoir 53, Tulsa, OK, USA, pp. 207-240.
720	Cohen, A.S., Soreghan, M.J., Scholz, C.A., 1993. Estimating the age of formation of
721	lakes: An example of Lake Tanganyika, East African Rift System. Geology 21,
722	511-514.
723	Courgeon, S., Bachèlery, P., Jouet, G., Jorry, S.J., Bou, E., BouDagher-Fadel, M.K.,
724	Révillon, S., Camoin, G., Poli, E., 2018. The offshore east African rift system:
725	new insights from the Sakalaves seamounts (Davie Ridge, SW Indian Ocean).
726	Terra Nova 30, 380-388.
727	Dorschel, D., Jensen, L., Arndt, J.E., Brummer, GJ., de Haas, H., Fielies, A., Franke,
728	D., Jokat, W., Krocker, R., Kroon, D., Pätzold, J., Schneider, R.R., Spieß, V.,
729	Stollhofen, H., Uenzelmann-Neben, G., Watkeys, M., Wiles, E., 2018. The
730	Southwest Indian Ocean Bathymetric Compilation (swIOBC). Geochemistry,
731	Geophysics, Geosystems 19, 968-976.
732	Ebinger, C.J., Sleep, N., 1998. Cenozoic magmatism throughout East Africa resulting
733	from impact of a single plume. Nature 395, 788-791.
734	Franke, D., Jokat, W., Ladage, S., Stollhofen, H., Klimke, J., Lutz, R., Mahanjane, E.S.,
735	Ehrhardt, A., Schreckenberger, B., 2015. The offshore East African Rift System:
736	structural framework at the toe of a juvenile rift. Tectonics 34, 2086-2104.

737	Frey-Martínez, J., 2010. 3D seismic interpretation of mass transport deposits:
738	implications for basin analysis and geohazard evaluation. In: Mosher, D.C., Shipp,
739	R.C., Moscardelli, L., Chaytor, J.D., Baxter, C.D.P., Lee, H.J., Urgeles, L., (Eds.),
740	Submarine Mass Movements and Their Consequences. Advances in Natural and
741	Technological Hazards Research 28, 553-568, Springer, Dordrecht.
742	Goudie, A.S., 2005. The drainage of Africa since the Cretaceous. Geomorphology 67,
743	437-456.
744	Grimison, N.L., Chen, WP., 1988. Earthquakes in the Davie Ridge-Madagascar region
745	and the southern Nubian-Somalian plate boundary. Journal of Geophysical
746	Research 93, 439-450.
747	Hampton, M.A., Lee, H.J., Locat, J., 1996. Submarine landslides. Reviews of
748	Geophysics 34, 33-59.
749	Heirtzler, J.R., Burroughs, R.H., 1971. Madagascar's Paleoposition: New Data from the
750	Mozambique Channel. Science 174, 488-490.
751	Kanamori, H., Kikuchi, M., 1993. The 1992 Nicaragua earthquake: a slow tsunami
752	earthquake associated with subducted sediments. Nature 361, 714-716.
753	Kent, P.E., Hunt, J.A., Johnstone, D.W., 1971. The Geology and Geophysics of Coastal
754	Tanzania. Institute of Geological Sciences Geophysical Paper No. 6, HMSO,
755	London.
756	Klimke, J., Franke, D., 2016. Gondwana breakup: no evidence for a Davie Fracture
757	Zone offshore northern Mozambique, Tanzania and Kenya. Terra Nova 28, 233-
758	244.

