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Abstract  20 

Resource managers need to differentiate between sites with and without contaminants and those 21 

where contaminants cause impacts.  Potentially, transcriptomes could be used to evaluate sites 22 

where contaminant-induced effects may occur, to identify causative stressors of effects and 23 

potential adverse outcomes.  To test this hypothesis, the hepatic transcriptomes in Barramundi, a 24 

perciforme teleost fish, (Lates calcarifer) from two reference sites, two agriculturally impacted sites 25 

sampled during the dry season, and an impacted site sampled during the wet season were 26 

compared.  The hepatic transcriptome was profiled using RNA-Seq.  Multivariate analysis showed 27 

that transcriptomes were clustered based on site and by inference water quality, but not sampling 28 

time. The largest differences in transcriptomic profile were between reference sites and a site 29 

sampled during high run-off, showing that impacted sites can be identified via RNA-Seq.  Transcripts 30 

with altered abundance were linked to xenobiotic metabolism, peroxisome proliferation and stress 31 

responses, indicating putative stressors with the potential for adverse outcomes in barramundi.   32 

Graphical Abstract: 33 
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Highlights: 35 

 Fish were collected from catchments with different agricultural land use patterns  36 

 The hepatic transcriptome differed with different land use and water quality 37 

 Transcripts for exposure biomarkers were used to tentatively identify stressors 38 

 Functional pathways could contribute to predictions of adverse health outcomes  39 

Keywords: 40 

 41 
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1. Introduction: 44 

Few aquatic ecosystems are truly pristine.  Many face increased pressure from modifications of 45 

waterways, changes in land-use patterns as a consequence of coastal development, industrial and 46 

agricultural discharges, introduced species and global climate change (Dafforn et al., 2012).  47 

Determining what impact, if any, these stressors are having on the health of key species or on 48 

ecosystem function as a whole can be challenging for resource managers, who often lack the logisitic 49 

support to characterise every aspect of a system.  Since many of the stressors in the system may 50 

interact, their behaviour in the field may not be easily predicted from laboratory-based studies.  For 51 

example, the impact of stressors such as endocrine disrupting chemicals (EDCs) may not be apparent 52 

from traditional toxicity tests (Hook et al., 2014a).  Resource managers need metrics to use, both to 53 

classify systems as “unimpacted” or “impacted” so that they can be prioritised for protection or 54 

remediation, as well as to identify the causative agents of any declines in either organism or 55 

ecosystem health.   56 

Several metrics for classifying the health of ecosystems already exist.  One of these is the index of 57 

biotic integrity (IBI), which measures the capacity of an area to sustain populations of organisms 58 

with comparable composition, diversity, and function to natural areas within the same system. 59 

These comparisons are done by comparing the composition and biomass of selected taxa from 60 

impacted and unimpacted sites (Hughes et al., 1998; Bilkovic et al., 2006). This approach has been 61 

effectively used in a variety of systems (e.g. Hughes et al., 1998; Mebane et al., 2003; Bilkovic et al., 62 

2006; An et al., 2002). However, this approach has disadvantages in that it cannot convey causal 63 

relationships between anthropogenic or natural stressors and changes in biotic integrity (Hughes et 64 

al., 1998).  Also, this metric must be developed independently for each system in which it is intended 65 

to be used, and intensive field sampling, as well as in-depth prior knowledge of ecosystem 66 

composition and function, are required (Hughes et al., 1998).   67 

Individual biomarker-based responses in fish have been used to differentiate between impacted and 68 

unimpacted sites (reviewed in Hook et al., 2014a), for example vitellogenin (Jobling and Tyler, 2003; 69 

Kroon et al., 2015a; Sumpter and Jobling, 1995) or the condition of gonads (Blazer et al., 2014), both 70 

of which were used to infer exposure to EDCs and the potential for impacts on reproduction.  71 

Vitellogenin, cytochrome p450 1A, biliary Fluorescent Aromatic Compounds, DNA damage, and 72 

histology have also been used to indicate exposure to sewage borne contaminants near waste water 73 

outfalls in Orange County, CA, USA (Roy et al., 2003).  However, choosing the appropriate biomarker-74 

based assay requires knowledge of the causative agent of toxicity and in some cases a change at the 75 

molecular level may be difficult to link to population level outcomes (reviewed in Hook et al., 2014a).   76 

DNA metabarcoding has also been used recently to classify systems as being more or less degraded 77 

(e.g. Chariton et al., 2010; Baird and Hajibabaei, 2012; Dafforn et al., 2014; Gibson et al., 2015).  78 

While this approach has the advantage of being high throughput and taking more of a “whole 79 

ecosystem” approach (Dafforn et al., 2014; Gibson et al., 2015; Chariton et al., 2015), it only reports 80 

on the presence or absence of organisms, nothing about their condition, so these approaches cannot 81 

act as “early warning” of impending species loss.  Further, while there are approaches to correlate 82 

changes in species abundance with environmental parameters (Chariton et al., 2015), it can be 83 

difficult to determine causality as many these parameters co-vary, such as increased nutrient levels, 84 
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decreased oxygen levels and increased micropollutants (as per Luo et al., 2014) that would all be 85 

expected to be found near sewage treatment plants (Dafforn et al., 2014). 86 

Here, we hypothesise that the transcriptome of a selected species could be used to not only classify 87 

ecological sites as comparatively pristine or impacted, but also to identify potential causative agents 88 

of changes in organism physiology.  Since all transcripts are profiled, this approach does not require 89 

a priori knowledge of the stressor or its modes of action.  Since there is a vast amount of literature 90 

on gene expression and ecotoxicology (Hook, 2010; Bahamonde et al., 2016;), transcripts that are 91 

indicative of exposure to specific contaminants or classes of contaminants, such as those that 92 

correspond to established exposure biomarkers (Hook et al., 2014a), could be identified.  Also, 93 

changes in the transcriptome could be used to identify potential population level impacts, via the 94 

adverse outcome pathway concept (Ankley et al., 2010).  A transcriptomic approach has been used 95 

successfully in prior studies.  For example, caged fathead minnow have been used to profile 96 

differences in microarray based gene expression profiles due to agricultural land use patterns in 97 

Nebraska, USA, watersheds (Jeffries et al., 2012).  Multivariate models of microarray--based gene 98 

expression fingerprints have also been used to predict the causative agent of toxicity in flounder 99 

collected from contaminated sites in the United Kingdom (Falciani et al., 2008).  In addition, qPCR 100 

based transcriptional profiles have been used to predict the health outcomes of steelhead 101 

Oncorhynchus mykiss from the Columbia River basin (Connon et al., 2012).  However, both of these 102 

approaches require prior knowledge of the genome sequence of the organism being studied, which 103 

is frequently not available for non model organisms, especially in Australia.  Instead, we used RNA 104 

Seq to characterise the transcriptome (reviewed in Mehinto et al., 2012).  RNA Seq, where 105 

transcripts are reverse transcribed into cDNA libraries and quantified directly, has the advantage of 106 

being able to be performed on organisms with an uncharacterised genome (Mehinto et al., 2012; 107 

Hook et al., 2014b) and has a greater dynamic range than either qPCR or microarray hybridisation 108 

(Tarazona et al., 2011). 109 

To test the hypothesis that the transcriptome would indicate the presence of stressors in an 110 

organism’s habitat, the hepatic transcriptome of fish collected from different rivers in tropical North 111 

Queensland was examined. Most of the study sites discharge into the Great Barrier Reef (GBR).  112 

Some rivers in the system, including those included in this study, have poor water quality principally 113 

due to increased loads of nutrients, sediment, and pesticides arising from agricultural land use 114 

(reviewed in Brodie et al., 2012; Kroon et al., 2012; Smith et al., 2012).  Rainfall in this area is 115 

typically very seasonal, with frequent, heavy rain in November through March, and much lower 116 

amounts the rest of the year. Concentrations of pesticides and other water quality related stressors, 117 

such as sediments and high nutrient load, are typically highest during the rainy season (Smith et al., 118 

2012; Davis et al., 2012 Furthermore, aqueous concentrations of some stressors, such as diuron, 119 

atrazine, terbuthiuron and metolachlor, are frequently measured above water quality guidelines 120 

