8 research outputs found

    Invasive nasal histiocytic sarcoma as a cause of temporal lobe epilepsy in a cat

    Get PDF
    Case summary A 10-year-old neutered female domestic shorthair cat was presented with an acute onset of neurological signs suggestive of a right-sided forebrain lesion, temporal lobe epilepsy and generalised seizure activity. MRI of the head revealed an expansile soft tissue mass in the caudal nasal passages (both sides but predominantly right-sided) involving the ethmoid bone and extending through the cribriform plate into the cranial vault affecting predominantly the right frontal lobe and temporal lobe. Histopathological examination of the tumour revealed a histiocytic sarcoma. Relevance and novel information This is the first report of a cat with clinical signs of temporal lobe epilepsy due to an invasive, histiocytic sarcoma. Histiocytic sarcoma, although rare, should be included in the list of differential diagnoses for soft tissue masses extending through the cribriform plate. Other differential diagnoses are primary nasal neoplasia (eg, adenocarcinoma, squamous cell carcinoma, chondrosarcoma and other types of sarcomas), lymphoma and olfactory neuroblastoma. Temporal lobe epilepsy in cats can be the consequence of primary pathology of temporal lobe structures, or it can be a consequence of pathology with an effect on these structures (eg, mass effect or disruption of interconnecting neuronal pathways)

    International Veterinary Epilepsy Task Force Consensus Proposal: Diagnostic approach to epilepsy in dogs

    Get PDF
    This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Invasive nasal histiocytic sarcoma as a cause of epilepsy

    Get PDF
    Case summary: A 10-year-old neutered female domestic shorthair cat was presented with an acute onset of neurological signs suggestive of a right-sided forebrain lesion, temporal lobe epilepsy and generalised seizure activity. MRI of the head revealed an expansile soft tissue mass in the caudal nasal passages (both sides but predominantly right-sided) involving the ethmoid bone and extending through the cribriform plate into the cranial vault affecting predominantly the right frontal lobe and temporal lobe. Histopathological examination of the tumour revealed a histiocytic sarcoma. Relevance and novel information: This is the first report of a cat with clinical signs of temporal lobe epilepsy due to an invasive, histiocytic sarcoma. Histiocytic sarcoma, although rare, should be included in the list of differential diagnoses for soft tissue masses extending through the cribriform plate. Other differential diagnoses are primary nasal neoplasia (eg, adenocarcinoma, squamous cell carcinoma, chondrosarcoma and other types of sarcomas), lymphoma and olfactory neuroblastoma. Temporal lobe epilepsy in cats can be the consequence of primary pathology of temporal lobe structures, or it can be a consequence of pathology with an effect on these structures (eg, mass effect or disruption of interconnecting neuronal pathways)

    Twelve years of chiari-like malformation and syringomyelia scanning in Cavalier King Charles Spaniels in the Netherlands: Towards a more precise phenotype

    No full text
    Chiari-like malformation (CM), syringomyelia (SM) and middle ear effusion (also called PSOM) are three conditions that frequently occur in Cavalier King Charles Spaniels (CKCS). Both CM and SM are currently screened in the Netherlands prior to breeding and are graded according to the British Veterinary Association's Kennel Club (BVA/KC) scheme. This study evaluated the prevalence and estimated genetic parameter of CM, SM and middle ear effusion from 12 years of screening results. For SM, the classical method using the BVA/KC scheme, was compared with exact measuring of the central canal dilation. For CM, the BVA/KC scheme was compared with a more detailed scheme. Next to this the presence of microchip artifacts was assessed. 1249 screening of 1020 dogs were re-evaluated. Results indicated the presence of CM in all dogs, suggesting it has become a breed-specific characteristic. And although different grades of CM were observed, the condition did not deteriorate over time. SM was present in 39% of the dogs and a clear age effect was demonstrated, with SM increasing with age. This emphasizes the importance of screening at appropriate age, since SM can worsen with increasing age. One alternative is to promote repeated measures. The presence of middle ear effusion in this study was 19%-21% for dogs younger than 3 years, and 32%-38% for dogs older than 3 years. In as much as 60%, microchip artifacts were noticed, leading to the recommendation to place microchips in another location in breeds that are susceptible to developing SM. Finally, this study estimated the heritability of CM in this population, due to the lack of phenotypic variance, to be very low at 0.02-0.03. The heritability for SM central canal dilatation to be 0.30, compared to 0.13 for the classical BVA/KC method, using a model including the age effect and the combined effect of veterinary clinic and year of the evaluation. Genetic correlations were rather small, ranging from 0.16-0.33. As a conclusion, screening for SM and CM in the entire population should be maintained, and a selection scheme against SM should be based on estimated breeding values for the exact measurement of the central canal dilatation.status: publishe

    International veterinary epilepsy task force consensus proposal : diagnostic approach to epilepsy in dogs

    No full text
    This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose. This consensus article represents the basis for a more standardised diagnostic approach to the seizure patient. These recommendations will evolve over time with advances in neuroimaging, electroencephalography, and molecular genetics of canine epileps
    corecore