759	Kroon, D., the Shipboard Scientific Party, 2010. Tropical temperature history during
760	Paleogene Global Warming (GLOW) events. NIOZ Site Survey Cruise Report
761	(R.V. Pelagia cruise number 64PE303), pp. 151.
762	Leeder, M.R., Jackson, J.A., 1993. The interaction between normal faulting and
763	drainage in active extensional basins, with examples from the western United
764	States and central Greece. Basin Research 5, 79-102.
765	Liu, X., Rendle-Bühring, R., Henrich, R., 2016. Climate and sea-level controls on
766	turbidity current activity on the Tanzanian upper slope during the last deglaciation
767	and the Holocene. Quaternary Science Reviews 133, 15-27.
768	Mahanjane, E.S., 2014. The Davie Fracture Zone and adjacent basins in the offshore
769	Mozambique Margin - A new insights for the hydrocarbon potential. Marine and
770	Petroleum Geology 57, 561-571.
771	Maslin, M.M., Brierley, C.M., Milner, A.M., Shultz, S., Trauth, M.H., Wilson, K.E.,
772	2014. East African climate pulses and early human evolution. Quaternary Science
773	Reviews 101, 1-17.
774	Macgregor, D., 2015. History of the development of the East African Rift System: A
775	series of interpreted maps through time. Journal of African Earth Sciences 101,
776	232-252.
777	McDonough, KJ., Bouanga, E., Pierard, C., Horn, B., Emmet, P., Gross, J., Danforth,
778	A., Sterne, N., Granath, J., 2013. Wheeler-transformed 2D seismic data yield fan
779	chronostratigraphy of offshore Tanzania. The Leading Edge 32, 162-170.
780	Moucha, R., Forte, A.M., 2011. Changes in African topography driven by mantle
781	convection. Nature Geoscience 4, 707-712.

- Mougenot, D., Recq, M., Virlogeux, P., Lepvrier, C., 1986. Seaward extension of the
 East African Rift. Nature 321, 599-603.
- Nicholas, C.J., Pearson, P.N., Bown, P.R., Dunkley Jones, T., Huber, B.T., Karega, A.,
- 785 Lees, J.A., McMillan, I.K., O'Halloran, A., Singano, J.M., Wade, B.S., 2006.
- 786 Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa
- Group, southern coastal Tanzania. Journal of African Earth Sciences 45, 431-466.
- 788 Nicholas, C.J., Pearson, P.N., McMillan, I.K., Ditchfield, P.W., Singano, J.M., 2007.
- 789 Structural evolution of southern coastal Tanzania since the Jurassic. Journal of
- African Earth Sciences 48, 273-297.
- Nyblade, A., Robinson, S., 1994. The African superswell. Geophys. Res. Lett. 21, 765792 768.
- 793 Normak, W.R., Carlson, P.R., 2003. Giant submarine canyons: Is size any clue to their
- 794 importance in the rock record? In: Chan, M.A., Archer, A.W., (Eds.), Extreme
- 795 depositional environments: Mega end members in geologic time, Geological
- 796 Society of America Special Paper 370, Boulder, CO, USA, pp.175-190.
- 797 O' Sullivan, N., 2013. The geological evolution of the Southern Tanzanian continental
 798 margin. PhD Thesis, University of Dublin, Trinity College.
- Posamentier, H.W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of
 Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research
 73, 367-388.
- Rabinowitz, P.D., 1971. Gravity anomalies across the East African Continental Margin.
 J. Geophys. Res. 76, 7107-7117.

804	Raffi, I., Backman, J., Fornaciari, E., Palike, H., Rio, D., Lourens, L.J., Hilgen, F.J.,						
805	2006. A review of calcareous nannofossil astrobiochronology encompassing the						
806	past 25 million years. Quaternary Science Reviews 25, 3113-3137.						
807	Reeves, C.V., de Wit, M.J., 2000. Making ends meet in Gondwana: retracing the						
808	transforms of the Indian Ocean and reconnecting continental shear zones. Terra						
809	Nova 12/6, 272-280.						
810	Reeves, C.V., Teasdale, J.P., Mahanjane, E.S., 2016. Insight into the eastern margin of						
811	Africa from a new tectonic model of the Indian Ocean. Geological Society						
812	London, Special Publications 431, <u>https://doi.org/10.1144/SP431.12</u> .						
813	Rijks, E.J.H., Jauffred, J.C.E.M., 1991. Seismic interpretation 29; attribute extraction; an						
814	important application in any detailed 3-D interpretation study. The Leading Edge						
815	10, 11-19.						
816	Roberts, E.M., Stevens, N.J., O'Connor, P., Dirks, P.H.G.M., Gottfried, M.D., Clyde,						
817	W.C., Armstrong, R.A., Kemp, A.I.S., Hemming S., 2012. Initiation of the						
818	Western Branch of the East African Rift coeval with the Eastern Branch. Nature						
819	Geoscience 5, 289-294.						
820	Salman, G., Abdula, I., 1995. Development of the Mozambique and Ruvuma						
821	sedimentary basins, offshore Mozambique. Sedimentary Geology 96, 7-41.						
822	Sansom, P., 2017 A new stratigraphic model for Tanzania: Insights from deep water						
823	exploration. Presented at the Third EAGE Eastern Africa Petroleum Geoscience						
824	Forum, 7–9 November 2017, Maputo, MozambiqueTurbidites v Contourites:						
825	hybrid systems of the Tanzanian margin. PESGB, 16th African E&P Conference,						
826	London, UK.						