(Lewis et al., 2012; Smith et al., 2012).  Concentrations of water soluble pesticides, such as atrazine 121 

and imidacloprid, are typically below detection during the dry months. However, it is uncertain 122 

whether elevated concentrations of stressors are sufficiently high to cause changes in the physiology 123 

of fish species (Kroon et al., 2015a).  In addition to changes in water quality, these watersheds have 124 

been modified by changes in land use patterns, (e.g. deforestation, altered biogeochemical cycles), 125 

which could have impacts on aquatic food webs, and as a consequence, fish health (Jeffrey et al., 126 

2015).  We postulated that changes in the transcriptome that were a result of declining water quality 127 

would be most apparent in fish collected from agriculturally impacted watersheds during the wet 128 
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season, whereas those that resulted from persistent contaminants or habitat changes would be 129 

apparent in all seasons. 130 

In this paper, three hypotheses were tested: 1) that the hepatic transcriptome would differ between 131 

impacted and reference sites; 2) that the changes in the transcriptome would indicate seasonal 132 

stressor exposure; and 3) that changes in the transcriptome would contain transcripts for known 133 

contaminant exposure biomarkers (e.g. Hook et al., 2014a) that could be used to help identify 134 

putative causative stressors and other transcripts to could be related to physiological changes that 135 

might link to potential adverse outcomes.  The study extended previous work examining changes in 136 

vitellogenin and aromatase levels in field-collected fish (Kroon et al., 2015a) and an initial survey of 137 

differences in global transcriptomic patterns at comparatively impacted (the Tully River) and a 138 

reference site (the Daintree River) (Hook et al., 2017). The previous study found large differences in 139 

the transcriptomic patterns, but we could not be certain that these were not just variability between 140 

different sites.  We also could not be certain that the changes we measured in the previous study 141 

were related to water quality and not habitat modification.  To address some of these uncertainties, 142 

this study examined an additional reference site but in this study two additional sites were examined 143 

during the dry season when the contaminant concentrations were expected to be low based on 144 

previous monitoring studies (Lewis et al., 2009) and the same two sites previously used by Hook et 145 

al. (2017). We used known exposure biomarkers in the transcriptomes and functional pathways with 146 

altered transcriptome abundance to identify sites and potential causative agents. 147 

 148 

2. Materials and methods: 149 

2.1 Study organism 150 

Barramundi (Lates calcarifer) (Bloch) (Family Latidae), a perciforme teleost fish, is of cultural 151 

importance to Australia’s aboriginal peoples, and is fished extensively recreationally and 152 

commercially (Kailola et al., 1993).  In northern Australia, barramundi lives in river and estuarine 153 

habitats.  In northeast Queensland, they spawn near the mouths of estuaries prior to and during the 154 

start of the wet season, between November and January.  Larval barramundi are found in coastal 155 

wetlands after December, with some migrating further upstream into freshwater habitats between 156 

March and June.  The species is protandrous hermaphrotide, with juveniles maturing as males 157 

>250 mm total length (TL) in the first 2–4 years, and changing into females in the 680–900 mm TL 158 

size range.  159 

 160 

2.2 Study site description 161 

The five catchments from which barramundi were collected are located in North Queensland, 162 

Australia (Figure 1).  These catchments differ in surface area, land uses, mean annual flow and river 163 

loads of sediment, nutrients and pesticides (Table 1). In the catchments of the two reference rivers 164 

agricultural land use is either completely absent (Wenlock) or covers a relatively small area (7%, 165 

Daintree). In contrast, agricultural land uses cover relatively larger areas in the Tully, North 166 

Johnstone and Barratta catchments, with horticulture crops (primarily bananas) and sugarcane being 167 

cultivated on the coastal floodplains. Conservation land use occupies large areas of the upper 168 
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catchments in the Daintree, North Johnstone and Tully Rivers. All rivers are perennial, with most of 169 

the discharge occurring during the summer wet season (December – April). River pollutant loads of 170 

sediment and nutrients to the GBR lagoon have increased substantially since European settlement in 171 

the 1850s (Kroon et al., 2012; Waters et al., 2016), with increases particularly evident in the North 172 

Johnstone, Tully and Barratta. In addition, over 50 pesticides have been detected in these three 173 

rivers, with substantial loads of pesticides being transported to the GBR lagoon every year (Waters 174 

et al., 2016).    175 

  176 
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 177 

 178 

Figure 1.  Barramundi collection sites.  Drainage basins are outlined in red. 179 

Green spots indicate reference sites, whereas red spots indicate potentially impacted sites.180 
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Table 1. Catchment information for collection sites of barramundi (Lates calcarifer).  Catchment surface area, mean annual discharge, main land uses, and 181 

river pollutant loads are given. TSS is total suspended sediment, TN is total nitrogen, TP is total phosphorus, and PSII herbicides is photosystem II herbicides. 182 

PSII herbicide load is expressed as the annual toxicity-based herbicide loads (diuron equivalent loads, Escher et al., 2008). Land use data was taken from 183 

Kroon et al., (2015); river pollutant loads from Waters et al. (2014). 184 

River Catchment 

surface 

area (km2) 

Main land uses (% of total catchment area) Long-term 

mean annual 

discharge 

(GL) 

River pollutant loads 

Conser-

vation 

Forestry Grazing Horti-

culture 

Sugar-

cane 

TSS 

(t km-2) 

TN 

(kg km-2) 

TP 

(kg km-2) 

PSII 

herbicides 

(kg y--2) 

Wenlock~ 7,525 64 <1 33 <1 <1 3,200d 

 

Not 

measured 

Not 

measured 

Not 

measured 

Not 

measured 

Daintree 2,107 67 23 10 <1 2 925~ 29 642 45 Not 

measured 

North 

Johnstone 

2,325 53 <1 40 <1 1 1,800 150 1,100 290 79 

Tully 1,683 72 2 5 <1 13 3,100 67 1,100 100 270 

Barratta 

(Haughton) 

4,051 0 <1 73 <1 25 160 10 240 25 38 

~ based on long term monitoring from 108002A Daintree River at Bairds, note this will be an underestimate of total discharge from the basin 185 

 186 

.187 
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2.3 Fish collections  188 

Barramundi were collected using monofilament gill nets (50 mm stretched mesh) in 2011 or 2012 via 189 

purse seining, where fish were captured and immediately transferred to a water bath containing 190 

anaesthetic (Kroon et al., 2015a) with the approval of the CSIRO Sustainable Ecosystems animal 191 

ethics committee (permit #13-12) (Table 2).  All fish collected were immature or mature males, and 192 

smaller than the smallest length at which female gonadal features are first recognizable (680 mm TL; 193 

Kailola et al., 1993), Fish were anaesthetised with clove oil (Kroon, 2015), then sacrificed by gill 194 

slitting and cervical dislocation.  Fish were immediately measured (mm, total length, TL), weighed 195 

(g), then liver tissues were collected and small samples preserved in RNA later© (Ambion).  Samples 196 

were kept on ice until delivery to the laboratory then stored at -20°C until further processing. 197 

Table 2. Collection information for barramundi (Lates calcarifer).   198 

Collections  Classification  Fish 

Rivers Dates Status Season Number 

of fish 

Size range 

(mm, TL) 

K1 

(x 10-3) 

Sample ID 

Wenlock 23/04/2012 Reference Changing 

towards 

dry 

5 357–492  1.1–

1.3 

WC2–4; 

55, 56 

Daintree 22/03/2011 Reference Wet 6 295–460 1.0–

1.2 

2–7 

North 

Johnstone 

27/06/2011 Impacted Dry 5 192–350  1.0–

1.2 

402–406, 408 

Tully 23/03/2012 Impacted Wet 8 264–445  1.1–

1.2 

97–104 

Barratta 25/05/2011 Impacted Dry 6 240–421  1.0–

1.2 

353–355, 358–

360 

1. Fulton’s condition index (K) was calculated as per Froese et al. (2006). 199 

2.4 RNA extraction 200 

The workflow used during the RNA-Seq experiment is described in Hook et al (2017) (Fig. S1).  RNA 201 

was extracted as described previously (Kroon et al., 2014; Kroon et al., 2015a;).  Briefly, 202 

approximately 20 mg of liver tissue was immersed in TRIzol© (Invitrogen) reagent, homogenized 203 

using MP Biomedical© bead beater and lysing matrix E tubes, then extracted following the TRIzol© 204 

protocol through the removal of the aqueous phase.  The RNA was subsequently purified using the 205 

Ambion Purelink kit After extraction, the TURBO DNA free© (Ambion) kit was used to eliminate 206 

genomic DNA contamination.  RNA purity was determined using a nanodrop spectrophotometer 207 

(260/280 ratio greater than 2.0) and integrity determined using an Agilent bioanalyzer© (RIN greater 208 

than 7.0).    209 

2.5 Sequencing 210 
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Libraries for sequencing were created from hepatic RNA from each fish in Table 2 as an individual 211 

(samples were not pooled).  Sequencing for this project was performed at the Australian Genome 212 

Research Facility.  Briefly, cDNA synthesis and library preparation was carried out using a starting 213 

template concentration of 1 µg RNA.  Illumina’s TruSeq stranded mRNA sample preparation was 214 

used and the manufacturer’s protocol was followed.  The samples were run on an Illumina HiSeq 215 

2000 with 100 base pair reads. The sample reads were deposited in the CSIRO data access portal and 216 

at NCBI at PRJNA352735 (SRP093513).  Data are also available via the CSIRO data access portal at 217 

http://doi.org/10.4225/08/583766535a240.   218 

2.6 Quality Assessment and Read Mapping 219 

The Trimmomatic algorithm (Bolger et al., 2014) on the CSIRO instance of Galaxy (Goecks et al., 220 

2010) was used to filter reads for quality (Figure S1).  Sequences were trimmed on a sliding window, 221 

with a window size of 20 bases, a minimum quality score of 20 (Blankenberg et al., 2010) and the 222 

number of bases to exclude set to 1.  Read mapping against the whole barramundi transcriptome 223 

derived in Hook et al. (submitted) (PRJNA290400) was performed using Bowtie (Langmead et al., 224 

2009) and quantified using the RSEM abundance estimation algorithm (Li and Dewey, 2011) with the 225 

aid of scripts provided with Trinity (Grabherr et al., 2011; Haas et al., 2013); (r2014_04_13).  The 226 

numbers of total reads and mapped reads for each individual fish are in Table S1.   227 

2.7 Differential Expression Analysis 228 

Data (from both this and the previous study, Hook et al., 2017) were loaded into CLC Genomics 229 

workbench version 8.0.3 for differential expression analysis.  The previously published data were 230 

included to expand the number of sites surveyed, and to ensure that more than one reference site 231 

was examined.  The previous data had a greater sequencing depth (22–31 M reads per sample) than 232 

the current study did (12–14 M reads per sample).  To account for differences in overall number of 233 

reads per sample, FPKM (fragments per kilobase of transcript per million mapped reads) normalised 234 

values were used in all subsequent analysis.  Transcripts that did not have an average FPKM value of 235 

one across all treatments were discarded to eliminate problems with false positives associated with 236 

low read abundances (Tarazona et al., 2011). A total of 18,031 transcripts were included in the 237 

differential abundance analysis.  Approximately 95% of mapped reads (or 137.4 million reads 238 

overall) mapped to these 18,031 contigs.   Differential expression was calculated using Gaussian 239 

statistics, with an FDR rate of 0.05.  240 

2.8 Annotation  241 

In addition to annotating with BLAST2GO, as described previously (Hook et al., 2017), the 242 

differentially abundant transcript lists were annotated by BLAST against the Oreochromis niloticus, 243 

another perciforme fish, Ref Seq transcriptome, downloaded from NCBI on March 2, 2016 with an e 244 

value cut off of 1e-5.  Both annotations are included in lists of differentially expressed genes for 245 

completeness.  Differentially abundant contigs (putative transcripts assembled from sequencing 246 

reads) were also BLASTx searched with an evalue cut off of 1e-5 against the UniProtKB/Swiss-prot 247 

database using the CSIRO instance of Galaxy, their closest orthologue (or best match) identified, and 248 

submitted to DAVID against a background of all contigs with the minimum read count subjected to 249 

the same search criteria (Huang et al., 2009) for further functional annotation.  Functional pathways 250 

were also annotated by analysis against KEGG pathways in BLAST2GO (Conesa et al., 2005). 251 

http://doi.org/10.4225/08/583766535a240
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3. Results 252 

3.1 Sequencing results 253 

The Illumina 2500 HiSeq run generated 241 million reads.  Once the reads were trimmed to remove 254 

the first base pairs that are non-random due to primer bias, virtually all reads were of sufficient 255 

quality to be used in mapping (Table S1).  The number of reads per sample was lower in this study 256 

(12–14 million) than in our previous study (25–31 million) because the number of samples 257 

multiplexed per sequencing lane was higher in this study (16) than in the previous (14).  The 258 

percentage that mapped in this study (53–64%), with the exception of one sample, was higher than 259 

the previous study (40–48%), despite the fact that the same Perl script and mapping algorithm were 260 

used. To account for these differences in read number and percent mapping, FPKM-corrected values 261 

were used in all subsequent analyses.  Since large fold changes in low abundance transcripts are 262 

often artificial, only contigs with an average FPKM of one in at least one condition were considered.  263 

A total of 18,031 transcripts met this condition.   264 

3.2 Transcriptomic profiling 265 

The reads were mapped onto a previously developed transcriptome (Hook et al., submitted) which is 266 

available via the CSIRO DAP available via the CSIRO data access portal 267 

(http://doi.org/10.4225/08/583b5570b27e5).   Briefly, that transcriptome contains 102,061 contigs. 268 

27891 ORFs could be extracted from these contigs, representing coding sequences.  Of these 269 

transcripts, 27,034 (96.9%) have an orthologue in the BLAST database.   The read mapping revealed 270 

differences in the transcriptomic profiles between different fishes (Figure 2). There are large 271 

differences in the hepatic transcriptomes of fish collected from the Tully River relative to fish 272 

collected from other sites.  These trends are also apparent if the data are visualised using 273 

hierarchical clustering (Figure 3) instead of PCA. If data are input based on the size of the fish 274 

collected or the date the fish was collected, no clear clusters are apparent (Figures S2 and S3).   275 

 276 

http://doi.org/10.4225/08/583b5570b27e5
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Figure 2. Principal components based visualisation of the plus one, log 10-transformed hepatic 277 

transcriptome based on site where the fish was collected.  Each dot represents an individual fish. 278 

 279 

Figure 3.  Hierarchical clustering algorithm showing relationships between the hepatic transcriptome 280 

of barramundi collected from different sites.  Only transcripts with significantly different abundances 281 

relative to both reference sites are plotted.  The colour bar indicates +1 log transformed FPKM read 282 

count.  283 

 284 

3.3 Differentially Abundant Transcripts 285 

There were more differentially abundant transcripts in the transcriptome of barramundi collected 286 

from the Tully River compared to either Barratta Creek or the North Johnstone River (Table 4).  287 

These transcripts, their closest orthologue as determined via BLAST against the Oreochromis 288 

niloticus Ref Seq transcriptome, their mean abundances (as FPKM) in fish from each river, are 289 

presented in Table S2.  The Venn diagram shows little overlap amongst the transcripts differentially 290 

abundant in each river (Figure S4).   291 

  292 
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Table 4. Matrixes showing the number of transcripts with significantly different abundances for each 293 

comparison, relative to a total number of 18,031 transcripts. 294 

By site: 295 

Reference 

sites 

Impacted sites Reference Sites  

Tully River North 

Johnstone 

River 

Barratta 

Creek 

Daintree 

River 

Wenlock 

River 

Daintree 

River 

4974 1846 817 - 84 

Wenlock 

River 

6964 4037 3591 88 - 

Both 2610 303 861 - - 

 296 

 297 

Differences in the transcriptome in fish of different size were difficult to discern, as the main 298 

differences were between fish captured at different sites (Figure S2). When the transcriptome was 299 

compared by date collected, the patterns were compounded by site (Figure S3).   300 