- 827 Sansom, P., 2018. Hybrid turbidite-contourite systems of the Tanzanian margin.
- Petroleum Geoscience, 10.1144/petgeo2018-044.
- 829 Schumm, S.A., Dumont, J.F., Holbrook, J.M., 2000. Active Tectonics and Alluvial
- 830 Rivers. Cambridge Univ. Press, 276 pp., Cambridge, UK.
- 831 Scrutton, R.A., 1978. Davie fracture zone and the movement of Madagascar. Earth
- 832 Planet. Sci. Lett. 39, 84-88.
- Sepulchre, P., Ramstein, G., Fluteau, F., Schuster M., 2006. Tectonic uplift and Eastern
 Africa aridification. Science 313, 1419-1423.
- Sii, P., Underhill, J.R., 2015. Role of punctuated subsidence and structural inversion in
- 836 creating the East African Spice Islands. 77th EAGE Conference & Exhibition,
- 837 IFEMA Madrid, Spain.
- 838 Simpson, E.S.W., et al., 1974. Phytoplankton stratigraphy, offshore east Africa, Deep
 839 Sea Drilling Project Leg 25, in Initial Reports of the Deep Sea Drilling Project,

840 vol. 25, pp. 635-646, U.S. Govt. Print. Off., Washington, D.C.

- 841 Stankiewicz, J., de Wit, M.J., 2006. A proposed drainage evolution model for central
- Africa—did the Congo flow east? J. Afr. Earth Sci. 44, 7-84.
- 843 <u>van Aken, H.M., Ridderinkhof, H., de Ruijter, W.P.M., 2004. North Atlantic deep water</u>
 844 <u>in the south-western Indian Ocean. Deep Sea Research Part I: Oceanographic</u>
- 845
 Research Papers 51, 755-776.
- 846
- 847 Wade, B.S., Pearson, P.N., Berggren, W.A., Pälike, H., 2011. Review and revision of
- 848 Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the

849	Geomagnetic Polarity and Astronomical Time Scale. EarthScience Reviews 104,
850	111-142.
851	Yang, Z., Chen, WP., 2010. Earthquakes along the East African Rift System: A
852	multiscale, system-wide perspective. Journal of Geophysical Research 115,
853	<u>B12309.</u>
854	
855	Figure captions
856	Figure 1. Bathymetry of the western Indian Ocean in the offshore Tanzania and northern
857	Mozambique. Topographic and bathymetric data are freely available and come from
858	GEBCO and the Southwest Indian Ocean Bathymetric Compilation (swIOBC; Dorschel
859	et al., 2018). The bathymetry location of the Tanzania Channel, reported in yellow, is
860	from Bourget et al. (2008). The black dashed lines are the bathymetric cross sections
861	presented in Figure 2 The thick red line is the seismic profile presented in Figure 3.
862	
863	Figure 2. Bathymetric cross sections across the Kerimbas Graben (KG) and the Davie
864	Ridge (DR) north of the Saint-Lazare Seamount (SLS). The black dashed lines in the
865	map mark the are the bathymetric cross sections presented in Figure 2., see location in
866	Figure 1. Note the structural high associated to the Seagap Ridge (SR) and the
867	morphological subdivision of the area in the Kerimbas Graben in three four zones from
868	south to north (Zone 2 = sill). Blue, green, and red arrows highlight the main fault
869	escarpments, with the location reported in the 3D view of the sea floor with the same
870	colour code.
871	