3.4 Functional Annotation of Differentially Abundant Transcripts 301 

Transcripts for the pathway of excretion of xenobiotic compounds, which are established biomarkers 302 

for exposure to organic contaminants, were elevated in fish from the agriculturally impacted North 303 

Johnstone, Tully, and Barratta relative to the Daintree and Wenlock rivers (Figures 4A –C).  304 

Transcripts encoding pesticide and nicotine-metabolising enzymes (cytochrome p450 2J,(CYP2J) a 305 

Phase I oxidoreductase, and multiple isoforms of glutathione S transferase (GST) and UDPGT (uridine 306 

diphosphate glucuronosyltransferase), conjugating enzymes involved in phase II metabolism), are all 307 

significantly more abundant in fish from the Tully River relative to all other rivers (Figures 4 A and B 308 

respectively). Transcripts encoding ATP binding cassettes (ABC transporters), which excrete 309 

xenobiotic compounds from cells, were also more abundant in the hepatic transcriptomes of fish 310 

from the Tully River (Figure 4C).   311 

As reported previously (Hook et al., 2017), barramundi transcripts encoding gene products with an 312 

immune related function were less abundant in fish from the agriculturally intensive rivers, the 313 

North Johnstone, Tully and Barratta relative to the Daintree and Wenlock rivers (Figure 4D).  314 

Chemokines, chemokine receptors, granzyme and t cell receptors encoding transcripts are all less 315 

abundant in fish collected from the North Johnstone, Tully and Barratta compared to the Daintree 316 

and Wenlock  (Figure 4D and Table S2).  A large number of transcripts encoding enzymes involved in 317 

the metabolism of energy stores (lipid, protein or carbohydrate) were elevated in the livers of fish 318 

collected from the Tully River, as reported previously (Hook et al., 2017), but not from the North 319 

Johnstone and Barratta (Figure 4E and Table S2).  These transcripts encoded peroxisome proliferator 320 
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activated receptor (PPAR) alpha, tyrosine aminotransferase, long-chain fatty acid ligase (lpl), and 321 

apolipoproteins (apo - lipid binding proteins).  Growth function genes, such as insulin-like growth 322 

factor binding factor protein (igfbp), and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), had 323 

altered abundance in the Tully River when compared to the other rivers (Figure 4F).  Transcripts 324 

encoding leptin, the saiety hormone, was less abundant in the Tully River compared to other sites 325 

(Table S2).  Oxidative stress related transcripts, catalase (CAT), heme oxygenase (HO) and superoxide 326 

dismutase (SOD), were also measured in increased abundances in the transcriptomes of fish 327 

collected from the Tully River only (Figure 4G).    328 

Transcripts encoding estrogen responsive gene products such as vtg and the zona pellucida (zp) 329 

proteins were elevated in all rivers relative to the Daintree River (Figure 4H) , although not to the 330 

Wenlock Catchment – the other reference site.  Transcripts involved oogenesis including vitellogenin 331 

were elevated in the North Johnstone, Tully and Barratta, while transcripts encoding the egg 332 

membrane proteins were elevated in the Tully and Barratta.  Cytochrome p450 3A (CYP3A) 333 

transcripts were less abundant in fish from the Tully and Barratta compared to the Daintree and 334 

Wenlock. 335 

The majority of transcripts with differential abundance between the two reference sites could not be 336 

annotated, making their functional significance difficult to discern.  However, several ATPases were 337 

approximately 5 fold more abundant in the transcriptomes of barramundi collected from the 338 

Wenlock catchment relative to the Daintree River.  Not enough of the transcripts with differential 339 

abundance between reference sites could be sufficiently annotated to allow for mapping to 340 

functional pathways.   341 
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  342 

Figure 4. Mean transcript abundance for fish collected from each river, relative to the mean 343 

abundance in the hepatic transcriptome of fish from the Daintree River (chosen because of the 344 

larger samples size) of selected transcripts in different functional categories.  Panel A: xenobiotic 345 

metabolising enzymes; B: s glutathione S transferases C: ABC transporters; D: immune function 346 

transcripts; E the peroxisome proliferator activated receptor alpha pathway; F growth function 347 

transcripts; G:  transcripts for oxidative stress response genes and panel H shows estrogen 348 

responsive transcripts* indicate statistical significance FDR corrected p<0.05 from both the Daintree 349 
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and Wenlock values, # indicates statistical significance from the Daintree fish only.  Standard 350 

deviations are not shown for clarity.  Data are slightly offset so that all symbols are visible. 351 

 352 

3.5 Alignment of Differentially Expressed Transcripts to Functional Pathways 353 

Because comparatively few contigs had an orthologue in the UniProt_Swiss Prot database, as 354 

identified via a BLASTx search, the DAVID functional annotation platform (Huang et al., 2009)  355 

identified very few functional categories that were significantly enriched amongst the differentially 356 

abundant transcripts (Table 5, Table S3).  Transcripts involved in protein tagging  (phosphoproteins) 357 

and alternative splicing, as well as hydrolases, were most significantly enriched (lowest p value , 358 

Benjamani Hochberg multiple test correction) in fish from the Tully River (Table S3). Transcripts 359 

involved in disease, lipid metabolism and oxido-reductase activity were also significantly different (p 360 

value <0.05 , Benjamani Hochberg multiple test correction) (Table 5).  Immune-related transcripts, 361 

including chemokines and cytokines, had decreased abundance in the transcriptomes of fish 362 

collected from the Tully River  (Table 5 and S3).  No functional groups were significantly enriched 363 

amongst those transcripts with increased abundance in the North Johnstone River or Barratta Creek, 364 

and only cell adhesion was significantly enriched among the transcripts that were less abundant in 365 

fish from the North Johnstone River (Table 5 and S3).  In Barratta Creek, Pleckstrin homology (cell 366 

signalling) and GTPase activity were the only functional categories significantly less abundant in the 367 

transcriptome at that site (Table 5 and S3). 368 

Table 5.  A summary of the results of DAVID and KEGG pathways functional mapping.  Full results 369 

(including counts and p values) are given in Tables S3 and S4.  370 

River Relative abundance 

compared to the 

reference sites 

Pathway Evidence from 

Tully More abundant 

Hydrolase, 

transferase, 

oxidoreductase, lipid 

metabolism 

DAVID 

Lipid metabolism, 

glycolysis, 

glutathione 

metabolism, amino 

acid metabolism, 

Metabolism of 

xenobiotics by 

cytochrome P450, 

Steroid hormone 

biosynthesis 

KEGG 
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Less abundant 

Chemokines 

(immune related 

transcripts) 

DAVID 

glycolysis, amino acid 

metabolism 

KEGG 

N Johnstone 
More abundant N.A.   

Less abundant Cell adhesion DAVID 

Barratta Creek 

More abundant N.A.   

Less abundant 

GTPases, actin 

binding 

DAVID 

Glycolysis / 

gluconeogenesis, cell 

signalling pathways 

KEGG 

N.A., not applicable, no significantly enriched functional categories were identified. 371 

 372 

As with the DAVID analysis, comparatively few of the differentially abundant contigs could be 373 

assigned an enzyme code, which is required for mapping to KEGG pathways.  Nevertheless, a few 374 

trends were apparent from this analysis, as summarised in Table 5.  More transcripts that were 375 

differentially abundant in the hepatic transcriptomes of Tully River fish could be mapped than the 376 

other impacted or reference collection sites.  As discussed previously (Hook et al., 2017), transcripts 377 

that were more abundant in the hepatic transcriptomes of fish collected from the Tully River could 378 

be mapped to a variety of pathways, including fatty acid degradation, glycolysis, metabolism of 379 

xenobiotics via cytochrome p450, and steroid hormone biosynthesis (Table 5 and S4).  Some of the 380 

transcripts that were less abundant in the hepatic transcriptome of fish from the Tully could be 381 

mapped to oxidative phosphorylation, the metabolism of different amino acids, and glycolysis (Table 382 

5 and S4).  By comparison, far fewer KEGG pathways were identified in the transcripts from the 383 

other impacted rivers.  Few transcripts with increased abundance that could be mapped to KEGG 384 

pathways were observed in the hepatic transcriptomes from fish from North Johnstone River and 385 

Barratta Creek.  KEGG pathways for the metabolism of simple sugars such as galactose, starch and 386 

pentose were less abundant in fish from the North Johnstone, whereas fish from Barratta Creek had 387 

fewer transcripts involved in oxidative phosphorylation, T cell receptor signalling and the oxidation 388 

of simple sugars (Table 5 and S4). 389 

4. Discussion 390 

In this study, we used the hepatic transcriptomic profiles of barramundi from rivers with different 391 

land use patterns collected during the dry (low run off) and wet (high run off) seasons both to (i) 392 

differentiate between impacted and reference sites; (ii) determine the extent to which the 393 

transcriptome reflected seasonal changes in water quality; and (iii) identify potential stressors in 394 

these systems using transcripts encoding known exposure biomarkers.  Overall, the largest 395 
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differences in the global hepatic transcriptome were in barramundi from the Tully River collected 396 

during the wet season, demonstrating that the transcriptome can be used to identify impacted sites, 397 

supporting the first hypothesis. Compared to the Daintree catchment (a reference site), where 398 

barramundi were also collected during the wet season, the Tully (an impacted site) contains more 399 

sugarcane and horticulture upstream of the collection site than the Daintree collection site (Waters 400 

et al., 2016).  Barramundi collected from the Tully River during the wet season had more differences 401 

in their transcriptomes relative to the two reference catchments and to those collected from the 402 

two other agriculturally impacted catchments (i.e., North Johnstone and Barratta) during periods of 403 

low run off, when pollutant levels are lower, supporting the second hypothesis.  Few differences in 404 

the transcriptome could be attributed to wet versus dry season overall (e.g. pooling both reference 405 

and impacted areas) or attributed to different sequencing runs.  406 

4.1 Transcripts for xenobiotic metabolising enzymes 407 

Xenobiotic metabolising enzymes are commonly used, well established exposure biomarkers, and 408 

increases in their transcription levels can be used to surmise exposure to pharmacologically relevant 409 

doses of their substrate (Schlenk et al., 2008, Hook et al., 2014).   The presence of these exposure 410 

biomarkers in the transcriptome can assist with putative stressor identification and thus supports 411 

the third hypothesis. Xenobiotics are often metabolised in a three phase pathway (Livingstone, 1991; 412 

Schlenk et al., 2008). The first phase occurs via oxidation, typically performed by a member of the 413 

cytochrome p450 family (Schlenk et al., 2008).  Transcripts encoding CYP 2j and k transcripts of 414 

enzymes that metabolise pesticides in fish (Haasch et al., 1998; Lemaire et al., 2004) and nicotine in 415 

mammals (Hukkanen et al., 2005) were elevated in the hepatic transcriptomes of fish from all the 416 

agriculturally impacted sites compared to the reference sites – but only significantly (p ≤ 0.05) in the 417 

fish from the Tully River.  The second phase of metabolism is glucorondiation, which is often 418 

performed by a member of the GST family (Schlenk et al., 2008).  Different transcript isoforms of GST 419 

were significantly (p ≤ 0.05) more abundant in fish collected from the Tully River than the reference 420 

sites, although some contigs were elevated in fish from all agriculturally impacted rivers, which 421 

suggests exposure to lower levels of pesticides year round, consistent with the known patterns of 422 

contamination (e.g. Lewis et al., 2009) or another oxidative stressor.  Exposure to atrazine is known 423 

to induce GST in fish (Egaas et al., 1993; Wiegand et al., 2000).  Transcripts of UDPGT are also more 424 

abundant in fish from the Tully River, and like CYP2 proteins they are also involved in the 425 

metabolism of nicotine (Hukkanen et al., 2005) and potentially neonictinoid insecticides such as 426 

imidacloprid. The third phase of metabolism is excretion from the cell, which is typically carried out 427 

by an ABC  transmembrane protein (Schlenk et al., 2008).  Several different members of the ABC 428 

transporters, which excrete organic contaminants from cells (Leslie et al., 2005) had increased 429 

abundance in fish from the Tully River (Figure 4C).  Collectively, transcripts of fish from the impacted 430 

sites indicate exposure to organic contaminants, most likely to commercial pesticide formulations 431 

that include both active ingredients and additives such as solvents, surfactants, or preservatives, as 432 

there are no other known sources of organic contaminants in the area (Cox and Surgan, 2006; Kroon 433 

et al., 2015a, b).  Other xenobiotic metabolising enzymes were also induced in fish from the 434 

impacted sites.  The elevations in these transcripts in the Tully River barramundi were discussed in 435 

our previous study (Hook et al., 2017). 436 

  437 
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4.2 Estrogen-responsive transcripts 438 

Estrogen-responsive transcripts, such as zona pellucida and vitellogenin, were amongst the most 439 

differentially abundant transcripts (Table S2).  Normally, in female fish approaching spawning, 440 

circulating levels of estrogen increase, setting off a cascade of events, including stimulating the liver 441 

to start synthesising proteins required for oogenesis (reviewed in Swanson et al., 2003; Villeneuve et 442 

al., 2007).  These transcripts can also become more abundant following exposure to xenoestrogens, 443 

including in juveniles and males (Jobling and Tyler, 2003).  Transcripts encoding vitellogenin and the 444 

egg shell proteins were significantly elevated in the male fish from the agricultural catchments 445 

relative to male fish from the Daintree (Figure 4H). A common commercial herbicide formulation 446 

used in the area contains surfactants such as alkylphenol ethoxylates (Kroon et al., 2015b).  447 

Akylphenol ethoxylates are weakly estrogenic, and have been shown to cause elevations in the 448 

abundances of transcripts encoding vtg and egg yolk proteins in both lab and field studies (Meucci 449 

and Arukwe, 2005; Li et al., 2012; Schlenk et al., 2012).  This includes controlled laboratory studies 450 

on juvenile barramundi, during which similar, modest changes in transcript abundance were 451 

observed following exposure to both the “surfactant booster”, and the combination of herbicides 452 

and the “surfactant booster” (Kroon et al., 2015b). In addition to an aqueous pathway, alkylphenol 453 

ethoxylates have been shown to be persistent in sediments (Ferguson et al., 2003; Ferguson and 454 

Brownawell, 2003; Ferguson et al., 2001) so fish could be exposed during foraging or feeding during 455 

the dry season.  The increased abundance of these transcripts in livers of male fish suggests 456 

exposure to a xenoestrogen such as alkylphenol ethoxylates and thus supports the third hypothesis. 457 

4.3 Immune responsive transcripts 458 

 459 

Decreased abundance of some immune related transcripts were measured in all of the impacted 460 

rivers.  Decreased abundances of immune related transcripts may indicate toxicant induced 461 

immunomodulation (reviewed in Segner et al., 2012). Previous studies have also noted changes in 462 

the abundance of immune related transcripts following contaminant exposure. For instance, 463 

following exposure to crude oil, decreased abundances of immune related transcripts was noted  in 464 

Japanese flounder (Nakayama et al., 2008), and similar changes in the transcriptome were also 465 

measured in the head kidney of olive flounder exposed to benzo[α]pyrene (Hur et al., 2008) and in 466 

rainbow trout exposed to xenoestrogens (Hook et al., 2008).  Decreased levels of immune related 467 

transcripts may also be a generalised stress response (Aluru and Vijayan, 2009).  Without histological 468 

examination, it can not be determined whether these changes indicate increased incidence of 469 

disease.  470 

4.4 Transcripts with a metabolic function 471 

Some of the other changes in the fish transcriptome at agriculturally impacted sites suggested the 472 

potential for adverse outcomes on both individuals and populations, also supporting the third 473 

hypothesis.  Changes in metabolism can be indicative of increased energy expenditure via stress.  474 

Stressed animals would be expected to have increased utilisation of energy stores (lipid and protein), 475 

as well as increased levels of gluconeogenesis (Philip et al., 2012).  Increases in transcript abundance 476 

of genes involved in lipid and amino acid metabolism, which is an expected stress response in fish 477 