872	Figure 3. Seismic line <u>1, oriented-along the Davie Ridge (see location in Fig. 1)</u> . Top:
873	Seismic amplitude; Centre: Root Mean Square (RMS) seismic attribute; Bottom:
874	Seismic amplitude with highlighted the main stratigraphic horizons (H1 to H3) and
875	depositional sequences (S1 in greenred, S2 in blue, S3 in greenred). Note the thalweg of
876	the canyons C-1 to C-4 lies in incisions (C-1 to C-4), progressively deeper towards
877	NNW.
878	
879	Figure 4. Seismic line 2, oriented W-E across the Kerimbas Graben and the Davie Ridge
880	(see location in Fig. 1).
881	
882	Figure 5. Seismic profiles across the canyons and high-resolution multibeam bathymetry
883	(location in Fig. 1) of the crest of the Davie Ridge (see supplementary material for
884	close-up views of each canyon). Note the location of the box-corer samples (red dots).
885	
886	Figure 65 . 3D view of the Kerimbas Graben and Davie Ridge in the offshore Tanzania.
887	
888	Figure 67. Chronology of the Davie Ridge. 1: Stratigraphic sequences from Sansom
889	(2017); 2: Dated horizons from Mougenot et al. (1986); 23: Dated horizons from Franke
890	et al. (2015); <u>34</u> : Age of box corer samples GW04 and GW13 (red bars); <u>45</u> : <u>SS</u> eismic
891	horizons of the present study; 6: Extraction of a seismic line across one of the
892	exploration wells used in this study (depth in seconds below the sea floor) with dated
893	stratigraphic sections marked by red rectangles; 7: Interval velocity model of the well; ;
894	Extraction of seismic amplitude (5) and RMS (6) with seismic horizons; 78:
895	Stratigraphic sequences and units of this study.and main seismic facies.

896	
897	Figure 7. Bathymetric cross sections near the shelf-edge of the largest canyons visible
898	on the modern sea floor (in black), modified from Normark and Carlson (2003).
899	Topographic cross section of the Grand Canyon (in brown). Bathymetric cross sections
900	of the deep-water canyons C-1 (the Tanzania Channel) and C-4, in red.
901	
902	Figure 8. Conceptual scheme for the evolution of the study area since the upper
903	Oligocene. Age constraints on key horizons suggest that the uplift of the Davie Ridge
904	(DR) and the formation of the Kerimbas Graben (KG) occurred in the last few millions
905	of yearsstarted during the middle-upper Miocene. The Seagap Fault (SF) is highlighted
906	in yellow. Note how the deep-water drainage system changed through time in response
907	to the tectonics of the offshore branch of the EARS, from a series of coalescing canyons
908	to a single system, where the Tanzania Channel is the only active conduit.

Sample name	Water depth (m)	Sample depth in the core (cm)	Specimens	Age (Ma)	Biozone
GW04	3,170	29	Globorotalia plesiotumida, Globigerinoides conglobatus (in the absence of Globoquadrina dehiscens, Globorotalia tumida and G. lenguaensis). Additional marker species include: Sphaeroidinellopsis seminulina (in the absence of Sphaeroidinella spp.), Globoturborotalita nepenthes, Dentoglobigerina altispira, Pulleniatina primalis, Globigerinoides extremus, Globigerinoides conglobatus	5.57-6.13	M14
GW13	2,451	33	Globorotalia tumida, Sphaeroidinellopsis seminulina (in the absence of Sphaeroidinella. Additional marker species include: Menardella limbata, Globigerinella siphonifera, Globoturborotalia nepenthes, Dentoglobigerina altispira, Pulleniatina primalis	4.36-5.57	PL1

Table 1. Microfauna assemblages from box-corer samples GW04 and GW13, and associated chronologies and biozones (see also Wade et al., 2011).

Figure 1 (2-colum size)

179x225mm (300 x 300 DPI)

Figure 2 (2-column size)

177x150mm (300 x 300 DPI)

Figure 3 (full page size)

213x174mm (300 x 300 DPI)

180x90mm (300 x 300 DPI)

Figure 5 (2-column size) 188x181mm (300 x 300 DPI)

Figure 7 (2-column size)

119x117mm (300 x 300 DPI)

Figure 8 (2-column size) 180x63mm (300 x 300 DPI)