(Aluru and Vijayan, 2009), were measured only in the Tully River (Table 5, tables S3 and S4).  A 478 

previous study has noted an increase in protein metabolism in fish exposed to atrazine (McCarthy 479 

and Fuiman, 2008), which is frequently detected in the Tully River (Smith et al., 2012).  Other studies 480 
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have noted changes in osmoregulatory capacity and as a consequence decreased feeding in fish 481 

exposed to atrazine (Nieves-Puigdoller et al., 2007).  Whether the metabolic changes noted are 482 

directly attributable to exposure to stressors or a consequence of changed feeding behaviour is not 483 

known.   484 

Changes in lipid metabolism and energy utilisation can also be indicative of a metabolic disorder.  485 

PPARs regulate lipid and carbohydrate metabolism (Urbatzka et al., 2015), so changes in PPARs are 486 

considered a form of metabolic endocrine disruption (Casals-Casas et al., 2008).  Activation of PPAR 487 

alpha has been shown to alter insulin resistance and alter patterns of lipid storage (Pavlikova et al., 488 

2010).  Notably, these included an increase in the abundance of PPAR and acyl-coenzyme oxidase 489 

(Pavlikova et al., 2010).  Changes in PPARs have been noted following exposure to a variety of 490 

anthropogenic contaminants, including organotins (Pavlikova et al., 2010), oil (Bilbao et al., 2010), 491 

and nonylphenol (Cocci et al., 2013).  A large increase (greater than 200 fold, table S2, figure 4E) in 492 

the abundance of the transcript for PPARα was measured in fish from the Tully River, as well as an 493 

increased abundance of transcripts for acyl-coenzyme a oxidase, fatty acid synthase, and for several 494 

lipases.  All of these transcripts have been induced in a previous study following exposure to 495 

environmental contaminants and implicated in metabolic disorders such as steatosis disease 496 

(Maradonna et al., 2015). Changes in transcript abundance for insulin-like growth factor-binding 497 

protein and GADPH were also measured in fish from the Tully River. Previous studies have 498 

hypothesised these proteins have a negative effect on gametogenesis, heart rate, and energy supply 499 

for swimming  (Urbatzka et al., 2015).   500 

Both generalised stress and induction of the peroxisome proliferator pathway are thought to have 501 

deleterious consequences for the immune system (reviewed in Aluru and Vijayan, 2009, DeWitt et 502 

al., 2009).  For example, exposure to Perfluorooctanoic acid and Perfluorooctane sulfonate, two 503 

well-known peroxisome proliferating compounds, altered transcription of immune related genes in 504 

cultured hepatocytes of the minnow (Gobiocypris rarus) (Wei et al., 2009). Cortisol was shown to 505 

modulate the expression of cytokines and alter the inflammatory response in trout hepatocytes 506 

(Philip et al., 2012).  Previous studies have measured a decreased abundance of immune function 507 

related transcripts such as various complement components and macroglobulin in rainbow trout 508 

exposed to ethinyl estradiol (Hook et al., 2007), in flounder exposed to fuel oil (Nakayama et al., 509 

2008), in juvenile rainbow trout exposed to both atrazine and nonylphenol (Shelley et al., 2012) and 510 

in delta smelt exposed to permethrin, a pyrethroid pesticide (Jeffries et al., 2015).  We recorded a 511 

decrease in the abundance of immune related transcripts in fish from the three agriculturally 512 

impacted rivers relative to the fish from the reference rivers, with these decreases typically greatest 513 

in fish collected from the Tully River, as was noted in our previous study (Hook et al., 2017). 514 

Elevations in the levels of oxidative stress related transcripts (Table 5) could be a direct contaminant 515 

response, or they could be indicative of higher levels of stress experienced in fish from the 516 

agricultural catchments.  For instance, in fish from the Tully River, an increased abundance of 517 

transcripts of SOD and CAT were measured.  These enzymes act in concert to detoxify superoxides 518 

with superoxide dismutase reducing radical oxygen species to hydrogen peroxide, then catalase 519 

reducing hydrogen peroxide to water and oxygen (Dalton et al., 2002).  Oxidative stress responses 520 

are a well known indicator of exposure to and effects of environmental contaminants (e.g. Maria et 521 

al., 2009; Marigomez et al., 2013; Regoli et al., 2002).  Previous studies have found increased 522 

abundance of these transcripts in the hepatic transcriptome of brown trout exposed to the herbicide 523 
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glyphosate (Uren Webster and Santos, 2015).  These transcripts were only measured in fish from the 524 

Tully River that were collected during the wet season. Changes in oxidative stress related transcripts 525 

may also be indicative of stress.  For instance, increased abundance of transcripts for catalase were 526 

measured in migrating salmon in the Fraser River in British Columbia (Veldhoen et al., 2010), though 527 

the authors were not certain whether these were associated with contaminant body burdens or the 528 

metabolic costs of migration. Typically, in North Queensland, pesticide, nutrient, and sediment loads 529 

in the catchments are highest during the wet season (Turner et al., 2012, 2013; Wallace et al., 2014, 530 

2015, 2016 and Garzon-Garcia et al., 2015). Hence, we suggest that Tully fish were exposed to the 531 

highest levels of stressors in the study.  532 

Changes in transcript abundance could be a direct response of exposure to commercial pesticide 533 

formulations used in North Queensland (Kroon et al., 2015b), as previous studies have measured 534 

these changes in fish exposed to active ingredients such as atrazine and additives such as 535 

nonylphenol (Cocci et al., 2013).  Alternatively, changes in transcript abundance could be a response 536 

to turbidity or other stressors in the environment known to correlate with elevated pesticide levels 537 

(Garzon-Garcia et al., 2015).  Elevations in stress-related transcripts (though not the ones measured 538 

in this study) have been measured in delta smelt larvae exposed to high levels of turbidity 539 

(Hasenbien, 2016).  Other changes that may result in stress, such as changes in habitat or loss of a 540 

prey species could also underpin the changes observed (Aluru and Vijayan, 2009).  Nevertheless, 541 

changes in the abundance of stress related transcripts were only apparent in fish collected in the 542 

Tully during the wet season, and not in the two other agricultural catchments during the dry season. 543 

This suggests that any potential effect of habitat or prey alterations is overridden by effects of water 544 

quality.  Regardless of the cause, prolonged exposure to stress can lead to the allocation of energy 545 

away from growth, reproduction and development, and could have negative consequences for the 546 

population (Hasenbien et al., 2016). 547 

4.5 Using transcriptomic signatures in environmental management 548 

At the onset of this research, it was not certain if there would be any differences between sites or if 549 

the site related differences would be masked by inter-individual variability.  The results of the 550 

previous efforts (Hook et al., 2017) and this research clearly show that despite individual differences 551 

and presumably, different population structures (e.g. Keenan, 1994), the transcriptomic profiles had 552 

greater differences between sites than between individuals.  The number of individual replicates (5-553 

8) used in this study likely contributed to being able to differentiate between sites, individual 554 

variability would have had more influence if fewer individuals were being compared.      555 

The results of this study also demonstrate the potential utility in using transcriptomic profiles in site 556 

management.  As we stated in the introduction, at the onset of this study water quality in the GBR 557 

catchment area was known to be degraded (reviewed in Brodie et al., 2012; Kroon et al., 2012; 558 

Smith et al., 2012), but it was not clear whether these changes were having any impact on the fish in 559 

the catchment.  Because of natural variability in fish populations, declines in abundance and their 560 

causative agents can be difficult to identify (Hamilton et al., 2016).  Measuring changes in fish 561 

physiology has advantages over traditional endpoints such as length at age or abundance because 562 

these endpoints are slow to respond to stressors and do not provide any information about causality 563 

(Jeffreys et al., 2015).   However, since most of the pesticides in the catchment have not been well 564 

studied in fish, such that mode of action has been identified (Kroon et al., 2015; Pathiratne and 565 
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Kroon, 2016) there were a large number of physiological endpoints that could be monitored.  The 566 

RNA Seq study helped to resolve the uncertainity by showing that fish were exposed to a 567 

pharmacologically relevant dose of pesticides (e.g. transcripts for xenobiotic metabolising enzymes 568 

were more abundant).  However, demonstrating exposure is not sufficient to prove chronic impact, a 569 

link need to be made to another ecologically relevant endpoint, such as altered reproduction, 570 

disease incidence or growth (Hamilton et al., 2016). The transcriptomic data suggested physiological 571 

pathways that may be altered, including lipid, amino acid and primary metabolism, and these may 572 

indicate a reduced energy budget (Groh et al., 2015a).  This study also helped to direct future 573 

monitoring efforts by identifying molecular endpoints (changes in lipid content and inflammation) 574 

that will be surveyed in future studies.  Also, since our previous work (Hook et al., 2017) was a single 575 

comparison, this study provides further evidence that the changes observed can be attributed to 576 

differences in water quality, as opposed to site specific changes. 577 

This study also demonstrates how RNA Seq data can be integrated into adverse outcome pathway 578 

(AOP) development to better understand the implications of contaminant exposure on fish 579 

populations.  As stated previously, a goal in ecotoxiciology is to translate from exposure (a molecular 580 

initiating event in AOP terminology) to population level impacts (or adverse outcomes) (reviewed in 581 

Garcia Reyero, 2014).  The elevated transcripts for xenobiotic enzymes suggest exposure to 582 

pesticides.  This exposure may serve as a molecular initiating event in the adverse outcome pathway 583 

(e.g. Villeneuve et al., 2014).  The oxidative stress, altered metabolic pathways, and altered 584 

abundance of immune transcripts are all suggestive of “key events” (e.g. physiological changes that 585 

could alter organism health) (Villeneuve et al., 2014).  If these effects are measurable at the whole 586 

organism level and sufficient in duration and severity, may indicate a reduced energy budget in 587 

these fish and reduced ecological resilience (Groh et al., 2015 et al., 2015 a,b, Hamilton et al., 2016).  588 

In future work, we will integrate other physiological indices along our RNA Seq studies to assess the 589 

potential for adverse outcomes.   590 

Changes in water quality are likely only one of the factors driving differences in transcriptomic 591 

profile.  Other factors include natural variability as well as differences in hydrology, diet and other 592 

natural variability (Hamilton et al., 2016).  These factors may have contributed to the differences in 593 

transcriptomic profile between the two reference sites, though the significance of these changes are 594 

difficult to predict as many transcripts could not be identified. 595 

4.6 Conclusions 596 

The hepatic transcriptome profiles were able to indicate: 1) in which sites there is the greatest 597 

potential for changes to fish health as indicated by alterations in transcript abundance (i.e. the Tully 598 

River) supporting the first hypothesis; 2) the transcriptomes were most different in fish collected 599 

from agriculturally impacted sites during the wet season, supporting the second hypothesis; 3) which 600 

stressors are influencing the transcriptome (i.e., exposure biomarkers such as the xenobiotic 601 

metabolising enzymes indicate exposure to pesticides, the xenoestrogens suggest exposure to 602 

alkylphenol ethoxylates) supporting the third hypothesis; and 4) what are the potential adverse 603 

outcomes associated with these stressors (i.e., decreased energetic reserves and immune capacity) if 604 

substantiated in future studies using additional endpoints, also supporting the third hypothesis. 605 

Collectively, these findings suggest that transcriptomic patterns may be a useful tool for resource 606 

managers. The transcripts with altered abundance in the different rivers correspond to known 607 
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stressors in the catchments (e.g. pesticides and their surfactant co-factors), and confirms the 608 

findings of our previous study (Hook et al., 2017).  Furthermore, the transcripts suggest that 609 

although some exposure to these compounds is occurring year round, barramundi may be 610 

experiencing the most deleterious consequences during the wet season, as suggested by changes in 611 

lipid metabolism and immune response. We hypothesise that since the altered transcript abundance 612 

were most prevalent in fish collected from the Tully River during the wet season, pesticide runoff 613 

from agriculture, as opposed to alterations in barramundi habitat, is the primary stressor.  Our study 614 

demonstrated that the hepatic transcriptome, as determined via RNA-Seq, could be an effective 615 

means of classifying the relative degree of degradation of a site, and should be considered as a 616 

management tool.  Overall, this study not only provides information on the health of barramundi in 617 

selected Great Barrier Reef catchments, it also demonstrates the utility of using the transcriptome to 618 

monitor organism health and act as an early warning of potential deleterious biological impacts. 619 
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Figure S1. Workflow for this study, showing how data from the previous study were incorporated. 

These data were previously generated using the same analysis pipeline.  Adapted from Hook et al., 

2017. 

  



 

Figure S2. Principle components based visualisation of the plus one, log transformed hepatic 

transcriptome based on the time of year when the fish was collected.  Each dot represents an 

individual fish. 

  



 

 

Figure S3. Principle components based visualisation of the plus one, log transformed hepatic 

transcriptome based on the size (in standard length) of the fish collected.  Each dot represents an 

individual fish. 

  



 

Figure S4.  Similarities in the profiles of differentially abundant transcripts in livers for fish from each 

impacted river relative to both reference sites.  Figure was created using Oliveros, J.C. (2007-2015) 

Venny. An interactive tool for comparing lists with Venn's diagrams. 

http://bioinfogp.cnb.csic.es/tools/venny/index.html.  

http://bioinfogp.cnb.csic.es/tools/venny/index.html


Table S1.  The number of reads for each sample and the percentage that aligned 

M is million abbreviated. Fish numbers 2-7 were collected from the Daintree River, fish numbers 97-104 were collected from the Tully River.   

Previous study (Hook et al., 2017) 

 

Sample 2 3 4 5 6 7 97 98 99 100 101 102 103 104 

Number 

of reads 

28M 27M 26M 25M 25M 25M 28M 28M 31M 26M 28M 25M 26M 26M 

% aligned 41.73% 47.50% 46.35% 47.28% 45.35% 42.35% 47.22% 47.81% 46.99% 46.17% 47.23% 47.92% 39.95% 47.88% 

 

Current study 

Sample 353 354 355 358 359 360 402 403 404 406 408 WC1 WC2 WC3 WC4 WC5 WC51 WC55 WC56 

Number 

of reads 

14M 14M 13M 13M 13M 13M 12M 13M 12M 12M 13M 12M 12M 12M 12M 12M 13M 13M 13M 

% 

aligned 

58.55% 60.22% 64.34% 59.7% 60.71% 57.89% 57.40% 56.01% 61.30% 62.12% 62.12% 62.97% 57.30% 58.17% 48.71% 58.59% 57.01% 53.14% 58.08% 

 



 

Supplementary table S2.  Gene lists go here. 

  



Table S3. Functional pathways to which differentially abundant transcripts in the list of differentially 

abundant transcripts relative to the transcriptome as a whole could be significantly mapped 

More abundant in the Tully River 

Term N
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ts
 

%
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phosphoprotein 362 19.30 1.60 1.45E-27 

acetylation 151 8.05 1.84 7.16E-12 

protein transport 40 2.13 2.65 9.64E-06 

cytoplasm 154 8.21 1.48 1.75E-05 

lysosome 19 1.01 4.09 8.06E-05 

atp-binding 74 3.94 1.79 9.42E-05 

nucleotide-binding 88 4.69 1.68 1.05E-04 

alternative splicing 289 15.41 1.24 1.10E-04 

hydrolase 82 4.37 1.69 1.40E-04 

transferase 71 3.78 1.64 2.06E-03 
compositionally biased region:Pro-
rich 59 3.14 1.96 2.46E-03 

splice variant 289 15.41 1.24 2.48E-03 

actin-binding 21 1.12 2.73 3.90E-03 

disease mutation 77 4.10 1.55 4.04E-03 

endoplasmic reticulum 42 2.24 1.89 4.10E-03 

oxidoreductase 35 1.87 2.00 5.62E-03 

ligase 23 1.23 2.42 6.98E-03 

lipid metabolism 15 0.80 3.19 7.39E-03 

sequence variant 424 22.60 1.13 0.01 
compositionally biased region:Glu-
rich 24 1.28 2.71 0.02 

kinase 38 2.03 1.77 0.02 

GO:0005773~vacuole 22 1.17 2.57 0.03 

GO:0005829~cytosol 72 3.84 1.59 0.03 

nadp 14 0.75 2.88 0.03 

GO:0000267~cell fraction 59 3.14 1.60 0.03 

mutagenesis site 95 5.06 1.48 0.03 

GO:0000166~nucleotide binding 113 6.02 1.43 0.03 

polymorphism 395 21.06 1.10 0.04 

GO:0001882~nucleoside binding 84 4.48 1.48 0.04 
GO:0001883~purine nucleoside 
binding 83 4.42 1.47 0.04 

GO:0005764~lysosome 19 1.01 2.65 0.04 

GO:0000323~lytic vacuole 19 1.01 2.65 0.04 
GO:0017076~purine nucleotide 
binding 97 5.17 1.43 0.04 

 



 

Less abundant in the Tully 
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109.Chemokine_families 4 1.35 11.46 3.47E-03 
PIRSF001950:small inducible chemokine, C/CC 
types 4 1.35 32.16 0.01 

chemotaxis 5 1.69 19.08 0.02 
IPR000827:Small chemokine, C-C group, 
conserved site 4 1.35 39.78 0.02 

SM00199:SCY 4 1.35 22.71 0.03 

cytokine 6 2.03 9.11 0.04 

IPR001811:Small chemokine, interleukin-8-like 4 1.35 24.26 0.05 
  



Less abundant in Barratta Creek  
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protein transport 36 2.18 2.78 1.37E-05 

atp-binding 61 3.69 1.72 3.82E-03 
IPR011993:Pleckstrin 
homology-type 25 1.51 2.92 4.59E-03 
GO:0030695~GTPase 
regulator activity 28 1.69 2.39 0.01 
GO:0060589~nucleos
ide-triphosphatase 
regulator activity 29 1.75 2.42 0.02 

actin-binding 18 1.09 2.73 0.02 
GO:0017048~Rho 
GTPase binding 8 0.48 7.25 0.02 

SH2 domain 11 0.67 3.72 0.03 
GO:0051020~GTPase 
binding 12 0.73 3.79 0.03 
GO:0005096~GTPase 
activator activity 18 1.09 2.82 0.03 
GO:0017016~Ras 
GTPase binding 11 0.67 4.16 0.04 

IPR000198:RhoGAP 10 0.60 5.28 0.04 
GO:0003779~actin 
binding 22 1.33 2.32 0.05 
GO:0031267~small 
GTPase binding 11 0.67 3.75 0.05 

 
 
     

 

Less abundant in N Johnstone 
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cell 
adhesion 12 3.07 3.99 0.02 

 

  



Table S4.  KEGG functional categories to which the enriched transcripts in fish from each 

transcriptome can be mapped.   

 

Pathway Number of 

sequences in 

gene list 

Number of 

unique enzymes 

in gene list 

Number of 

sequences in 

transcriptome 

Expected 

number of 

sequences  

More abundant in fish from the Tully River 

Purine metabolism 30 19 237 24 

Glycerophospholipid 

metabolism 
24 15 88 9 

Glycerolipid metabolism 19 9 94 10 

Glycolysis / gluconeogenesis 18 12 76 8 

Fatty acid degradation 18 9 41 6 

Lysine degradation 16 10 50 7 

Glycine, serine and threonine 

metabolism 
16 11 45 6 

Pyruvate metabolism 16 11 47 5 

Sphingolipid metabolism 15 6 59 8 

Tryptophan metabolism 15 7 45 6 

Pentose phosphate pathway 14 10 47 5 

Citrate cycle (TCA cycle) 14 11 48 7 

Glutathione metabolism 14 7 43 6 

Arginine and proline 

metabolism 
13 11 46 6 

Ether lipid metabolism 13 6 27 4 

Valine, leucine and isoleucine 

degradation 
13 11 27 4 

Phosphatidylinositol 

signalling system 
13 8 109 11 

Oxidative phosphorylation 13 8 63 9 



Aminoacyl-tRNA biosynthesis 12 13 45 6 

Inositol phosphate 

metabolism 
12 7 94 10 

Propanoate metabolism 12 9 36 5 

Glyoxylate and dicarboxylate 

metabolism 
12 9 26 4 

Arachidonic acid metabolism 12 6 37 5 

mTOR signalling 12 2 31 4 

beta-Alanine metabolism 6 6 25 4 

Amino sugar and nucleotide 

sugar metabolism 
11 11 53 7 

Tyrosine metabolism 11 12 26 4 

Alanine, aspartate and 

glutamate metabolism 
10 13 40 6 

Biosynthesis of unsaturated 

fatty acids 
10 4 25 4 

Drug metabolism - 

cytochrome P450 
10 5 32 5 

Metabolism of xenobiotics 

by cytochrome P450 
10 5 36 5 

Aminobenzoate degradation 10 5 28 4 

Starch and sucrose 

metabolism 
10 11 37 5 

alpha-linolenic acid 

metabolism 
9 4 20 3 

Chloroalkane and 

chloroalkene degradation 
9 3 11 1 

Pentose and glucuronate 

interconversions 
6 3 24 3 

Steroid hormone 

biosynthesis 
8 5 30 4 



Butanoate metabolism 8 10 20 3 

Drug metabolism - other 

enzymes 
8 8 53 5 

Galactose metabolism 7 6 62 9 

Retinol metabolism 7 4 32 4 

Porphryrin metabolism 7 7 24 3 

Steroid biosynthesis 7 5 10 1 

Selenocompound 

metabolism 
6 5 14 2 

Nicotinate and nicotinamide 

metabolism 
6 3 31 3 

N-glycan biosynthesis 6 4 25 3 

Other glycan degradation 6 5 34 5 

Histidine metabolism 6 4 12 1 

Ascorbate and aldarate 

metabolism 
5 2 12 1 

Folate biosynthesis 5 5 10 1 

Cysteine and methionine 

metabolism 
5 7 40 4 

Phenylaline metabolism 5 7 32 4 

Linoleic Acid 5 2 14 2 

Various types of N-glycan 

biosynthesis 
5 3 21 3 

Limonene and pinene 

degradation 
5 2 6 1 

Arginine biosynthesis 5 5 46 6 

Cyanoamino acid 

metabolism 
  20 3 

Less abundant in fish  from  the Tully River 

Glycolysis / gluconeogenesis 18 12 76 8 



Cysteine and methionine 

metabolism 
5 4 40 4 

Less abundant in fish  from  the N Johnstone River 

Glycolysis / gluconeogenesis 6 6 76 8 

Less abundant in fish  from Barratta Creek  

Purine metabolism 35 22 237 24 

Glycolysis / gluconeogenesis 19 12 76 8 

Phosphatidylinositol 

signalling system 
16 7 109 11 

Fructose and mannose 

metabolism 
14 8 55 8 

Inositol phosphate 

metabolism 
13 6 94 13 

Oxidative phosphorylation 13 4 63 9 

Galactose metabolism 12 6 62 9 

T cell receptor signalling 

pathway 
12 2 82 8 

Amino sugar and nucleotide 

sugar metabolism 
9 12 53 7 

Pyrimidine metabolism 11 8 105 10 

Starch and sucrose 

metabolism 
11 8 37 5 

Pentose phosphate pathway 10 5 47 5 

Pyruvate metabolism 7 6 47 5 

Glycine, serine and threonine 

metabolism 
8 8 45 5 

Pentose phosphate pathway 8 3 47 5 

Drug metabolism - other 

enzymes 
7 5 53 5 



Arginine and proline 

metabolism 
6 4 46 6 

Pentose and glucuronate 

interconversions 
6 4 24 3 

Ester lipid metabolism 6 5 27 4 

Lysine degradation 6 4 50 7 

Aminoacyl-tRNA biosynthesis 5 5 45 6 

Nicotinate and nicotinamide 

metabolism 
5 4 31 3 

Glutathione metabolism 5 4 43 6 

Trytophan metabolism 5 3 45 6 

Only those pathways with five or more sequences that are relevant to eukaryotes are presented.  The number of sequences expected to 

be included in the gene list due to chance alone is presented for comparison.  
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